irie 0.0.16__py3-none-any.whl → 0.0.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of irie might be problematic. Click here for more details.
- irie/apps/events/views_events.py +4 -6
- irie/apps/inventory/filters.py +37 -5
- irie/apps/inventory/models.py +14 -1
- irie/apps/inventory/sitemaps.py +19 -0
- irie/apps/inventory/views.py +2 -7
- irie/apps/prediction/forms.py +4 -1
- irie/apps/prediction/predictor.py +5 -274
- irie/apps/prediction/runners/__init__.py +17 -15
- irie/apps/prediction/runners/hazus.py +271 -182
- irie/apps/prediction/runners/opensees/__init__.py +88 -11
- irie/apps/prediction/runners/ssid.py +168 -9
- irie/apps/prediction/urls.py +3 -4
- irie/apps/prediction/views.py +8 -85
- irie/apps/sitemaps.py +14 -0
- irie/apps/static/assets/content_images/brace/mdof.svg +1 -0
- irie/apps/static/assets/content_images/brace/opensees.jpg +0 -0
- irie/apps/static/assets/content_images/brace/sdof.svg +327 -0
- irie/apps/static/assets/content_images/brace/sees.png +0 -0
- irie/apps/templates/accounts/login.html +50 -55
- irie/apps/templates/inventory/asset-profile.html +0 -15
- irie/apps/templates/inventory/asset-table.html +38 -15
- irie/apps/templates/prediction/asset-predictors.html +38 -5
- irie/apps/templates/prediction/new-runner.html +1 -1
- irie/apps/templates/prediction/predictor-profile.html +11 -0
- irie/apps/templates/site/index.html +5 -7
- irie/init/__main__.py +8 -5
- irie/init/data/cgs-stations.json +2967 -0
- irie/init/getCGSData.py +9 -4
- irie/init/management/commands/init_assets.py +1 -1
- irie/init/management/commands/init_cesmd.py +25 -0
- {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/METADATA +1 -1
- {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/RECORD +35 -27
- {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/WHEEL +0 -0
- {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/entry_points.txt +0 -0
- {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/top_level.txt +0 -0
|
@@ -11,7 +11,7 @@ import zipfile
|
|
|
11
11
|
from pathlib import Path
|
|
12
12
|
import contextlib
|
|
13
13
|
|
|
14
|
-
from irie.apps.prediction.runners import (Runner,
|
|
14
|
+
from irie.apps.prediction.runners import (Runner, RunID, classproperty)
|
|
15
15
|
|
|
16
16
|
from .utilities import read_model
|
|
17
17
|
from .metrics import (
|
|
@@ -29,7 +29,6 @@ OPENSEES = [
|
|
|
29
29
|
@contextlib.contextmanager
|
|
30
30
|
def new_cd(x):
|
|
31
31
|
d = os.getcwd()
|
|
32
|
-
|
|
33
32
|
# This could raise an exception, but it's probably
|
|
34
33
|
# best to let it propagate and let the caller
|
|
35
34
|
# deal with it, since they requested x
|
|
@@ -52,19 +51,28 @@ class OpenSeesRunner(Runner):
|
|
|
52
51
|
|
|
53
52
|
|
|
54
53
|
@classmethod
|
|
55
|
-
def create(cls, asset, request
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
54
|
+
def create(cls, asset, request):
|
|
55
|
+
from irie.apps.prediction.models import PredictorModel
|
|
56
|
+
predictor = PredictorModel()
|
|
57
|
+
data = json.loads(request.body)
|
|
58
|
+
# TODO
|
|
59
|
+
data.pop("file")
|
|
60
|
+
uploaded_file = request.FILES.get('config_file', None)
|
|
61
|
+
print(uploaded_file)
|
|
62
|
+
if uploaded_file:
|
|
63
|
+
|
|
64
|
+
with open(uploaded_file.name, 'wb+') as destination:
|
|
65
|
+
for chunk in uploaded_file.chunks():
|
|
66
|
+
destination.write(chunk)
|
|
67
|
+
|
|
68
|
+
# predictor.config_file = uploaded_file # data.pop("file")
|
|
69
|
+
predictor.name = data.pop("name")
|
|
70
|
+
predictor.config = data
|
|
71
|
+
predictor.asset = asset
|
|
62
72
|
predictor.protocol = "IRIE_PREDICTOR_T4"
|
|
63
73
|
predictor.active = True
|
|
64
|
-
# predictor.metrics = self.getMetricList()
|
|
65
74
|
return predictor
|
|
66
75
|
|
|
67
|
-
|
|
68
76
|
@classproperty
|
|
69
77
|
def schema(cls):
|
|
70
78
|
from . import schemas
|
|
@@ -491,3 +499,72 @@ class OpenSeesRunner(Runner):
|
|
|
491
499
|
return {}
|
|
492
500
|
return {}
|
|
493
501
|
|
|
502
|
+
|
|
503
|
+
import subprocess
|
|
504
|
+
class Event: pass
|
|
505
|
+
|
|
506
|
+
class PredictorType1(Runner):
|
|
507
|
+
@property
|
|
508
|
+
def platform(self):
|
|
509
|
+
return self.conf.get("platform", "")
|
|
510
|
+
|
|
511
|
+
@classmethod
|
|
512
|
+
def create(cls, asset, request):
|
|
513
|
+
from irie.apps.prediction.models import PredictorModel
|
|
514
|
+
predictor = PredictorModel()
|
|
515
|
+
data = json.loads(request.data.get("json"))
|
|
516
|
+
predictor.entry_point = [
|
|
517
|
+
sys.executable, "-m", "opensees"
|
|
518
|
+
]
|
|
519
|
+
data["metrics"] = []
|
|
520
|
+
|
|
521
|
+
predictor.name = data.pop("name")
|
|
522
|
+
predictor.config = data
|
|
523
|
+
predictor.asset = asset
|
|
524
|
+
predictor.protocol = "IRIE_PREDICTOR_T1"
|
|
525
|
+
predictor.active = False
|
|
526
|
+
return predictor
|
|
527
|
+
|
|
528
|
+
|
|
529
|
+
@classproperty
|
|
530
|
+
def schema(cls):
|
|
531
|
+
from irie.apps.prediction.runners.opensees import schemas
|
|
532
|
+
return {
|
|
533
|
+
"title": "Structural Model",
|
|
534
|
+
"options": {"disable_collaps": True},
|
|
535
|
+
"schema": "http://json-schema.org/draft-04/schema#",
|
|
536
|
+
"type": "object",
|
|
537
|
+
"properties": {
|
|
538
|
+
"platform": {
|
|
539
|
+
"type": "string",
|
|
540
|
+
"title": "Platform",
|
|
541
|
+
"enum": ["OpenSees","CSiBridge"]
|
|
542
|
+
},
|
|
543
|
+
"model": schemas.load("hwd_conf.schema.json"),
|
|
544
|
+
"analysis": schemas.load("hwd_analysis.schema.json"),
|
|
545
|
+
}
|
|
546
|
+
}
|
|
547
|
+
|
|
548
|
+
def newPrediction(self, event: Event) -> RunID:
|
|
549
|
+
self.event = event
|
|
550
|
+
event_file = Path(event.event_file.path).resolve()
|
|
551
|
+
command = [*self.entry_point, "new", event_file]
|
|
552
|
+
run_id = subprocess.check_output(command).decode().strip()
|
|
553
|
+
return RunID(int(run_id))
|
|
554
|
+
|
|
555
|
+
def runPrediction(self, run_id: RunID):
|
|
556
|
+
command = [*self.entry_point, "run", str(run_id)]
|
|
557
|
+
|
|
558
|
+
if "scale" in self.event.upload_data:
|
|
559
|
+
command.extend(["--scale", str(float(self.event.upload_data["scale"]))])
|
|
560
|
+
print(":: Running ", command, file=sys.stderr)
|
|
561
|
+
subprocess.check_output(command)
|
|
562
|
+
|
|
563
|
+
print(f":: Model {self.name} returned", file=sys.stderr)
|
|
564
|
+
return
|
|
565
|
+
|
|
566
|
+
def getMetricData(self, run, metric):
|
|
567
|
+
try:
|
|
568
|
+
return json.loads(subprocess.check_output([*self.entry_point, "get", str(run), metric]).decode())
|
|
569
|
+
except json.decoder.JSONDecodeError:
|
|
570
|
+
return {}
|
|
@@ -1,3 +1,7 @@
|
|
|
1
|
+
from irie.apps.events.models import EventRecord
|
|
2
|
+
from irie.apps.prediction.runners import Runner, RunID
|
|
3
|
+
from irie.apps.prediction.models import PredictorModel
|
|
4
|
+
|
|
1
5
|
from pathlib import Path
|
|
2
6
|
import json
|
|
3
7
|
import io
|
|
@@ -12,6 +16,7 @@ from mdof import transform
|
|
|
12
16
|
from scipy.signal import find_peaks
|
|
13
17
|
from mdof.utilities import Config, extract_channels
|
|
14
18
|
from matplotlib import colormaps
|
|
19
|
+
import subprocess
|
|
15
20
|
# try:
|
|
16
21
|
# import scienceplots
|
|
17
22
|
# plt.style.use(["science"])
|
|
@@ -22,7 +27,155 @@ N_PEAKS = 5 # number of "significant" peaks per record
|
|
|
22
27
|
MISSING_CHANNEL_LIMIT = 3 # number of missing output channels allowed before skipping event
|
|
23
28
|
MAX_ACCEL = 3.0
|
|
24
29
|
|
|
25
|
-
|
|
30
|
+
|
|
31
|
+
class SystemIdRunner(Runner):
|
|
32
|
+
platform = "mdof"
|
|
33
|
+
|
|
34
|
+
schema = {
|
|
35
|
+
"title": "System ID",
|
|
36
|
+
"name": "P2",
|
|
37
|
+
"type": "object",
|
|
38
|
+
"required": [
|
|
39
|
+
"name",
|
|
40
|
+
"decimation",
|
|
41
|
+
"method",
|
|
42
|
+
"channels"
|
|
43
|
+
],
|
|
44
|
+
"properties": {
|
|
45
|
+
"name": {
|
|
46
|
+
"type": "string",
|
|
47
|
+
"title": "Name",
|
|
48
|
+
"description": "Predictor name",
|
|
49
|
+
"minLength": 2,
|
|
50
|
+
# "default": "S1"
|
|
51
|
+
},
|
|
52
|
+
"method": {
|
|
53
|
+
"type": "string",
|
|
54
|
+
"title": "Method",
|
|
55
|
+
"enum": ["Fourier Spectrum","Response Spectrum","SRIM","OKID"]
|
|
56
|
+
},
|
|
57
|
+
"decimation": {
|
|
58
|
+
"type": "integer",
|
|
59
|
+
"title": "Decimation",
|
|
60
|
+
"default": 1,
|
|
61
|
+
"minimum": 1,
|
|
62
|
+
"maximum": 8
|
|
63
|
+
},
|
|
64
|
+
"order": {
|
|
65
|
+
"type": "integer",
|
|
66
|
+
"title": "Model Order",
|
|
67
|
+
"default": 8,
|
|
68
|
+
"minimum": 2,
|
|
69
|
+
"maximum": 64,
|
|
70
|
+
"options": {"dependencies": {"method": ["SRIM","OKID"]}}
|
|
71
|
+
},
|
|
72
|
+
"horizon": {
|
|
73
|
+
"type": "integer",
|
|
74
|
+
"title": "Prediction Horizon",
|
|
75
|
+
"default": 100,
|
|
76
|
+
"minimum": 50,
|
|
77
|
+
"maximum": 500,
|
|
78
|
+
"options": {"dependencies": {"method": ["SRIM"]}}
|
|
79
|
+
},
|
|
80
|
+
"period_band": {
|
|
81
|
+
"type": "string",
|
|
82
|
+
"title": "Period Band",
|
|
83
|
+
"default": "[0.1,2.3]",
|
|
84
|
+
"options": {"dependencies": {"method": ["Fourier Spectrum"]}},
|
|
85
|
+
"description": "[0.1,2.3] if interested in periods between 0.1 seconds and 2.3 seconds"
|
|
86
|
+
},
|
|
87
|
+
"damping": {
|
|
88
|
+
"type": "float",
|
|
89
|
+
"title": "Damping",
|
|
90
|
+
"default": 0.02,
|
|
91
|
+
"options": {"dependencies": {"method": ["Response Spectrum"]}},
|
|
92
|
+
"description": "assumed damping ratio"
|
|
93
|
+
},
|
|
94
|
+
"channels": {
|
|
95
|
+
"type": "array",
|
|
96
|
+
"format": "table",
|
|
97
|
+
"title": "Channels",
|
|
98
|
+
"uniqueItems": True,
|
|
99
|
+
"items": {
|
|
100
|
+
"title": "Acceleration",
|
|
101
|
+
"type": "object",
|
|
102
|
+
"properties": {
|
|
103
|
+
"type": {
|
|
104
|
+
"type": "string",
|
|
105
|
+
"enum": ["output","input"],
|
|
106
|
+
"default": "output"
|
|
107
|
+
},
|
|
108
|
+
"id": {"type": "integer", "description": "Number identifying signal channel"}
|
|
109
|
+
}
|
|
110
|
+
},
|
|
111
|
+
"default": [{"type": "output", "id": 1}]
|
|
112
|
+
}
|
|
113
|
+
}
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
def render(self):
|
|
117
|
+
try:
|
|
118
|
+
return make_mountains(self.asset, self.conf)
|
|
119
|
+
except:
|
|
120
|
+
return None
|
|
121
|
+
|
|
122
|
+
@classmethod
|
|
123
|
+
def create(cls, asset, request):
|
|
124
|
+
predictor = PredictorModel()
|
|
125
|
+
data = json.loads(request.body)
|
|
126
|
+
method = {
|
|
127
|
+
"Fourier Spectrum": "fourier",
|
|
128
|
+
"Response Spectrum": "response",
|
|
129
|
+
"FDD": "fdd",
|
|
130
|
+
"OKID": "okid-era",
|
|
131
|
+
"SRIM": "srim"
|
|
132
|
+
}[data.pop("method")]
|
|
133
|
+
|
|
134
|
+
predictor.entry_point = [
|
|
135
|
+
sys.executable, "-m", "mdof", method
|
|
136
|
+
]
|
|
137
|
+
data["outputs"] = [i["id"] for i in data["channels"] if i["type"] == "output"]
|
|
138
|
+
data["inputs"] = [i["id"] for i in data["channels"] if i["type"] == "input"]
|
|
139
|
+
data["threads"] = 4
|
|
140
|
+
data["metrics"] = ["SPECTRAL_SHIFT_IDENTIFICATION"]
|
|
141
|
+
del data["channels"]
|
|
142
|
+
|
|
143
|
+
predictor.name = data.pop("name")
|
|
144
|
+
predictor.config = data
|
|
145
|
+
predictor.asset = asset
|
|
146
|
+
predictor.protocol = "IRIE_PREDICTOR_T2"
|
|
147
|
+
predictor.active = True
|
|
148
|
+
return predictor
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def newPrediction(self, event):
|
|
152
|
+
self.event = event
|
|
153
|
+
return RunID(1)
|
|
154
|
+
|
|
155
|
+
def runPrediction(self, run_id: RunID) -> bool:
|
|
156
|
+
event_file = Path(self.event.event_file.path).resolve()
|
|
157
|
+
command = [*self.entry_point,
|
|
158
|
+
"--config",
|
|
159
|
+
json.dumps(self.conf),
|
|
160
|
+
event_file]
|
|
161
|
+
|
|
162
|
+
if False:
|
|
163
|
+
command = [*self.entry_point,
|
|
164
|
+
event_file,
|
|
165
|
+
*map(str, self.conf.get("argv", []))]
|
|
166
|
+
try:
|
|
167
|
+
self.metric_data = json.loads(
|
|
168
|
+
subprocess.check_output(command).decode()
|
|
169
|
+
)
|
|
170
|
+
return True
|
|
171
|
+
except Exception as e:
|
|
172
|
+
self.metric_data = {"error": str(e)}
|
|
173
|
+
return False
|
|
174
|
+
|
|
175
|
+
def getMetricData(self, run, metric):
|
|
176
|
+
if not hasattr(self, "metric_data"):
|
|
177
|
+
raise Exception(f"Error {self.name}({id(self)}), {run}")
|
|
178
|
+
return self.metric_data
|
|
26
179
|
|
|
27
180
|
|
|
28
181
|
|
|
@@ -186,12 +339,14 @@ def _load_events(asset, output_channels):
|
|
|
186
339
|
return {k:v for k,v in events}
|
|
187
340
|
|
|
188
341
|
|
|
189
|
-
def
|
|
342
|
+
def _get_spectra(event, conf, cmap):
|
|
190
343
|
"""
|
|
191
344
|
Get coordinates (periods, amplitudes) of spectra for an event, and return them along
|
|
192
345
|
with the maximum period of the N_PEAKS tallest peaks, as well as plotting options
|
|
193
346
|
such as color and alpha.
|
|
194
347
|
"""
|
|
348
|
+
period_band = conf.period_band
|
|
349
|
+
|
|
195
350
|
n_outputs = event['outputs'].shape[0]
|
|
196
351
|
frequencies,_,S = transform.fdd(outputs=event['outputs'], step=event['dt']) # Full frequency spectrum
|
|
197
352
|
periods = 1/frequencies
|
|
@@ -309,14 +464,18 @@ def _plot_mountains(spectra, accellim=None):
|
|
|
309
464
|
return fig
|
|
310
465
|
|
|
311
466
|
|
|
312
|
-
def make_mountains(asset, output_channels=None):
|
|
467
|
+
def make_mountains(asset, conf=None, output_channels=None):
|
|
313
468
|
|
|
314
469
|
cmap = colormaps['plasma']
|
|
315
|
-
conf
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
470
|
+
if conf is None:
|
|
471
|
+
conf = Config()
|
|
472
|
+
conf.period_band = (0.1,3)
|
|
473
|
+
conf.damping = 0.02
|
|
474
|
+
conf.ss_decimation = 8
|
|
475
|
+
conf.order = 40
|
|
476
|
+
conf.method = "fdd"
|
|
477
|
+
else:
|
|
478
|
+
conf = Config(**conf)
|
|
320
479
|
|
|
321
480
|
if output_channels is None:
|
|
322
481
|
if not asset.bridge_sensors:
|
|
@@ -333,7 +492,7 @@ def make_mountains(asset, output_channels=None):
|
|
|
333
492
|
print(f"Missing {n_expected_outputs-n_parsed_channels} output channels; skipping event") # Missing too many channels
|
|
334
493
|
continue
|
|
335
494
|
|
|
336
|
-
spectra[filename] =
|
|
495
|
+
spectra[filename] = _get_spectra(event, conf, cmap) # {'spec_coords':spec_coords, 'max_peak_period':max_peak_period, 'plot_conf':plot_conf}
|
|
337
496
|
|
|
338
497
|
|
|
339
498
|
# if station == 'CE89494':
|
irie/apps/prediction/urls.py
CHANGED
|
@@ -12,8 +12,7 @@ from .views import new_prediction, asset_predictors, predictor_profile, predicto
|
|
|
12
12
|
|
|
13
13
|
urlpatterns = [
|
|
14
14
|
re_path("^inventory/[0-9 A-Z-]*/predictors/new", new_prediction),
|
|
15
|
-
re_path("^inventory/[0-9 A-Z-]
|
|
16
|
-
re_path("^inventory/(?P<calid>[0-9 A-Z-]*)/predictors/create
|
|
17
|
-
re_path("^inventory/[0-9 A-Z-]*/predictors/", asset_predictors, name="asset_predictors")
|
|
18
|
-
re_path("^inventory/[0-9 A-Z-]*/predictors/", asset_predictors),
|
|
15
|
+
re_path("^inventory/(?P<calid>[0-9 A-Z-]*)/predictors/(?P<preid>[0-9 A-Z-]{1,})", predictor_profile),
|
|
16
|
+
re_path("^inventory/(?P<calid>[0-9 A-Z-]*)/predictors/create", predictor_upload),
|
|
17
|
+
re_path("^inventory/[0-9 A-Z-]*/predictors/", asset_predictors, name="asset_predictors")
|
|
19
18
|
]
|
irie/apps/prediction/views.py
CHANGED
|
@@ -19,9 +19,6 @@ from django.core.exceptions import ObjectDoesNotExist
|
|
|
19
19
|
|
|
20
20
|
from django.shortcuts import render
|
|
21
21
|
|
|
22
|
-
from rest_framework.decorators import api_view, permission_classes
|
|
23
|
-
from rest_framework.permissions import IsAuthenticated
|
|
24
|
-
|
|
25
22
|
from irie.apps.site.view_utils import raise404
|
|
26
23
|
from irie.apps.inventory.models import Asset
|
|
27
24
|
from irie.apps.prediction.predictor import PREDICTOR_TYPES, OpenSeesRunner
|
|
@@ -38,41 +35,7 @@ def new_prediction(request):
|
|
|
38
35
|
return HttpResponse(html_template.render(context, request))
|
|
39
36
|
|
|
40
37
|
|
|
41
|
-
|
|
42
|
-
@api_view(["GET", "POST", "PUT"])
|
|
43
|
-
@permission_classes([IsAuthenticated])
|
|
44
|
-
def predictor_api(request):
|
|
45
|
-
|
|
46
|
-
context = {"segment": "assets"}
|
|
47
|
-
|
|
48
|
-
context["predictor_types"] = list(reversed([
|
|
49
|
-
{"schema": json.dumps(cls.schema),
|
|
50
|
-
"name": cls.__name__,
|
|
51
|
-
"title": cls.schema["title"]}
|
|
52
|
-
for cls in set(PREDICTOR_TYPES.values())
|
|
53
|
-
]))
|
|
54
|
-
|
|
55
|
-
calid = request.path.split("/")[-3]
|
|
56
|
-
|
|
57
|
-
try:
|
|
58
|
-
context["asset"] = Asset.objects.get(calid=calid)
|
|
59
|
-
|
|
60
|
-
except:
|
|
61
|
-
return HttpResponse(
|
|
62
|
-
loader.get_template("site/page-404-sidebar.html").render(context, request)
|
|
63
|
-
)
|
|
64
|
-
|
|
65
|
-
if request.method == "POST":
|
|
66
|
-
print(request.POST)
|
|
67
|
-
PREDICTOR_TYPES["IRIE_PREDICTOR_T2"].create(context["asset"],request).save()
|
|
68
|
-
|
|
69
|
-
html_template = loader.get_template("prediction/asset-predictors.html")
|
|
70
|
-
return HttpResponse(html_template.render(context, request))
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
@api_view(["GET", "POST", "PUT"])
|
|
74
|
-
# @login_required(login_url="/login/")
|
|
75
|
-
@permission_classes([IsAuthenticated])
|
|
38
|
+
@login_required(login_url="/login/")
|
|
76
39
|
def asset_predictors(request):
|
|
77
40
|
|
|
78
41
|
calid = request.path.split("/")[-3]
|
|
@@ -97,45 +60,17 @@ def asset_predictors(request):
|
|
|
97
60
|
loader.get_template("site/page-404-sidebar.html").render(context, request)
|
|
98
61
|
)
|
|
99
62
|
|
|
100
|
-
if request.method == "POST":
|
|
101
|
-
form = PredictorForm(request.POST, request.FILES)
|
|
102
|
-
if form.is_valid():
|
|
103
|
-
# Process the form data and uploaded file
|
|
104
|
-
# asset = form.cleaned_data['asset']
|
|
105
|
-
asset = Asset.objects.get(calid=calid)
|
|
106
|
-
uploaded_file = request.FILES['config_file']
|
|
107
|
-
|
|
108
|
-
if uploaded_file:
|
|
109
|
-
with open(uploaded_file.name, 'wb+') as destination:
|
|
110
|
-
for chunk in uploaded_file.chunks():
|
|
111
|
-
destination.write(chunk)
|
|
112
|
-
|
|
113
|
-
# Save the predictor
|
|
114
|
-
if request.POST.get("runner", None) == "IRIE_PREDICTOR_T2":
|
|
115
|
-
PREDICTOR_TYPES["IRIE_PREDICTOR_T2"].create(context["asset"],request).save()
|
|
116
|
-
else:
|
|
117
|
-
OpenSeesRunner.create(asset,None,form).save()
|
|
118
|
-
else:
|
|
119
|
-
context["form"] = PredictorForm()
|
|
120
|
-
|
|
121
63
|
html_template = loader.get_template("prediction/asset-predictors.html")
|
|
122
64
|
return HttpResponse(html_template.render(context, request))
|
|
123
65
|
|
|
124
66
|
|
|
125
67
|
@login_required(login_url="/login/")
|
|
126
|
-
def predictor_profile(request):
|
|
68
|
+
def predictor_profile(request, calid, preid):
|
|
127
69
|
|
|
128
70
|
context = {}
|
|
129
71
|
html_template = loader.get_template("prediction/predictor-profile.html")
|
|
130
72
|
context["segment"] = "inventory"
|
|
131
73
|
|
|
132
|
-
url_segs = request.path.split("/")
|
|
133
|
-
if len(url_segs) < 5:
|
|
134
|
-
return raise404(request, context)
|
|
135
|
-
else:
|
|
136
|
-
calid = url_segs[2]
|
|
137
|
-
preid = url_segs[4]
|
|
138
|
-
|
|
139
74
|
try:
|
|
140
75
|
asset = Asset.objects.get(calid=calid)
|
|
141
76
|
except Asset.DoesNotExist:
|
|
@@ -149,7 +84,6 @@ def predictor_profile(request):
|
|
|
149
84
|
context["asset"] = asset
|
|
150
85
|
context["predictor"] = PREDICTOR_TYPES[predictor.protocol](predictor)
|
|
151
86
|
|
|
152
|
-
|
|
153
87
|
try:
|
|
154
88
|
return HttpResponse(html_template.render(context, request))
|
|
155
89
|
|
|
@@ -167,29 +101,19 @@ def predictor_profile(request):
|
|
|
167
101
|
@login_required(login_url="/login/")
|
|
168
102
|
def predictor_upload(request, calid):
|
|
169
103
|
|
|
170
|
-
context = {}
|
|
171
104
|
html_template = loader.get_template("prediction/predictor-upload.html")
|
|
172
|
-
context["segment"] = "assets"
|
|
173
105
|
|
|
174
106
|
if request.method == 'POST':
|
|
175
107
|
form = PredictorForm(request.POST, request.FILES) # include request.FILES
|
|
176
|
-
if form.is_valid():
|
|
177
|
-
|
|
178
|
-
# asset = form.cleaned_data['asset']
|
|
179
|
-
asset = Asset.objects.get(calid=calid)
|
|
180
|
-
uploaded_file = request.FILES['config_file']
|
|
181
|
-
|
|
182
|
-
with open(uploaded_file.name, 'wb+') as destination:
|
|
183
|
-
for chunk in uploaded_file.chunks():
|
|
184
|
-
destination.write(chunk)
|
|
108
|
+
# if form.is_valid():
|
|
109
|
+
asset = Asset.objects.get(calid=calid)
|
|
185
110
|
|
|
186
|
-
|
|
187
|
-
|
|
111
|
+
# Save the predictor
|
|
112
|
+
predictor = PREDICTOR_TYPES[request.POST.get("runner")].create(asset, request)
|
|
113
|
+
predictor.save()
|
|
188
114
|
|
|
189
|
-
|
|
115
|
+
return HttpResponse(json.dumps({"data": {"id": predictor.id}}))
|
|
190
116
|
|
|
191
|
-
return render(request, 'prediction/predictor-upload.html',
|
|
192
|
-
context)
|
|
193
117
|
else:
|
|
194
118
|
form = PredictorForm()
|
|
195
119
|
|
|
@@ -197,7 +121,6 @@ def predictor_upload(request, calid):
|
|
|
197
121
|
try:
|
|
198
122
|
return render(request, 'prediction/predictor-upload.html', {"form": form})
|
|
199
123
|
|
|
200
|
-
|
|
201
124
|
except Exception as e:
|
|
202
125
|
if "DEBUG" in os.environ and os.environ["DEBUG"]:
|
|
203
126
|
raise e
|
irie/apps/sitemaps.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
from django.contrib.sitemaps import Sitemap
|
|
2
|
+
from django.urls import reverse
|
|
3
|
+
|
|
4
|
+
class IrieSitemap(Sitemap):
|
|
5
|
+
priority = 0.9
|
|
6
|
+
changefreq = 'weekly'
|
|
7
|
+
|
|
8
|
+
def items(self):
|
|
9
|
+
# Return the names of your static views
|
|
10
|
+
return ['home', 'about', 'dashboard', 'asset_table']
|
|
11
|
+
|
|
12
|
+
def location(self, item):
|
|
13
|
+
return reverse(item)
|
|
14
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
<svg width="3952" height="1926" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" overflow="hidden"><defs><clipPath id="clip0"><rect x="273" y="266" width="3952" height="1926"/></clipPath><image width="72" height="348" xlink:href="" preserveAspectRatio="none" id="img1"></image><clipPath id="clip2"><rect x="0" y="0" width="120965" height="584662"/></clipPath><clipPath id="clip3"><rect x="0" y="0" width="120964" height="584661"/></clipPath><image width="700" height="400" xlink:href="" preserveAspectRatio="none" id="img4"></image><clipPath id="clip5"><rect x="0" y="0" width="3048000" height="1741714"/></clipPath><image width="700" height="400" xlink:href="" preserveAspectRatio="none" id="img6"></image><clipPath id="clip7"><rect x="0" y="0" width="3048000" height="1741714"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-273 -266)"><rect x="1527.5" y="840.5" width="101" height="27.0002" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><rect x="1607.5" y="856.5" width="29.0002" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6"/><rect x="1522.5" y="856.5" width="22" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#262626"/><rect x="1533.5" y="856.5" width="32" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040"/><rect x="1592.5" y="856.5" width="32" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#7F7F7F"/><rect x="1555.5" y="856.5" width="49.0001" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><rect x="774.5" y="822.5" width="101" height="26.9998" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><rect x="855.5" y="838.5" width="27.9998" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6"/><rect x="769.5" y="838.5" width="22" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#262626"/><rect x="780.5" y="838.5" width="31.9999" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040"/><rect x="839.5" y="838.5" width="31.9999" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#7F7F7F"/><rect x="802.5" y="838.5" width="48.9998" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><path d="M767.5 719.5 812.397 671.167 829.5 661.5 783.178 712.733 767.5 719.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M828.952 662.5 782.5 711.5 1100.4 711.5 1142.5 662.5 828.952 662.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1573.5 708.5 782.772 709.45 769.714 716.103 766.812 721.806 746.5 823.5 1473.39 823.5 1573.5 708.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#7F7F7F" fill-rule="evenodd"/><path d="M1242.11 793.019 1677.5 788.5 1512.93 903.5 1060.5 902.734 1242.11 793.019Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1461.64 814.53 1550.75 814.5 1553.5 820.926 1552.35 843.885 1453.5 903.5 1456.76 821.149 1461.64 814.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1061.18 903.5 1026.5 819.101 1031.65 812.972 1116.47 812.5 1123.5 820.516 1119.28 867.194 1061.18 903.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M1138.64 814.53 1227.75 814.5 1230.5 820.926 1229.35 843.885 1130.5 903.5 1133.76 821.149 1138.64 814.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1518.5 909.5 1565.88 817.163 1614.01 812.659 1891.5 644.5 1862.92 700.052 1518.5 909.5Z" stroke="#0D0D0D" stroke-width="4.58333" stroke-linejoin="round" stroke-miterlimit="10" fill="#7F7F7F" fill-rule="evenodd"/><path d="M1609.81 803.5 1954.5 594.915C1954.45 590.246 1954.16 584.17 1954.11 579.5L1609.5 787.381C1609.53 792.754 1609.79 798.127 1609.81 803.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M0 0 346.015 210.445" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 1616.5 786.945)"/><path d="M0 0 14.1849 8.62713" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 967.5 805.127)"/><path d="M1334.99 594.5 1895.5 594.5 1606.38 770.261 1605.61 784.717 1596.35 804.5 986.5 803.739 1334.99 594.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1609.5 804.251 1954.97 594.5 1959.5 595.046 1613.64 805.5 1609.5 804.251Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M969.5 767.21 1314.52 559.5 1327.5 560.492 982.559 767.5 969.5 767.21Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M982.578 784.5 1327.5 575.212C1327.45 570.543 1326.93 565.17 1326.88 560.5L982.5 768.381C982.526 773.754 982.552 779.127 982.578 784.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M981.5 784.548 1327.49 575.033C1327.44 570.359 1336.55 598.07 1336.5 593.395L990.741 802.832C990.767 808.211 981.474 779.169 981.5 784.548Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M1616.58 786.5 1961.5 577.212C1961.45 572.542 1960.93 567.169 1960.88 562.5L1616.5 770.381C1616.53 775.754 1616.55 781.127 1616.58 786.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1615.52 814.5 1959.5 603.614C1959.45 598.93 1959.4 599.184 1959.34 594.5L1614.5 804.445C1614.53 809.834 1615.49 809.11 1615.52 814.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1605.5 770.245 1950.88 559.5 1961.5 560.755 1617.37 771.5 1605.5 770.245Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1246.8 812.53 1337.69 812.5 1340.5 818.998 1339.33 842.215 1238.5 902.5 1241.83 819.224 1246.8 812.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1353.64 814.53 1442.75 814.5 1445.5 820.926 1444.35 843.885 1345.5 903.5 1348.76 821.149 1353.64 814.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1355.79 813.646 1349.97 819.825 1345.04 903.242 1441.3 902.409C1442.78 874.594 1444.26 846.778 1445.73 818.963L1442.07 813.854 1355.79 813.646ZM1226.85 813.635 1139.06 813.881C1136.57 816.544 1136.25 817.923 1134.23 820.118L1130.35 902.51 1225.62 901.619C1227.07 874.345 1228.51 847.071 1229.96 819.797L1226.85 813.635ZM1245.23 813.09 1242.28 821.069C1240.38 847.592 1239.94 874.743 1238.04 901.266L1333.15 903.083 1339.07 819.724 1331.51 813.298 1245.23 813.09ZM1463.45 812.944 1459.21 817.585 1453.16 903.11 1509.78 901.565 1551.91 818.173 1546.7 814.06 1463.45 812.944ZM1032.03 812.446 1027.23 818.141 1060.41 902.724 1116.48 902.234 1122.34 819.958 1117.25 813.679 1032.03 812.446ZM968.763 766.852 981.84 767.479 981.736 782.295 990.897 803.492 1594.35 804.918 1596.06 801.214 1603.38 786.427 1605.33 770.235 1616.72 770.366 1616.26 786.645 1611.32 786.353 1609.3 803.628 1614.21 804.462 1615.68 813.245 1566.83 817.424 1517.74 909.645 1049.62 909.153 1013.39 817.323 967.524 812.982 967.542 804.286 973.473 804.636 973.669 784.536 968.759 783.702 968.763 766.852Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040" fill-rule="evenodd"/><path d="M906.111 996.98 1341.5 992.5 1176.93 1106.5 724.5 1105.74 906.111 996.98Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1125.64 1017.53 1214.75 1017.5 1217.5 1023.93 1216.35 1046.88 1117.5 1106.5 1120.76 1024.15 1125.64 1017.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M725.176 1106.5 690.5 1023.03 695.655 1016.97 780.471 1016.5 787.5 1024.43 783.283 1070.59 725.176 1106.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M803.637 1017.53 892.745 1017.5 895.5 1023.93 894.352 1046.88 795.5 1106.5 798.762 1024.15 803.637 1017.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1182.5 1113.5 1229.88 1021.16 1278.01 1016.66 1555.5 848.5 1526.92 904.052 1182.5 1113.5Z" stroke="#0D0D0D" stroke-width="4.58333" stroke-linejoin="round" stroke-miterlimit="10" fill="#7F7F7F" fill-rule="evenodd"/><path d="M1274.81 1006.5 1619.5 797.915C1619.45 793.246 1619.16 787.169 1619.11 782.5L1274.5 990.381C1274.53 995.754 1274.79 1001.13 1274.81 1006.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M0 0 346.015 210.445" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 1280.5 990.946)"/><path d="M0 0 14.1849 8.62713" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 631.5 1008.13)"/><path d="M999.605 797.5 1559.5 797.5 1270.7 973.261 1269.93 987.717 1260.68 1007.5 651.5 1006.74 999.605 797.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1273.5 1007.25 1619.96 797.5 1624.5 798.046 1277.65 1008.5 1273.5 1007.25Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M633.5 971.208 978.519 762.5 991.5 763.496 646.56 971.5 633.5 971.208Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M646.578 987.5 991.5 778.212C991.448 773.542 990.927 768.17 990.875 763.5L646.5 971.381C646.526 976.754 646.552 982.127 646.578 987.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M646.5 987.631 991.52 779.031C991.468 774.377 1000.55 801.967 1000.5 797.313L655.715 1005.84C655.741 1011.19 646.474 982.276 646.5 987.631Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M1280.58 989.5 1625.5 780.212C1625.45 775.542 1624.93 770.17 1624.88 765.5L1280.5 973.381C1280.53 978.754 1280.55 984.127 1280.58 989.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1279.52 1017.5 1623.5 807.573C1623.45 802.91 1623.4 803.163 1623.34 798.5L1278.5 1007.49C1278.53 1012.86 1279.49 1012.13 1279.52 1017.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1269.5 973.251 1614.88 763.5 1625.5 764.748 1281.37 974.5 1269.5 973.251Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M910.799 1016.53 1001.69 1016.5 1004.5 1022.93 1003.33 1045.88 902.5 1105.5 905.828 1023.15 910.799 1016.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1018.64 1017.53 1107.75 1017.5 1110.5 1023.93 1109.35 1046.88 1010.5 1106.5 1013.76 1024.15 1018.64 1017.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1019.91 1016.96 1014.09 1023.14 1009.16 1106.56 1105.42 1105.73C1106.9 1077.91 1108.38 1050.09 1109.86 1022.28L1106.19 1017.17 1019.91 1016.96ZM890.974 1016.95 803.181 1017.2C800.693 1019.86 800.369 1021.24 798.349 1023.43L794.471 1105.83 889.741 1104.94C891.187 1077.66 892.634 1050.39 894.081 1023.11L890.974 1016.95ZM909.355 1016.41 906.404 1024.39C904.506 1050.91 904.058 1078.06 902.16 1104.58L997.269 1106.4 1003.19 1023.04 995.633 1016.61 909.355 1016.41ZM1127.57 1016.26 1123.33 1020.9 1117.28 1106.43 1173.91 1104.88 1216.03 1021.49 1210.82 1017.38 1127.57 1016.26ZM696.147 1015.76 691.347 1021.46 724.534 1106.04 780.602 1105.55 786.457 1023.28 781.373 1017 696.147 1015.76ZM632.885 970.169 645.962 970.796 645.858 985.612 655.019 1006.81 1258.47 1008.23 1260.18 1004.53 1267.5 989.744 1269.45 973.552 1280.85 973.682 1280.38 989.961 1275.44 989.669 1273.42 1006.94 1278.33 1007.78 1279.8 1016.56 1230.95 1020.74 1181.86 1112.96 713.739 1112.47 677.51 1020.64 631.646 1016.3 631.664 1007.6 637.594 1007.95 637.791 987.853 632.881 987.019 632.885 970.169Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040" fill-rule="evenodd"/><g transform="matrix(0.000360892 0 0 0.000360892 1508 1417)"><g clip-path="url(#clip2)" transform="matrix(3.27567 0 0 1 0.174805 -0.126576)"><use width="100%" height="100%" xlink:href="#img1" transform="scale(1680.06 1680.06)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 754 1401)"><g clip-path="url(#clip3)" transform="matrix(3.25278 0 0 1 0.0800338 0.00694689)"><use width="100%" height="100%" xlink:href="#img1" transform="scale(1680.06 1680.06)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 273 1197)"><g clip-path="url(#clip5)" transform="matrix(1 0 0 1.00068 -0.0297186 -0.0923961)"><use width="100%" height="100%" xlink:href="#img4" transform="scale(4354.29 4354.29)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 1269 387)"><g clip-path="url(#clip7)" transform="matrix(1 0 0 1.00068 -0.222545 -0.0728205)"><use width="100%" height="100%" xlink:href="#img6" transform="scale(4354.29 4354.29)"></use></g></g><text fill="#3D576E" font-family="Bodoni MT,Bodoni MT_MSFontService,sans-serif" font-style="italic" font-weight="400" font-size="917" transform="matrix(1 0 0 1 1840.82 1383)">mdof</text></g></svg>
|
|
Binary file
|