irie 0.0.16__py3-none-any.whl → 0.0.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of irie might be problematic. Click here for more details.

Files changed (35) hide show
  1. irie/apps/events/views_events.py +4 -6
  2. irie/apps/inventory/filters.py +37 -5
  3. irie/apps/inventory/models.py +14 -1
  4. irie/apps/inventory/sitemaps.py +19 -0
  5. irie/apps/inventory/views.py +2 -7
  6. irie/apps/prediction/forms.py +4 -1
  7. irie/apps/prediction/predictor.py +5 -274
  8. irie/apps/prediction/runners/__init__.py +17 -15
  9. irie/apps/prediction/runners/hazus.py +271 -182
  10. irie/apps/prediction/runners/opensees/__init__.py +88 -11
  11. irie/apps/prediction/runners/ssid.py +168 -9
  12. irie/apps/prediction/urls.py +3 -4
  13. irie/apps/prediction/views.py +8 -85
  14. irie/apps/sitemaps.py +14 -0
  15. irie/apps/static/assets/content_images/brace/mdof.svg +1 -0
  16. irie/apps/static/assets/content_images/brace/opensees.jpg +0 -0
  17. irie/apps/static/assets/content_images/brace/sdof.svg +327 -0
  18. irie/apps/static/assets/content_images/brace/sees.png +0 -0
  19. irie/apps/templates/accounts/login.html +50 -55
  20. irie/apps/templates/inventory/asset-profile.html +0 -15
  21. irie/apps/templates/inventory/asset-table.html +38 -15
  22. irie/apps/templates/prediction/asset-predictors.html +38 -5
  23. irie/apps/templates/prediction/new-runner.html +1 -1
  24. irie/apps/templates/prediction/predictor-profile.html +11 -0
  25. irie/apps/templates/site/index.html +5 -7
  26. irie/init/__main__.py +8 -5
  27. irie/init/data/cgs-stations.json +2967 -0
  28. irie/init/getCGSData.py +9 -4
  29. irie/init/management/commands/init_assets.py +1 -1
  30. irie/init/management/commands/init_cesmd.py +25 -0
  31. {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/METADATA +1 -1
  32. {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/RECORD +35 -27
  33. {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/WHEEL +0 -0
  34. {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/entry_points.txt +0 -0
  35. {irie-0.0.16.dist-info → irie-0.0.18.dist-info}/top_level.txt +0 -0
@@ -11,7 +11,7 @@ import zipfile
11
11
  from pathlib import Path
12
12
  import contextlib
13
13
 
14
- from irie.apps.prediction.runners import (Runner, MetricType, RunID, classproperty)
14
+ from irie.apps.prediction.runners import (Runner, RunID, classproperty)
15
15
 
16
16
  from .utilities import read_model
17
17
  from .metrics import (
@@ -29,7 +29,6 @@ OPENSEES = [
29
29
  @contextlib.contextmanager
30
30
  def new_cd(x):
31
31
  d = os.getcwd()
32
-
33
32
  # This could raise an exception, but it's probably
34
33
  # best to let it propagate and let the caller
35
34
  # deal with it, since they requested x
@@ -52,19 +51,28 @@ class OpenSeesRunner(Runner):
52
51
 
53
52
 
54
53
  @classmethod
55
- def create(cls, asset, request, form):
56
- predictor = form.save(commit=False)
57
-
58
- predictor.entry_point = [
59
- sys.executable, "-m", "opensees"
60
- ]
61
- predictor.config = {}
54
+ def create(cls, asset, request):
55
+ from irie.apps.prediction.models import PredictorModel
56
+ predictor = PredictorModel()
57
+ data = json.loads(request.body)
58
+ # TODO
59
+ data.pop("file")
60
+ uploaded_file = request.FILES.get('config_file', None)
61
+ print(uploaded_file)
62
+ if uploaded_file:
63
+
64
+ with open(uploaded_file.name, 'wb+') as destination:
65
+ for chunk in uploaded_file.chunks():
66
+ destination.write(chunk)
67
+
68
+ # predictor.config_file = uploaded_file # data.pop("file")
69
+ predictor.name = data.pop("name")
70
+ predictor.config = data
71
+ predictor.asset = asset
62
72
  predictor.protocol = "IRIE_PREDICTOR_T4"
63
73
  predictor.active = True
64
- # predictor.metrics = self.getMetricList()
65
74
  return predictor
66
75
 
67
-
68
76
  @classproperty
69
77
  def schema(cls):
70
78
  from . import schemas
@@ -491,3 +499,72 @@ class OpenSeesRunner(Runner):
491
499
  return {}
492
500
  return {}
493
501
 
502
+
503
+ import subprocess
504
+ class Event: pass
505
+
506
+ class PredictorType1(Runner):
507
+ @property
508
+ def platform(self):
509
+ return self.conf.get("platform", "")
510
+
511
+ @classmethod
512
+ def create(cls, asset, request):
513
+ from irie.apps.prediction.models import PredictorModel
514
+ predictor = PredictorModel()
515
+ data = json.loads(request.data.get("json"))
516
+ predictor.entry_point = [
517
+ sys.executable, "-m", "opensees"
518
+ ]
519
+ data["metrics"] = []
520
+
521
+ predictor.name = data.pop("name")
522
+ predictor.config = data
523
+ predictor.asset = asset
524
+ predictor.protocol = "IRIE_PREDICTOR_T1"
525
+ predictor.active = False
526
+ return predictor
527
+
528
+
529
+ @classproperty
530
+ def schema(cls):
531
+ from irie.apps.prediction.runners.opensees import schemas
532
+ return {
533
+ "title": "Structural Model",
534
+ "options": {"disable_collaps": True},
535
+ "schema": "http://json-schema.org/draft-04/schema#",
536
+ "type": "object",
537
+ "properties": {
538
+ "platform": {
539
+ "type": "string",
540
+ "title": "Platform",
541
+ "enum": ["OpenSees","CSiBridge"]
542
+ },
543
+ "model": schemas.load("hwd_conf.schema.json"),
544
+ "analysis": schemas.load("hwd_analysis.schema.json"),
545
+ }
546
+ }
547
+
548
+ def newPrediction(self, event: Event) -> RunID:
549
+ self.event = event
550
+ event_file = Path(event.event_file.path).resolve()
551
+ command = [*self.entry_point, "new", event_file]
552
+ run_id = subprocess.check_output(command).decode().strip()
553
+ return RunID(int(run_id))
554
+
555
+ def runPrediction(self, run_id: RunID):
556
+ command = [*self.entry_point, "run", str(run_id)]
557
+
558
+ if "scale" in self.event.upload_data:
559
+ command.extend(["--scale", str(float(self.event.upload_data["scale"]))])
560
+ print(":: Running ", command, file=sys.stderr)
561
+ subprocess.check_output(command)
562
+
563
+ print(f":: Model {self.name} returned", file=sys.stderr)
564
+ return
565
+
566
+ def getMetricData(self, run, metric):
567
+ try:
568
+ return json.loads(subprocess.check_output([*self.entry_point, "get", str(run), metric]).decode())
569
+ except json.decoder.JSONDecodeError:
570
+ return {}
@@ -1,3 +1,7 @@
1
+ from irie.apps.events.models import EventRecord
2
+ from irie.apps.prediction.runners import Runner, RunID
3
+ from irie.apps.prediction.models import PredictorModel
4
+
1
5
  from pathlib import Path
2
6
  import json
3
7
  import io
@@ -12,6 +16,7 @@ from mdof import transform
12
16
  from scipy.signal import find_peaks
13
17
  from mdof.utilities import Config, extract_channels
14
18
  from matplotlib import colormaps
19
+ import subprocess
15
20
  # try:
16
21
  # import scienceplots
17
22
  # plt.style.use(["science"])
@@ -22,7 +27,155 @@ N_PEAKS = 5 # number of "significant" peaks per record
22
27
  MISSING_CHANNEL_LIMIT = 3 # number of missing output channels allowed before skipping event
23
28
  MAX_ACCEL = 3.0
24
29
 
25
- from irie.apps.events.models import EventRecord
30
+
31
+ class SystemIdRunner(Runner):
32
+ platform = "mdof"
33
+
34
+ schema = {
35
+ "title": "System ID",
36
+ "name": "P2",
37
+ "type": "object",
38
+ "required": [
39
+ "name",
40
+ "decimation",
41
+ "method",
42
+ "channels"
43
+ ],
44
+ "properties": {
45
+ "name": {
46
+ "type": "string",
47
+ "title": "Name",
48
+ "description": "Predictor name",
49
+ "minLength": 2,
50
+ # "default": "S1"
51
+ },
52
+ "method": {
53
+ "type": "string",
54
+ "title": "Method",
55
+ "enum": ["Fourier Spectrum","Response Spectrum","SRIM","OKID"]
56
+ },
57
+ "decimation": {
58
+ "type": "integer",
59
+ "title": "Decimation",
60
+ "default": 1,
61
+ "minimum": 1,
62
+ "maximum": 8
63
+ },
64
+ "order": {
65
+ "type": "integer",
66
+ "title": "Model Order",
67
+ "default": 8,
68
+ "minimum": 2,
69
+ "maximum": 64,
70
+ "options": {"dependencies": {"method": ["SRIM","OKID"]}}
71
+ },
72
+ "horizon": {
73
+ "type": "integer",
74
+ "title": "Prediction Horizon",
75
+ "default": 100,
76
+ "minimum": 50,
77
+ "maximum": 500,
78
+ "options": {"dependencies": {"method": ["SRIM"]}}
79
+ },
80
+ "period_band": {
81
+ "type": "string",
82
+ "title": "Period Band",
83
+ "default": "[0.1,2.3]",
84
+ "options": {"dependencies": {"method": ["Fourier Spectrum"]}},
85
+ "description": "[0.1,2.3] if interested in periods between 0.1 seconds and 2.3 seconds"
86
+ },
87
+ "damping": {
88
+ "type": "float",
89
+ "title": "Damping",
90
+ "default": 0.02,
91
+ "options": {"dependencies": {"method": ["Response Spectrum"]}},
92
+ "description": "assumed damping ratio"
93
+ },
94
+ "channels": {
95
+ "type": "array",
96
+ "format": "table",
97
+ "title": "Channels",
98
+ "uniqueItems": True,
99
+ "items": {
100
+ "title": "Acceleration",
101
+ "type": "object",
102
+ "properties": {
103
+ "type": {
104
+ "type": "string",
105
+ "enum": ["output","input"],
106
+ "default": "output"
107
+ },
108
+ "id": {"type": "integer", "description": "Number identifying signal channel"}
109
+ }
110
+ },
111
+ "default": [{"type": "output", "id": 1}]
112
+ }
113
+ }
114
+ }
115
+
116
+ def render(self):
117
+ try:
118
+ return make_mountains(self.asset, self.conf)
119
+ except:
120
+ return None
121
+
122
+ @classmethod
123
+ def create(cls, asset, request):
124
+ predictor = PredictorModel()
125
+ data = json.loads(request.body)
126
+ method = {
127
+ "Fourier Spectrum": "fourier",
128
+ "Response Spectrum": "response",
129
+ "FDD": "fdd",
130
+ "OKID": "okid-era",
131
+ "SRIM": "srim"
132
+ }[data.pop("method")]
133
+
134
+ predictor.entry_point = [
135
+ sys.executable, "-m", "mdof", method
136
+ ]
137
+ data["outputs"] = [i["id"] for i in data["channels"] if i["type"] == "output"]
138
+ data["inputs"] = [i["id"] for i in data["channels"] if i["type"] == "input"]
139
+ data["threads"] = 4
140
+ data["metrics"] = ["SPECTRAL_SHIFT_IDENTIFICATION"]
141
+ del data["channels"]
142
+
143
+ predictor.name = data.pop("name")
144
+ predictor.config = data
145
+ predictor.asset = asset
146
+ predictor.protocol = "IRIE_PREDICTOR_T2"
147
+ predictor.active = True
148
+ return predictor
149
+
150
+
151
+ def newPrediction(self, event):
152
+ self.event = event
153
+ return RunID(1)
154
+
155
+ def runPrediction(self, run_id: RunID) -> bool:
156
+ event_file = Path(self.event.event_file.path).resolve()
157
+ command = [*self.entry_point,
158
+ "--config",
159
+ json.dumps(self.conf),
160
+ event_file]
161
+
162
+ if False:
163
+ command = [*self.entry_point,
164
+ event_file,
165
+ *map(str, self.conf.get("argv", []))]
166
+ try:
167
+ self.metric_data = json.loads(
168
+ subprocess.check_output(command).decode()
169
+ )
170
+ return True
171
+ except Exception as e:
172
+ self.metric_data = {"error": str(e)}
173
+ return False
174
+
175
+ def getMetricData(self, run, metric):
176
+ if not hasattr(self, "metric_data"):
177
+ raise Exception(f"Error {self.name}({id(self)}), {run}")
178
+ return self.metric_data
26
179
 
27
180
 
28
181
 
@@ -186,12 +339,14 @@ def _load_events(asset, output_channels):
186
339
  return {k:v for k,v in events}
187
340
 
188
341
 
189
- def get_spectra(event, period_band, cmap):
342
+ def _get_spectra(event, conf, cmap):
190
343
  """
191
344
  Get coordinates (periods, amplitudes) of spectra for an event, and return them along
192
345
  with the maximum period of the N_PEAKS tallest peaks, as well as plotting options
193
346
  such as color and alpha.
194
347
  """
348
+ period_band = conf.period_band
349
+
195
350
  n_outputs = event['outputs'].shape[0]
196
351
  frequencies,_,S = transform.fdd(outputs=event['outputs'], step=event['dt']) # Full frequency spectrum
197
352
  periods = 1/frequencies
@@ -309,14 +464,18 @@ def _plot_mountains(spectra, accellim=None):
309
464
  return fig
310
465
 
311
466
 
312
- def make_mountains(asset, output_channels=None):
467
+ def make_mountains(asset, conf=None, output_channels=None):
313
468
 
314
469
  cmap = colormaps['plasma']
315
- conf = Config()
316
- conf.period_band = (0.1,3)
317
- conf.damping = 0.02
318
- conf.ss_decimation = 8
319
- conf.order = 40
470
+ if conf is None:
471
+ conf = Config()
472
+ conf.period_band = (0.1,3)
473
+ conf.damping = 0.02
474
+ conf.ss_decimation = 8
475
+ conf.order = 40
476
+ conf.method = "fdd"
477
+ else:
478
+ conf = Config(**conf)
320
479
 
321
480
  if output_channels is None:
322
481
  if not asset.bridge_sensors:
@@ -333,7 +492,7 @@ def make_mountains(asset, output_channels=None):
333
492
  print(f"Missing {n_expected_outputs-n_parsed_channels} output channels; skipping event") # Missing too many channels
334
493
  continue
335
494
 
336
- spectra[filename] = get_spectra(event, conf.period_band, cmap) # {'spec_coords':spec_coords, 'max_peak_period':max_peak_period, 'plot_conf':plot_conf}
495
+ spectra[filename] = _get_spectra(event, conf, cmap) # {'spec_coords':spec_coords, 'max_peak_period':max_peak_period, 'plot_conf':plot_conf}
337
496
 
338
497
 
339
498
  # if station == 'CE89494':
@@ -12,8 +12,7 @@ from .views import new_prediction, asset_predictors, predictor_profile, predicto
12
12
 
13
13
  urlpatterns = [
14
14
  re_path("^inventory/[0-9 A-Z-]*/predictors/new", new_prediction),
15
- re_path("^inventory/[0-9 A-Z-]*/predictors/[0-9]", predictor_profile),
16
- re_path("^inventory/(?P<calid>[0-9 A-Z-]*)/predictors/create/", predictor_upload),
17
- re_path("^inventory/[0-9 A-Z-]*/predictors/", asset_predictors, name="asset_predictors"),
18
- re_path("^inventory/[0-9 A-Z-]*/predictors/", asset_predictors),
15
+ re_path("^inventory/(?P<calid>[0-9 A-Z-]*)/predictors/(?P<preid>[0-9 A-Z-]{1,})", predictor_profile),
16
+ re_path("^inventory/(?P<calid>[0-9 A-Z-]*)/predictors/create", predictor_upload),
17
+ re_path("^inventory/[0-9 A-Z-]*/predictors/", asset_predictors, name="asset_predictors")
19
18
  ]
@@ -19,9 +19,6 @@ from django.core.exceptions import ObjectDoesNotExist
19
19
 
20
20
  from django.shortcuts import render
21
21
 
22
- from rest_framework.decorators import api_view, permission_classes
23
- from rest_framework.permissions import IsAuthenticated
24
-
25
22
  from irie.apps.site.view_utils import raise404
26
23
  from irie.apps.inventory.models import Asset
27
24
  from irie.apps.prediction.predictor import PREDICTOR_TYPES, OpenSeesRunner
@@ -38,41 +35,7 @@ def new_prediction(request):
38
35
  return HttpResponse(html_template.render(context, request))
39
36
 
40
37
 
41
- #@login_required(login_url="/login/")
42
- @api_view(["GET", "POST", "PUT"])
43
- @permission_classes([IsAuthenticated])
44
- def predictor_api(request):
45
-
46
- context = {"segment": "assets"}
47
-
48
- context["predictor_types"] = list(reversed([
49
- {"schema": json.dumps(cls.schema),
50
- "name": cls.__name__,
51
- "title": cls.schema["title"]}
52
- for cls in set(PREDICTOR_TYPES.values())
53
- ]))
54
-
55
- calid = request.path.split("/")[-3]
56
-
57
- try:
58
- context["asset"] = Asset.objects.get(calid=calid)
59
-
60
- except:
61
- return HttpResponse(
62
- loader.get_template("site/page-404-sidebar.html").render(context, request)
63
- )
64
-
65
- if request.method == "POST":
66
- print(request.POST)
67
- PREDICTOR_TYPES["IRIE_PREDICTOR_T2"].create(context["asset"],request).save()
68
-
69
- html_template = loader.get_template("prediction/asset-predictors.html")
70
- return HttpResponse(html_template.render(context, request))
71
-
72
-
73
- @api_view(["GET", "POST", "PUT"])
74
- # @login_required(login_url="/login/")
75
- @permission_classes([IsAuthenticated])
38
+ @login_required(login_url="/login/")
76
39
  def asset_predictors(request):
77
40
 
78
41
  calid = request.path.split("/")[-3]
@@ -97,45 +60,17 @@ def asset_predictors(request):
97
60
  loader.get_template("site/page-404-sidebar.html").render(context, request)
98
61
  )
99
62
 
100
- if request.method == "POST":
101
- form = PredictorForm(request.POST, request.FILES)
102
- if form.is_valid():
103
- # Process the form data and uploaded file
104
- # asset = form.cleaned_data['asset']
105
- asset = Asset.objects.get(calid=calid)
106
- uploaded_file = request.FILES['config_file']
107
-
108
- if uploaded_file:
109
- with open(uploaded_file.name, 'wb+') as destination:
110
- for chunk in uploaded_file.chunks():
111
- destination.write(chunk)
112
-
113
- # Save the predictor
114
- if request.POST.get("runner", None) == "IRIE_PREDICTOR_T2":
115
- PREDICTOR_TYPES["IRIE_PREDICTOR_T2"].create(context["asset"],request).save()
116
- else:
117
- OpenSeesRunner.create(asset,None,form).save()
118
- else:
119
- context["form"] = PredictorForm()
120
-
121
63
  html_template = loader.get_template("prediction/asset-predictors.html")
122
64
  return HttpResponse(html_template.render(context, request))
123
65
 
124
66
 
125
67
  @login_required(login_url="/login/")
126
- def predictor_profile(request):
68
+ def predictor_profile(request, calid, preid):
127
69
 
128
70
  context = {}
129
71
  html_template = loader.get_template("prediction/predictor-profile.html")
130
72
  context["segment"] = "inventory"
131
73
 
132
- url_segs = request.path.split("/")
133
- if len(url_segs) < 5:
134
- return raise404(request, context)
135
- else:
136
- calid = url_segs[2]
137
- preid = url_segs[4]
138
-
139
74
  try:
140
75
  asset = Asset.objects.get(calid=calid)
141
76
  except Asset.DoesNotExist:
@@ -149,7 +84,6 @@ def predictor_profile(request):
149
84
  context["asset"] = asset
150
85
  context["predictor"] = PREDICTOR_TYPES[predictor.protocol](predictor)
151
86
 
152
-
153
87
  try:
154
88
  return HttpResponse(html_template.render(context, request))
155
89
 
@@ -167,29 +101,19 @@ def predictor_profile(request):
167
101
  @login_required(login_url="/login/")
168
102
  def predictor_upload(request, calid):
169
103
 
170
- context = {}
171
104
  html_template = loader.get_template("prediction/predictor-upload.html")
172
- context["segment"] = "assets"
173
105
 
174
106
  if request.method == 'POST':
175
107
  form = PredictorForm(request.POST, request.FILES) # include request.FILES
176
- if form.is_valid():
177
- # Process the form data and uploaded file
178
- # asset = form.cleaned_data['asset']
179
- asset = Asset.objects.get(calid=calid)
180
- uploaded_file = request.FILES['config_file']
181
-
182
- with open(uploaded_file.name, 'wb+') as destination:
183
- for chunk in uploaded_file.chunks():
184
- destination.write(chunk)
108
+ # if form.is_valid():
109
+ asset = Asset.objects.get(calid=calid)
185
110
 
186
- # Save the predictor
187
- OpenSeesRunner.create(asset,None,form).save()
111
+ # Save the predictor
112
+ predictor = PREDICTOR_TYPES[request.POST.get("runner")].create(asset, request)
113
+ predictor.save()
188
114
 
189
- context = {}
115
+ return HttpResponse(json.dumps({"data": {"id": predictor.id}}))
190
116
 
191
- return render(request, 'prediction/predictor-upload.html',
192
- context)
193
117
  else:
194
118
  form = PredictorForm()
195
119
 
@@ -197,7 +121,6 @@ def predictor_upload(request, calid):
197
121
  try:
198
122
  return render(request, 'prediction/predictor-upload.html', {"form": form})
199
123
 
200
-
201
124
  except Exception as e:
202
125
  if "DEBUG" in os.environ and os.environ["DEBUG"]:
203
126
  raise e
irie/apps/sitemaps.py ADDED
@@ -0,0 +1,14 @@
1
+ from django.contrib.sitemaps import Sitemap
2
+ from django.urls import reverse
3
+
4
+ class IrieSitemap(Sitemap):
5
+ priority = 0.9
6
+ changefreq = 'weekly'
7
+
8
+ def items(self):
9
+ # Return the names of your static views
10
+ return ['home', 'about', 'dashboard', 'asset_table']
11
+
12
+ def location(self, item):
13
+ return reverse(item)
14
+
@@ -0,0 +1 @@
1
+ <svg width="3952" height="1926" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" overflow="hidden"><defs><clipPath id="clip0"><rect x="273" y="266" width="3952" height="1926"/></clipPath><image width="72" height="348" xlink:href="" preserveAspectRatio="none" id="img1"></image><clipPath id="clip2"><rect x="0" y="0" width="120965" height="584662"/></clipPath><clipPath id="clip3"><rect x="0" y="0" width="120964" height="584661"/></clipPath><image width="700" height="400" xlink:href="" preserveAspectRatio="none" id="img4"></image><clipPath id="clip5"><rect x="0" y="0" width="3048000" height="1741714"/></clipPath><image width="700" height="400" xlink:href="" preserveAspectRatio="none" id="img6"></image><clipPath id="clip7"><rect x="0" y="0" width="3048000" height="1741714"/></clipPath></defs><g clip-path="url(#clip0)" transform="translate(-273 -266)"><rect x="1527.5" y="840.5" width="101" height="27.0002" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><rect x="1607.5" y="856.5" width="29.0002" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6"/><rect x="1522.5" y="856.5" width="22" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#262626"/><rect x="1533.5" y="856.5" width="32" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040"/><rect x="1592.5" y="856.5" width="32" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#7F7F7F"/><rect x="1555.5" y="856.5" width="49.0001" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><rect x="774.5" y="822.5" width="101" height="26.9998" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><rect x="855.5" y="838.5" width="27.9998" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6"/><rect x="769.5" y="838.5" width="22" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#262626"/><rect x="780.5" y="838.5" width="31.9999" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040"/><rect x="839.5" y="838.5" width="31.9999" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#7F7F7F"/><rect x="802.5" y="838.5" width="48.9998" height="561" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#595959"/><path d="M767.5 719.5 812.397 671.167 829.5 661.5 783.178 712.733 767.5 719.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M828.952 662.5 782.5 711.5 1100.4 711.5 1142.5 662.5 828.952 662.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1573.5 708.5 782.772 709.45 769.714 716.103 766.812 721.806 746.5 823.5 1473.39 823.5 1573.5 708.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#7F7F7F" fill-rule="evenodd"/><path d="M1242.11 793.019 1677.5 788.5 1512.93 903.5 1060.5 902.734 1242.11 793.019Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1461.64 814.53 1550.75 814.5 1553.5 820.926 1552.35 843.885 1453.5 903.5 1456.76 821.149 1461.64 814.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1061.18 903.5 1026.5 819.101 1031.65 812.972 1116.47 812.5 1123.5 820.516 1119.28 867.194 1061.18 903.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M1138.64 814.53 1227.75 814.5 1230.5 820.926 1229.35 843.885 1130.5 903.5 1133.76 821.149 1138.64 814.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1518.5 909.5 1565.88 817.163 1614.01 812.659 1891.5 644.5 1862.92 700.052 1518.5 909.5Z" stroke="#0D0D0D" stroke-width="4.58333" stroke-linejoin="round" stroke-miterlimit="10" fill="#7F7F7F" fill-rule="evenodd"/><path d="M1609.81 803.5 1954.5 594.915C1954.45 590.246 1954.16 584.17 1954.11 579.5L1609.5 787.381C1609.53 792.754 1609.79 798.127 1609.81 803.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M0 0 346.015 210.445" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 1616.5 786.945)"/><path d="M0 0 14.1849 8.62713" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 967.5 805.127)"/><path d="M1334.99 594.5 1895.5 594.5 1606.38 770.261 1605.61 784.717 1596.35 804.5 986.5 803.739 1334.99 594.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1609.5 804.251 1954.97 594.5 1959.5 595.046 1613.64 805.5 1609.5 804.251Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M969.5 767.21 1314.52 559.5 1327.5 560.492 982.559 767.5 969.5 767.21Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M982.578 784.5 1327.5 575.212C1327.45 570.543 1326.93 565.17 1326.88 560.5L982.5 768.381C982.526 773.754 982.552 779.127 982.578 784.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M981.5 784.548 1327.49 575.033C1327.44 570.359 1336.55 598.07 1336.5 593.395L990.741 802.832C990.767 808.211 981.474 779.169 981.5 784.548Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M1616.58 786.5 1961.5 577.212C1961.45 572.542 1960.93 567.169 1960.88 562.5L1616.5 770.381C1616.53 775.754 1616.55 781.127 1616.58 786.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1615.52 814.5 1959.5 603.614C1959.45 598.93 1959.4 599.184 1959.34 594.5L1614.5 804.445C1614.53 809.834 1615.49 809.11 1615.52 814.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1605.5 770.245 1950.88 559.5 1961.5 560.755 1617.37 771.5 1605.5 770.245Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1246.8 812.53 1337.69 812.5 1340.5 818.998 1339.33 842.215 1238.5 902.5 1241.83 819.224 1246.8 812.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1353.64 814.53 1442.75 814.5 1445.5 820.926 1444.35 843.885 1345.5 903.5 1348.76 821.149 1353.64 814.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1355.79 813.646 1349.97 819.825 1345.04 903.242 1441.3 902.409C1442.78 874.594 1444.26 846.778 1445.73 818.963L1442.07 813.854 1355.79 813.646ZM1226.85 813.635 1139.06 813.881C1136.57 816.544 1136.25 817.923 1134.23 820.118L1130.35 902.51 1225.62 901.619C1227.07 874.345 1228.51 847.071 1229.96 819.797L1226.85 813.635ZM1245.23 813.09 1242.28 821.069C1240.38 847.592 1239.94 874.743 1238.04 901.266L1333.15 903.083 1339.07 819.724 1331.51 813.298 1245.23 813.09ZM1463.45 812.944 1459.21 817.585 1453.16 903.11 1509.78 901.565 1551.91 818.173 1546.7 814.06 1463.45 812.944ZM1032.03 812.446 1027.23 818.141 1060.41 902.724 1116.48 902.234 1122.34 819.958 1117.25 813.679 1032.03 812.446ZM968.763 766.852 981.84 767.479 981.736 782.295 990.897 803.492 1594.35 804.918 1596.06 801.214 1603.38 786.427 1605.33 770.235 1616.72 770.366 1616.26 786.645 1611.32 786.353 1609.3 803.628 1614.21 804.462 1615.68 813.245 1566.83 817.424 1517.74 909.645 1049.62 909.153 1013.39 817.323 967.524 812.982 967.542 804.286 973.473 804.636 973.669 784.536 968.759 783.702 968.763 766.852Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040" fill-rule="evenodd"/><path d="M906.111 996.98 1341.5 992.5 1176.93 1106.5 724.5 1105.74 906.111 996.98Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1125.64 1017.53 1214.75 1017.5 1217.5 1023.93 1216.35 1046.88 1117.5 1106.5 1120.76 1024.15 1125.64 1017.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M725.176 1106.5 690.5 1023.03 695.655 1016.97 780.471 1016.5 787.5 1024.43 783.283 1070.59 725.176 1106.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M803.637 1017.53 892.745 1017.5 895.5 1023.93 894.352 1046.88 795.5 1106.5 798.762 1024.15 803.637 1017.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1182.5 1113.5 1229.88 1021.16 1278.01 1016.66 1555.5 848.5 1526.92 904.052 1182.5 1113.5Z" stroke="#0D0D0D" stroke-width="4.58333" stroke-linejoin="round" stroke-miterlimit="10" fill="#7F7F7F" fill-rule="evenodd"/><path d="M1274.81 1006.5 1619.5 797.915C1619.45 793.246 1619.16 787.169 1619.11 782.5L1274.5 990.381C1274.53 995.754 1274.79 1001.13 1274.81 1006.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M0 0 346.015 210.445" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 1280.5 990.946)"/><path d="M0 0 14.1849 8.62713" stroke="#000000" stroke-width="4.58333" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(1 0 0 -1 631.5 1008.13)"/><path d="M999.605 797.5 1559.5 797.5 1270.7 973.261 1269.93 987.717 1260.68 1007.5 651.5 1006.74 999.605 797.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M1273.5 1007.25 1619.96 797.5 1624.5 798.046 1277.65 1008.5 1273.5 1007.25Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M633.5 971.208 978.519 762.5 991.5 763.496 646.56 971.5 633.5 971.208Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M646.578 987.5 991.5 778.212C991.448 773.542 990.927 768.17 990.875 763.5L646.5 971.381C646.526 976.754 646.552 982.127 646.578 987.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M646.5 987.631 991.52 779.031C991.468 774.377 1000.55 801.967 1000.5 797.313L655.715 1005.84C655.741 1011.19 646.474 982.276 646.5 987.631Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#BFBFBF" fill-rule="evenodd"/><path d="M1280.58 989.5 1625.5 780.212C1625.45 775.542 1624.93 770.17 1624.88 765.5L1280.5 973.381C1280.53 978.754 1280.55 984.127 1280.58 989.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1279.52 1017.5 1623.5 807.573C1623.45 802.91 1623.4 803.163 1623.34 798.5L1278.5 1007.49C1278.53 1012.86 1279.49 1012.13 1279.52 1017.5Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1269.5 973.251 1614.88 763.5 1625.5 764.748 1281.37 974.5 1269.5 973.251Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#E7E6E6" fill-rule="evenodd"/><path d="M910.799 1016.53 1001.69 1016.5 1004.5 1022.93 1003.33 1045.88 902.5 1105.5 905.828 1023.15 910.799 1016.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1018.64 1017.53 1107.75 1017.5 1110.5 1023.93 1109.35 1046.88 1010.5 1106.5 1013.76 1024.15 1018.64 1017.53Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#A6A6A6" fill-rule="evenodd"/><path d="M1019.91 1016.96 1014.09 1023.14 1009.16 1106.56 1105.42 1105.73C1106.9 1077.91 1108.38 1050.09 1109.86 1022.28L1106.19 1017.17 1019.91 1016.96ZM890.974 1016.95 803.181 1017.2C800.693 1019.86 800.369 1021.24 798.349 1023.43L794.471 1105.83 889.741 1104.94C891.187 1077.66 892.634 1050.39 894.081 1023.11L890.974 1016.95ZM909.355 1016.41 906.404 1024.39C904.506 1050.91 904.058 1078.06 902.16 1104.58L997.269 1106.4 1003.19 1023.04 995.633 1016.61 909.355 1016.41ZM1127.57 1016.26 1123.33 1020.9 1117.28 1106.43 1173.91 1104.88 1216.03 1021.49 1210.82 1017.38 1127.57 1016.26ZM696.147 1015.76 691.347 1021.46 724.534 1106.04 780.602 1105.55 786.457 1023.28 781.373 1017 696.147 1015.76ZM632.885 970.169 645.962 970.796 645.858 985.612 655.019 1006.81 1258.47 1008.23 1260.18 1004.53 1267.5 989.744 1269.45 973.552 1280.85 973.682 1280.38 989.961 1275.44 989.669 1273.42 1006.94 1278.33 1007.78 1279.8 1016.56 1230.95 1020.74 1181.86 1112.96 713.739 1112.47 677.51 1020.64 631.646 1016.3 631.664 1007.6 637.594 1007.95 637.791 987.853 632.881 987.019 632.885 970.169Z" stroke="#0D0D0D" stroke-width="3.4375" stroke-linejoin="bevel" stroke-miterlimit="10" fill="#404040" fill-rule="evenodd"/><g transform="matrix(0.000360892 0 0 0.000360892 1508 1417)"><g clip-path="url(#clip2)" transform="matrix(3.27567 0 0 1 0.174805 -0.126576)"><use width="100%" height="100%" xlink:href="#img1" transform="scale(1680.06 1680.06)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 754 1401)"><g clip-path="url(#clip3)" transform="matrix(3.25278 0 0 1 0.0800338 0.00694689)"><use width="100%" height="100%" xlink:href="#img1" transform="scale(1680.06 1680.06)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 273 1197)"><g clip-path="url(#clip5)" transform="matrix(1 0 0 1.00068 -0.0297186 -0.0923961)"><use width="100%" height="100%" xlink:href="#img4" transform="scale(4354.29 4354.29)"></use></g></g><g transform="matrix(0.000360892 0 0 0.000360892 1269 387)"><g clip-path="url(#clip7)" transform="matrix(1 0 0 1.00068 -0.222545 -0.0728205)"><use width="100%" height="100%" xlink:href="#img6" transform="scale(4354.29 4354.29)"></use></g></g><text fill="#3D576E" font-family="Bodoni MT,Bodoni MT_MSFontService,sans-serif" font-style="italic" font-weight="400" font-size="917" transform="matrix(1 0 0 1 1840.82 1383)">mdof</text></g></svg>