iqm-benchmarks 2.42__py3-none-any.whl → 2.44__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -17,9 +17,10 @@ Plotting and visualization utility functions
17
17
  """
18
18
  from dataclasses import dataclass
19
19
  import os
20
- from typing import Dict, List, Literal, Optional, Sequence, Tuple
20
+ from typing import Dict, List, Literal, Optional, Sequence, Tuple, cast
21
21
 
22
22
  from matplotlib.figure import Figure
23
+ from matplotlib.patches import Circle, FancyBboxPatch
23
24
  import matplotlib.pyplot as plt
24
25
  import networkx as nx
25
26
  import numpy as np
@@ -40,9 +41,9 @@ class GraphPositions:
40
41
  provides methods to generate positions for different layout types.
41
42
 
42
43
  Attributes:
43
- garnet_positions (Dict[int, Tuple[int, int]]): Mapping of node indices to (x,y) positions for Garnet chip.
44
- deneb_positions (Dict[int, Tuple[int, int]]): Mapping of node indices to (x,y) positions for Deneb chip.
45
- predefined_stations (Dict[str, Dict[int, Tuple[int, int]]]): Mapping of chip names to their position dictionaries.
44
+ garnet_positions (Dict[int, Tuple[float, float]]): Mapping of node indices to (x,y) positions for Garnet chip.
45
+ deneb_positions (Dict[int, Tuple[float, float]]): Mapping of node indices to (x,y) positions for Deneb chip.
46
+ predefined_stations (Dict[str, Dict[int, Tuple[float, float]]]): Mapping of chip names to their position dictionaries.
46
47
  """
47
48
 
48
49
  garnet_positions = {
@@ -68,15 +69,116 @@ class GraphPositions:
68
69
  19: (3.0, 1.0),
69
70
  }
70
71
 
72
+ emerald_positions = {
73
+ 0: (10, 10),
74
+ 1: (11, 9),
75
+ 2: (7, 11),
76
+ 3: (8, 10),
77
+ 4: (9, 9),
78
+ 5: (10, 8),
79
+ 6: (11, 7),
80
+ 7: (5, 11),
81
+ 8: (6, 10),
82
+ 9: (7, 9),
83
+ 10: (8, 8),
84
+ 11: (9, 7),
85
+ 12: (10, 6),
86
+ 13: (11, 5),
87
+ 14: (3, 11),
88
+ 15: (4, 10),
89
+ 16: (5, 9),
90
+ 17: (6, 8),
91
+ 18: (7, 7),
92
+ 19: (8, 6),
93
+ 20: (9, 5),
94
+ 21: (10, 4),
95
+ 22: (2, 10),
96
+ 23: (3, 9),
97
+ 24: (4, 8),
98
+ 25: (5, 7),
99
+ 26: (6, 6),
100
+ 27: (7, 5),
101
+ 28: (8, 4),
102
+ 29: (9, 3),
103
+ 30: (10, 2),
104
+ 31: (2, 8),
105
+ 32: (3, 7),
106
+ 33: (4, 6),
107
+ 34: (5, 5),
108
+ 35: (6, 4),
109
+ 36: (7, 3),
110
+ 37: (8, 2),
111
+ 38: (9, 1),
112
+ 39: (1, 7),
113
+ 40: (2, 6),
114
+ 41: (3, 5),
115
+ 42: (4, 4),
116
+ 43: (5, 3),
117
+ 44: (6, 2),
118
+ 45: (7, 1),
119
+ 46: (1, 5),
120
+ 47: (2, 4),
121
+ 48: (3, 3),
122
+ 49: (4, 2),
123
+ 50: (5, 1),
124
+ 51: (1, 3),
125
+ 52: (2, 2),
126
+ 53: (3, 1),
127
+ }
128
+
129
+ sirius_positions = {
130
+ # Even nodes on the bottom
131
+ 2: (1, 5),
132
+ 4: (3, 5),
133
+ 6: (5, 5),
134
+ 8: (7, 5),
135
+ 10: (9, 5),
136
+ 12: (11, 5),
137
+ 14: (13, 5),
138
+ 16: (15, 5),
139
+ 18: (17, 5),
140
+ 20: (19, 5),
141
+ 22: (21, 5),
142
+ 24: (23, 5),
143
+ # Odd nodes on the top
144
+ 1: (1, 1),
145
+ 3: (3, 1),
146
+ 5: (5, 1),
147
+ 7: (7, 1),
148
+ 9: (9, 1),
149
+ 11: (11, 1),
150
+ 13: (13, 1),
151
+ 15: (15, 1),
152
+ 17: (17, 1),
153
+ 19: (19, 1),
154
+ 21: (21, 1),
155
+ 23: (23, 1),
156
+ }
157
+ # Add dummy indices for the resonator
158
+ max_qubit_number = np.max(list(sirius_positions.keys()))
159
+ previous_nodes = list(sirius_positions.keys())
160
+ for node in previous_nodes:
161
+ sirius_positions.update({node + max_qubit_number: (sirius_positions[node][0], 3)})
162
+ # Node 0 in the middle
163
+ sirius_positions.update({0: (16.5, 3)})
164
+
71
165
  deneb_positions = {
72
- 0: (2.0, 2.0),
73
- 1: (1.0, 1.0),
74
- 3: (2.0, 1.0),
75
- 5: (3.0, 1.0),
76
- 2: (1.0, 3.0),
77
- 4: (2.0, 3.0),
78
- 6: (3.0, 3.0),
166
+ # Even nodes on the bottom
167
+ 2: (1, 5),
168
+ 4: (3, 5),
169
+ 6: (5, 5),
170
+ # Odd nodes on the top
171
+ 1: (1, 1),
172
+ 3: (3, 1),
173
+ 5: (5, 1),
79
174
  }
175
+ # Add dummy indices for the resonator
176
+ max_qubit_number = np.max(list(deneb_positions.keys()))
177
+ previous_nodes = list(deneb_positions.keys())
178
+ for node in previous_nodes:
179
+ deneb_positions.update({node + max_qubit_number: (deneb_positions[node][0], 3)})
180
+ # Node 0 in the middle
181
+ deneb_positions.update({0: (2.5, 3)})
80
182
 
81
183
  predefined_stations = {
82
184
  "garnet": garnet_positions,
@@ -85,6 +187,8 @@ class GraphPositions:
85
187
  "deneb": deneb_positions,
86
188
  "fakedeneb": deneb_positions,
87
189
  "iqmfakedeneb": deneb_positions,
190
+ "emerald": emerald_positions,
191
+ "sirius": sirius_positions,
88
192
  }
89
193
 
90
194
  @staticmethod
@@ -128,6 +232,40 @@ class GraphPositions:
128
232
  }
129
233
  return pos
130
234
 
235
+ @staticmethod
236
+ def get_positions(
237
+ station: Optional[str] = None, graph: Optional[PyGraph] = None, num_qubits: Optional[int] = None
238
+ ) -> Dict[int, Tuple[float, float]]:
239
+ """Get predefined positions for a specific station or generate positions for a custom graph.
240
+
241
+ Args:
242
+ station (Optional[str]): The name of the station to get predefined positions for.
243
+ If None, positions will be generated algorithmically.
244
+ graph (Optional[PyGraph]): The graph to generate positions for if no predefined positions exist.
245
+ Used only when station is None and num_qubits doesn't match any predefined layout.
246
+ num_qubits (Optional[int]): The number of qubits to get a layout for.
247
+ If matches a known system, predefined positions will be used.
248
+
249
+ Returns:
250
+ Dict[int, Tuple[float, float]]: A dictionary mapping node indices to (x,y) coordinates.
251
+
252
+ Raises:
253
+ ValueError: If none of station, graph, or num_qubits are provided, or if num_qubits doesn't
254
+ match any predefined layout and graph is None.
255
+ """
256
+ if station is not None and station.lower() in GraphPositions.predefined_stations:
257
+ qubit_positions = cast(Dict[int, Tuple[float, float]], GraphPositions.predefined_stations[station.lower()])
258
+ else:
259
+ qubit_station_dict = {6: "deneb", 7: "deneb", 20: "garnet", 24: "sirius", 17: "sirius", 54: "emerald"}
260
+ if num_qubits is not None and num_qubits in qubit_station_dict:
261
+ station = qubit_station_dict[num_qubits]
262
+ qubit_positions = cast(Dict[int, Tuple[float, float]], GraphPositions.predefined_stations[station])
263
+ elif graph is not None:
264
+ qubit_positions = GraphPositions.create_positions(graph)
265
+ else:
266
+ raise ValueError("Either a station name, a graph, or a qubit count must be provided to get positions.")
267
+ return qubit_positions
268
+
131
269
 
132
270
  def draw_graph_edges(
133
271
  backend_coupling_map: CouplingMap,
@@ -165,23 +303,7 @@ def draw_graph_edges(
165
303
  fig = plt.figure()
166
304
  ax = plt.axes()
167
305
 
168
- if station is not None:
169
- if station.lower() in GraphPositions.predefined_stations:
170
- qubit_positions = GraphPositions.predefined_stations[station.lower()]
171
- else:
172
- if backend_num_qubits in (6, 20):
173
- station = "garnet" if backend_num_qubits == 20 else "deneb"
174
- qubit_positions = GraphPositions.predefined_stations[station]
175
- else:
176
- graph_backend = backend_coupling_map.graph.to_undirected(multigraph=False)
177
- qubit_positions = GraphPositions.create_positions(graph_backend)
178
- else:
179
- graph_backend = backend_coupling_map.graph.to_undirected(multigraph=False)
180
- if backend_num_qubits in (6, 20):
181
- station = "garnet" if backend_num_qubits == 20 else "deneb"
182
- qubit_positions = GraphPositions.predefined_stations[station]
183
- else:
184
- qubit_positions = GraphPositions.create_positions(graph_backend)
306
+ qubit_positions = GraphPositions.get_positions(station=station, graph=None, num_qubits=backend_num_qubits)
185
307
 
186
308
  label_station = station if station is not None else f"{backend_num_qubits}-qubit IQM Backend"
187
309
  if disjoint_layers is None:
@@ -226,6 +348,7 @@ def draw_graph_edges(
226
348
  f"\n{timestamp}"
227
349
  )
228
350
  ax.set_aspect(0.925)
351
+ plt.gca().invert_yaxis()
229
352
  plt.close()
230
353
 
231
354
  return fig_name, fig
@@ -302,8 +425,55 @@ def evaluate_hamiltonian_paths(
302
425
  return path_costs
303
426
 
304
427
 
428
+ def calculate_node_radii(metric_dict: Dict[str, Dict[int, float]], qubit_nodes: List[int], sq_metric: str) -> np.ndarray:
429
+ """Calculate node radii based on the specified single qubit metric. For the coherence metric, the fidelity is calculated as the idling fidelity of a single qubit gate duration.
430
+
431
+ Args:
432
+ metric_dict (Dict[str, Dict[int, float]]): Dictionary containing various qubit metrics.
433
+ qubit_nodes (List[int]): List of qubits to calculate the radius for.
434
+ sq_metric (str): Metric to use for radius calculation.
435
+ Options: "fidelity", "coherence", or "readout".
436
+
437
+ Returns:
438
+ numpy.ndarray: Array of radii values for each qubit node.
439
+
440
+ Raises:
441
+ ValueError: If an unsupported metric type is provided.
442
+ """
443
+ if sq_metric == "fidelity":
444
+ radii = -np.log(np.array([metric_dict["fidelity_1qb_gates_averaged"][node] for node in qubit_nodes]))
445
+ if "fidelity_1qb_gates_averaged" not in metric_dict:
446
+ raise ValueError(
447
+ "The metric 'fidelity_1qb_gates_averaged' is not available in the backend metrics."
448
+ )
449
+ elif sq_metric == "coherence":
450
+ if "t1_time" not in metric_dict or "t2_time" not in metric_dict:
451
+ raise ValueError(
452
+ "At least one of the metrics 't1_time' and 't2_time' is not available in the backend metrics."
453
+ )
454
+ sqg_time = 32e-9
455
+ t1_times = [metric_dict["t1_time"][node] for node in qubit_nodes]
456
+ t2_times = [metric_dict["t2_time"][node] for node in qubit_nodes]
457
+ idle_fidelities = (3 + np.exp(-sqg_time / np.array(t1_times)) + 2 * np.exp(-sqg_time / np.array(t2_times))) / 6
458
+ radii = -np.log(idle_fidelities)
459
+ elif sq_metric == "readout":
460
+ if "single_shot_readout_fidelity" not in metric_dict:
461
+ raise ValueError(
462
+ "The metric 'single_shot_readout_fidelity' is both available in the backend metrics."
463
+ )
464
+ readout_fidelities = [metric_dict["single_shot_readout_fidelity"][node] for node in qubit_nodes]
465
+ radii = -np.log(readout_fidelities)
466
+ else:
467
+ raise ValueError(
468
+ f"Unsupported single qubit metric: {sq_metric}, supported metrics are: fidelity, coherence, readout"
469
+ )
470
+ return radii
471
+
305
472
  def plot_layout_fidelity_graph(
306
- cal_url: str, qubit_layouts: Optional[list[list[int]]] = None, station: Optional[str] = None
473
+ cal_url: str,
474
+ qubit_layouts: Optional[list[list[int]]] = None,
475
+ station: Optional[str] = None,
476
+ sq_metric: Optional[str] = "coherence",
307
477
  ):
308
478
  """Plot a graph showing the quantum chip layout with fidelity information.
309
479
 
@@ -316,57 +486,75 @@ def plot_layout_fidelity_graph(
316
486
  qubit_layouts: List of qubit layouts where each layout is a list of qubit indices
317
487
  station: Name of the quantum computing station to use predefined positions for.
318
488
  If None, positions will be generated algorithmically.
489
+ sq_metric: Optional single qubit metric to use for the visualization, can be either "fidelity", "coherence",
490
+ or "readout".
319
491
 
320
492
  Returns:
321
493
  matplotlib.figure.Figure: The generated figure object containing the graph visualization
322
494
  """
323
- edges_cal, fidelities_cal, topology = extract_fidelities(cal_url)
324
- weights = -np.log(np.array(fidelities_cal))
325
- edges_graph = [tuple(edge) + (weight,) for edge, weight in zip(edges_cal, weights)]
326
-
327
- graph = PyGraph()
328
-
329
- # Add nodes
330
- nodes: set[int] = set()
331
- for edge in edges_graph:
332
- nodes.update(edge[:2])
333
- graph.add_nodes_from(list(nodes))
495
+ # pylint: disable=unbalanced-tuple-unpacking, disable=too-many-statements
496
+ edges_cal, fidelities_cal, topology, qubit_mapping, metric_dict = extract_fidelities(cal_url, all_metrics=True)
497
+ if topology == "star":
498
+ idx_to_qubit = {idx: qubit for qubit, idx in qubit_mapping.items()}
499
+ qubit_nodes = list(idx_to_qubit.keys())[1:]
500
+ fig, ax = plt.subplots(figsize=(len(qubit_nodes), 3))
501
+ else:
502
+ # For other topologies, qubits are indexed starting from 0 as per the Qiskit convention
503
+ idx_to_qubit = {idx: qubit - 1 for qubit, idx in qubit_mapping.items()}
504
+ qubit_nodes = list(idx_to_qubit.keys())
505
+ fig, ax = plt.subplots(figsize=(1.5 * np.sqrt(len(qubit_nodes)), 1.5 * np.sqrt(len(qubit_nodes))))
334
506
 
335
- # Add edges
336
- graph.add_edges_from(edges_graph)
507
+ weights = -np.log(np.array(fidelities_cal))
508
+ calibrated_nodes = list(idx_to_qubit.keys())
337
509
 
338
510
  # Define qubit positions in plot
339
- if station is not None and station.lower() in GraphPositions.predefined_stations:
340
- pos = GraphPositions.predefined_stations[station.lower()]
341
- else:
342
- pos = GraphPositions.create_positions(graph, topology)
511
+ qubit_positions = GraphPositions.get_positions(station=station, graph=None, num_qubits=len(calibrated_nodes))
343
512
 
344
- # Define node colors
345
- node_colors = ["lightgrey" for _ in range(len(nodes))]
346
- if qubit_layouts is not None:
347
- for qb in {qb for layout in qubit_layouts for qb in layout}:
348
- node_colors[qb] = "orange"
349
-
350
- plt.subplots(figsize=(1.5 * np.sqrt(len(nodes)), 1.5 * np.sqrt(len(nodes))))
513
+ graph = PyGraph()
514
+ nodes = list(set(qubit_positions.keys()))
515
+ graph.add_nodes_from(nodes)
516
+ for edge, weight in zip(edges_cal, weights):
517
+ if topology == "star":
518
+ max_qubit_number = (np.max(list(qubit_positions.keys())) + 1) // 2
519
+ graph.add_edge(idx_to_qubit[edge[0]], idx_to_qubit[edge[0]] + max_qubit_number, weight)
520
+ else:
521
+ graph.add_edge(idx_to_qubit[edge[0]], idx_to_qubit[edge[1]], weight)
351
522
 
352
- # Draw the graph
523
+ # Draw the main graph
353
524
  visualization.mpl_draw(
354
525
  graph,
526
+ ax=ax,
355
527
  with_labels=True,
356
- node_color=node_colors,
357
- pos=pos,
528
+ node_color="none", # No node color since we're using circles
529
+ pos=qubit_positions,
358
530
  labels=lambda node: node,
359
- width=7 * weights / np.max(weights),
531
+ font_color="white",
532
+ width=graph.edges() / np.max(graph.edges()) * 10,
360
533
  ) # type: ignore[call-arg]
361
534
 
535
+ # Draw nodes as circles with varying radii given by the single qubit metric
536
+ radii = calculate_node_radii(metric_dict, qubit_nodes, sq_metric)
537
+ node_colors = ["darkgray" for _ in range(len(nodes))]
538
+ if qubit_layouts is not None:
539
+ for qb in {qb for layout in qubit_layouts for qb in layout}:
540
+ node_colors[qb] = "orange"
541
+ max_radius = 0.12 + np.max(radii) / np.max(radii) / 2.5
542
+
543
+ for idx, node in enumerate(qubit_nodes):
544
+ position = qubit_positions[idx_to_qubit[node]]
545
+ radius = 0.12 + radii[idx] / np.max(radii) / 2.5
546
+ circle = Circle(position, radius=radius, color=node_colors[idx_to_qubit[node]], fill=True, alpha=1)
547
+ ax.add_patch(circle)
548
+
362
549
  # Add edge labels using matplotlib's annotate
363
- for edge in edges_graph:
364
- x1, y1 = pos[edge[0]]
365
- x2, y2 = pos[edge[1]]
550
+ # for idx, edge in enumerate(edges_cal):
551
+ for edge, weight in zip(list(graph.edge_list()), graph.edges()):
552
+ x1, y1 = qubit_positions[edge[0]]
553
+ x2, y2 = qubit_positions[edge[1]]
366
554
  x = (x1 + x2) / 2
367
555
  y = (y1 + y2) / 2
368
556
  plt.annotate(
369
- f"{edge[2]:.1e}",
557
+ f"{weight:.1e}",
370
558
  xy=(x, y),
371
559
  xytext=(0, 0),
372
560
  textcoords="offset points",
@@ -375,12 +563,68 @@ def plot_layout_fidelity_graph(
375
563
  bbox={"boxstyle": "round,pad=0.2", "fc": "white", "ec": "none", "alpha": 0.6},
376
564
  )
377
565
 
378
- plt.gca().invert_yaxis()
379
- plt.title(
380
- "Chip layout with selected qubits in orange\n"
381
- + "and gate errors indicated by edge thickness (thinner is better)"
566
+ # Add horizontal bar representing resonator
567
+ if topology == "star":
568
+ resonator_height = 3
569
+ resonator_thickness = 0.8
570
+ x_min = 0.5
571
+ x_max = qubit_positions[idx_to_qubit[qubit_nodes[-1]]][0] + 0.5
572
+ resonator_width = x_max - x_min
573
+
574
+ # Create rectangle with rounded corners
575
+ resonator = FancyBboxPatch(
576
+ (x_min, resonator_height - resonator_thickness / 2),
577
+ resonator_width,
578
+ resonator_thickness,
579
+ boxstyle="round,pad=0.01,rounding_size=0.3",
580
+ color="lightsteelblue",
581
+ zorder=10,
582
+ )
583
+ ax.add_patch(resonator)
584
+
585
+ # Add "Resonator" label in the center
586
+ plt.annotate(
587
+ "Resonator",
588
+ xy=((x_min + x_max) / 2, resonator_height),
589
+ xytext=(0, 0),
590
+ textcoords="offset points",
591
+ ha="center",
592
+ va="center",
593
+ color="black",
594
+ fontsize=10,
595
+ zorder=11,
596
+ bbox={"boxstyle": "round,pad=0.2", "fc": "white", "ec": "none", "alpha": 0.8},
597
+ )
598
+
599
+ # Calculate axis limits to ensure all circles are visible
600
+ all_x = [pos[0] for pos in qubit_positions.values()]
601
+ all_y = [pos[1] for pos in qubit_positions.values()]
602
+ x_min, x_max = min(all_x), max(all_x)
603
+ y_min, y_max = min(all_y), max(all_y)
604
+
605
+ # Add padding for circles
606
+ padding = max_radius * 1.5
607
+ ax.set_xlim(x_min - padding, x_max + padding)
608
+ ax.set_ylim(y_min - padding, y_max + padding)
609
+
610
+ # Adjust layout first
611
+ plt.tight_layout(pad=2.0)
612
+ ax.set_aspect("equal")
613
+ ax.invert_yaxis()
614
+
615
+ plt.figtext(
616
+ 0.5,
617
+ 0.99, # x=0.5 (center), y=0.01 (bottom)
618
+ f"Qubit connectivity with selected qubits in orange\n"
619
+ f"CZ errors -log(F) indicated by edge thickness (thinner is better)\n"
620
+ f"Single qubit errors -log(F) shown as node size with F computed from {sq_metric} metrics",
621
+ fontsize=10,
622
+ ha="center",
623
+ wrap=True,
382
624
  )
625
+
383
626
  plt.show()
627
+ return fig
384
628
 
385
629
 
386
630
  def rx_to_nx_graph(backend_coupling_map: CouplingMap) -> nx.Graph:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: iqm-benchmarks
3
- Version: 2.42
3
+ Version: 2.44
4
4
  Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
5
5
  Author-email: IQM Finland Oy <developers@meetiqm.com>, Adrian Auer <adrian.auer@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Alessio Calzona <alessio.calzona@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Amin Hosseinkhani <amin.hosseinkhani@meetiqm.com>, Miikka Koistinen <miikka@meetiqm.com>, Nadia Milazzo <nadia.milazzo@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
6
6
  Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
@@ -4,19 +4,21 @@ iqm/benchmarks/benchmark_definition.py,sha256=e4xe0wlWKZqj48_6-zTglMaMeoiA9aGkHr
4
4
  iqm/benchmarks/circuit_containers.py,sha256=anEtZEsodYqOX-34oZRmuKGeEpp_VfgG5045Mz4-4hI,7562
5
5
  iqm/benchmarks/logging_config.py,sha256=U7olP5Kr75AcLJqNODf9VBhJLVqIvA4AYR6J39D5rww,1052
6
6
  iqm/benchmarks/readout_mitigation.py,sha256=Q2SOGWTNgmklOYkNxepAaSaXlxSj0QQyymYY1bOkT8A,11756
7
- iqm/benchmarks/utils.py,sha256=sItoMsfUYiMWTSCNOTe_RWi2l1xTf2slvXkFiEMRwKU,41091
8
- iqm/benchmarks/utils_plots.py,sha256=Q4h7gcKXf8Eizm13P0yL2I_P-QobHVFr9JCV83wrUi8,14942
7
+ iqm/benchmarks/utils.py,sha256=kJz9T9nJXpLl_iFYYUDtSq83N-Y3JFQBuvW1o7-AVSM,44137
8
+ iqm/benchmarks/utils_plots.py,sha256=CaqA9fJNgRnrbYqwBdpzFUlhwvKw5lhZX3KfRlroQV4,24420
9
9
  iqm/benchmarks/utils_shadows.py,sha256=e77PV_uaAO5m_woox9lAzompKAvFeDJ-0AKJrNJ7NFg,9728
10
+ iqm/benchmarks/coherence/__init__.py,sha256=yeyhk-_Lp8IbJ-f5lQj0HP5Q1HSKK_FzuXHazotUrVY,704
11
+ iqm/benchmarks/coherence/coherence.py,sha256=zX_6A8vCS2zeWesMDXPFZBfrJ8wUG90JI9_tFsonwXk,21191
10
12
  iqm/benchmarks/compressive_gst/__init__.py,sha256=LneifgYXtcwo2jcXo7GdUEHL6_peipukShhkrdaTRCA,929
11
13
  iqm/benchmarks/compressive_gst/compressive_gst.py,sha256=2kiRttog4jR-vtMHu847GTFe5qL_i_uYr_4WMGqt9Ww,25653
12
14
  iqm/benchmarks/compressive_gst/gst_analysis.py,sha256=g0kEovWbetoDRvX7JFrS9oOoNrqBxaFmprujJi7qQbU,36297
13
15
  iqm/benchmarks/entanglement/__init__.py,sha256=sHVVToRWRCz0LSntk1rQaoSNNeyZLPoiTjUKWZWrk1E,778
14
- iqm/benchmarks/entanglement/ghz.py,sha256=12bf9ANfgzyR7Vs8REO-Xm68gisqn8Q7_WSfaNnAmOk,41213
15
- iqm/benchmarks/entanglement/graph_states.py,sha256=7GMxuhbOeQXc3hn3yAwp51S-F-1qaP0AYXm6JtuL9gA,62560
16
+ iqm/benchmarks/entanglement/ghz.py,sha256=nJ0gsLRfl50mcGrBVWjx22gXY9fwn9-sO3St2SbM4MA,41254
17
+ iqm/benchmarks/entanglement/graph_states.py,sha256=saoAw2QF8j7W4nZMOElnjuNylqDAbY9cBwBypWZKUz8,62521
16
18
  iqm/benchmarks/optimization/__init__.py,sha256=_ajW_OibYLCtzU5AUv5c2zuuVYn8ZNeZUcUUSIGt51M,747
17
19
  iqm/benchmarks/optimization/qscore.py,sha256=D2BVVNAqO32uGu5_kLVl2XJUOBlRl1C-c6zYenaCBMg,37259
18
20
  iqm/benchmarks/quantum_volume/__init__.py,sha256=i-Q4SpDWELBw7frXnxm1j4wJRcxbIyrS5uEK_v06YHo,951
19
- iqm/benchmarks/quantum_volume/clops.py,sha256=fLY0aPHjNbW33SuVM9brAgBYFncDHjY5Bwh6iXzbjiU,31099
21
+ iqm/benchmarks/quantum_volume/clops.py,sha256=QS9iK-gtop0zix6IBeUumQeG01-0dXsv0jsYSDhgEu0,31071
20
22
  iqm/benchmarks/quantum_volume/quantum_volume.py,sha256=pro7Lz-A5pPpT9UZ8wtXKTyhdWmTjQjRHt4BylDR-3U,36553
21
23
  iqm/benchmarks/randomized_benchmarking/__init__.py,sha256=IkKo-7zUChxZZd3my_csQCJfJfZNsV3-JTvdG8uqys4,734
22
24
  iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=yrmSJqhv7Lb1yqiqU9-2baqTljJPNmTUPQR-AH6GGfc,7800
@@ -28,12 +30,12 @@ iqm/benchmarks/randomized_benchmarking/clifford_rb/clifford_rb.py,sha256=IGBrq_a
28
30
  iqm/benchmarks/randomized_benchmarking/direct_rb/__init__.py,sha256=lCIIeWMFZHnMUUEUTjUBvrhhUur6uBTHIVkxFBSfHC4,681
29
31
  iqm/benchmarks/randomized_benchmarking/direct_rb/direct_rb.py,sha256=Cbx6B9q8Sqc_uPalX6fUEWJX6UEHCfWRof9u4brtx5A,48977
30
32
  iqm/benchmarks/randomized_benchmarking/eplg/__init__.py,sha256=1MeGZTErElXJypQV2rQf7hwqLLvIp_JNVbwNhaP5vyI,696
31
- iqm/benchmarks/randomized_benchmarking/eplg/eplg.py,sha256=WZ3OwQ4C3K8SzudILAUwt71lb24vQQO9vaT0C9GCSOc,17215
33
+ iqm/benchmarks/randomized_benchmarking/eplg/eplg.py,sha256=3A_gxzAs6mi3APKvqCwYDcNwRogIZNy5SDL33Cro89E,17036
32
34
  iqm/benchmarks/randomized_benchmarking/interleaved_rb/__init__.py,sha256=sq6MgN_hwlpkOj10vyCU4e6eKSX-oLcF2L9na6W2Gt4,681
33
35
  iqm/benchmarks/randomized_benchmarking/interleaved_rb/interleaved_rb.py,sha256=TaR1YFWBhOgm1hmEQzuwLYpp0yl0Xpuo3jAT6YhiXpc,28471
34
36
  iqm/benchmarks/randomized_benchmarking/mirror_rb/__init__.py,sha256=jRKbivWCZ3xdO1k0sx-ygC3s5DUkGSModd975PoAtcg,692
35
37
  iqm/benchmarks/randomized_benchmarking/mirror_rb/mirror_rb.py,sha256=n_5gt9636ZDMsM9hC3Zm5qP2bQr2sy41zxGhOh0XMjI,32932
36
- iqm_benchmarks-2.42.dist-info/licenses/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
38
+ iqm_benchmarks-2.44.dist-info/licenses/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
37
39
  mGST/LICENSE,sha256=TtHNq55cUcbglb7uhVudeBLUh_qPdUoAEvU0BBwFz-k,1098
38
40
  mGST/README.md,sha256=v_5kw253csHF4-RfE-44KqFmBXIsSMRmOtN0AUPrRxE,5050
39
41
  mGST/additional_fns.py,sha256=_SEJ10FRNM7_CroysT8hCLZTfpm6ZhEIDCY5zPTnhjo,31390
@@ -44,7 +46,7 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
44
46
  mGST/qiskit_interface.py,sha256=ajx6Zn5FnrX_T7tMP8xnBLyG4c2ddFRm0Fu2_3r1t30,10118
45
47
  mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
46
48
  mGST/reporting/reporting.py,sha256=B8NWfpZrrSmyH7lwZxd0EbZMYLsAGK1YsHRB4D5qXH4,26002
47
- iqm_benchmarks-2.42.dist-info/METADATA,sha256=JBIVb_IKpTjclpuMILV4Gmo3nZhs3FhwU5vsOtTjLPc,10872
48
- iqm_benchmarks-2.42.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
49
- iqm_benchmarks-2.42.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
50
- iqm_benchmarks-2.42.dist-info/RECORD,,
49
+ iqm_benchmarks-2.44.dist-info/METADATA,sha256=g7tbfF4edqqPEnS50lTJ_0pdp9KzCKMs4RNUQeCxUcU,10872
50
+ iqm_benchmarks-2.44.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
51
+ iqm_benchmarks-2.44.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
52
+ iqm_benchmarks-2.44.dist-info/RECORD,,