iqm-benchmarks 2.40__py3-none-any.whl → 2.42__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- iqm/benchmarks/entanglement/ghz.py +1 -2
- iqm/benchmarks/entanglement/graph_states.py +2 -2
- iqm/benchmarks/optimization/qscore.py +64 -71
- iqm/benchmarks/quantum_volume/clops.py +1 -1
- iqm/benchmarks/randomized_benchmarking/eplg/eplg.py +1 -1
- iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py +1 -1
- iqm/benchmarks/utils.py +22 -26
- {iqm_benchmarks-2.40.dist-info → iqm_benchmarks-2.42.dist-info}/METADATA +1 -1
- {iqm_benchmarks-2.40.dist-info → iqm_benchmarks-2.42.dist-info}/RECORD +12 -12
- {iqm_benchmarks-2.40.dist-info → iqm_benchmarks-2.42.dist-info}/WHEEL +0 -0
- {iqm_benchmarks-2.40.dist-info → iqm_benchmarks-2.42.dist-info}/licenses/LICENSE +0 -0
- {iqm_benchmarks-2.40.dist-info → iqm_benchmarks-2.42.dist-info}/top_level.txt +0 -0
|
@@ -502,8 +502,7 @@ def plot_fidelities(
|
|
|
502
502
|
layout_short = {str(qubit_layout): f" L{i}" for i, qubit_layout in enumerate(qubit_layouts)}
|
|
503
503
|
recorded_labels = []
|
|
504
504
|
x_positions = []
|
|
505
|
-
cmap = plt.
|
|
506
|
-
# colors = [cmap(0), cmap(1)]
|
|
505
|
+
cmap = plt.colormaps["winter"]
|
|
507
506
|
for i, obs in enumerate(observations):
|
|
508
507
|
label = "With REM" if "rem" in obs.name else "Unmitigated"
|
|
509
508
|
if label in recorded_labels:
|
|
@@ -305,7 +305,7 @@ def plot_max_negativities(
|
|
|
305
305
|
y = [a["value"] for a in sorted_negativities.values()]
|
|
306
306
|
yerr = [a["uncertainty"] for a in sorted_negativities.values()]
|
|
307
307
|
|
|
308
|
-
cmap = plt.
|
|
308
|
+
cmap = plt.colormaps["winter"]
|
|
309
309
|
|
|
310
310
|
fig = plt.figure()
|
|
311
311
|
ax = plt.axes()
|
|
@@ -434,7 +434,7 @@ def plot_max_negativities_graph(
|
|
|
434
434
|
|
|
435
435
|
negativity_edges = dict(zip(qubit_pairs, negativity_values))
|
|
436
436
|
|
|
437
|
-
cmap = plt.
|
|
437
|
+
cmap = plt.colormaps["winter"]
|
|
438
438
|
|
|
439
439
|
fig = plt.figure()
|
|
440
440
|
ax = plt.axes()
|
|
@@ -422,9 +422,6 @@ def qscore_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
|
|
|
422
422
|
beta_ratio_list = []
|
|
423
423
|
beta_ratio_std_list = []
|
|
424
424
|
for num_nodes in nodes_list:
|
|
425
|
-
# Retrieve counts for all the instances within each executed node size.
|
|
426
|
-
execution_results = xrvariable_to_counts(dataset, num_nodes, num_instances)
|
|
427
|
-
|
|
428
425
|
# Retrieve other dataset values
|
|
429
426
|
dataset_dictionary = dataset.attrs[num_nodes]
|
|
430
427
|
|
|
@@ -433,18 +430,21 @@ def qscore_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
|
|
|
433
430
|
qubit_to_node_list = dataset_dictionary["qubit_to_node"]
|
|
434
431
|
virtual_node_list = dataset_dictionary["virtual_nodes"]
|
|
435
432
|
no_edge_instances = dataset_dictionary["no_edge_instances"]
|
|
436
|
-
|
|
437
433
|
cut_sizes_list = [0.0] * len(no_edge_instances)
|
|
434
|
+
|
|
435
|
+
# Retrieve counts for all the instances within each executed node size.
|
|
438
436
|
instances_with_edges = set(range(num_instances)) - set(no_edge_instances)
|
|
437
|
+
num_instances_with_edges = len(instances_with_edges)
|
|
438
|
+
execution_results = xrvariable_to_counts(dataset, num_nodes, num_instances_with_edges)
|
|
439
439
|
|
|
440
|
-
for inst_idx in list(instances_with_edges):
|
|
440
|
+
for inst_idx, instance in enumerate(list(instances_with_edges)):
|
|
441
441
|
cut_sizes = run_QAOA(
|
|
442
442
|
execution_results[inst_idx],
|
|
443
|
-
graph_list[
|
|
444
|
-
qubit_to_node_list[
|
|
443
|
+
graph_list[instance],
|
|
444
|
+
qubit_to_node_list[instance],
|
|
445
445
|
use_classically_optimized_angles,
|
|
446
446
|
num_qaoa_layers,
|
|
447
|
-
virtual_node_list[
|
|
447
|
+
virtual_node_list[instance],
|
|
448
448
|
)
|
|
449
449
|
cut_sizes_list.append(cut_sizes)
|
|
450
450
|
|
|
@@ -770,7 +770,7 @@ class QScoreBenchmark(Benchmark):
|
|
|
770
770
|
for num_nodes in node_numbers:
|
|
771
771
|
qc_list = []
|
|
772
772
|
qc_transpiled_list: List[QuantumCircuit] = []
|
|
773
|
-
execution_results = []
|
|
773
|
+
execution_results: List[Dict[str, int]] = []
|
|
774
774
|
graph_list = []
|
|
775
775
|
qubit_set_list = []
|
|
776
776
|
theta_list = []
|
|
@@ -789,6 +789,7 @@ class QScoreBenchmark(Benchmark):
|
|
|
789
789
|
virtual_node_list = []
|
|
790
790
|
qubit_to_node_list = []
|
|
791
791
|
no_edge_instances = []
|
|
792
|
+
qc_all = [] # all circuits, including those with no edges
|
|
792
793
|
for instance in range(self.num_instances):
|
|
793
794
|
qcvv_logger.debug(f"Executing graph {instance} with {num_nodes} nodes.")
|
|
794
795
|
graph = nx.generators.erdos_renyi_graph(num_nodes, 0.5, seed=seed)
|
|
@@ -839,69 +840,64 @@ class QScoreBenchmark(Benchmark):
|
|
|
839
840
|
theta_list.append(theta)
|
|
840
841
|
|
|
841
842
|
qc = self.generate_maxcut_ansatz(graph, theta)
|
|
842
|
-
qc_list.append(qc)
|
|
843
|
-
qubit_to_node_copy = self.qubit_to_node.copy()
|
|
844
|
-
qubit_to_node_list.append(qubit_to_node_copy)
|
|
845
|
-
|
|
846
|
-
if len(qc.count_ops()) == 0:
|
|
847
|
-
counts = {"": 1.0} # to handle the case of physical graph with no edges
|
|
848
|
-
qc_transpiled_list.append([])
|
|
849
|
-
execution_results.append(counts)
|
|
850
|
-
qc_list.append([])
|
|
851
|
-
qcvv_logger.debug(f"This graph instance has no edges.")
|
|
852
|
-
else:
|
|
853
|
-
qcvv_logger.setLevel(logging.WARNING)
|
|
854
|
-
# Account for all-to-all connected backends like Sirius
|
|
855
|
-
if "move" in backend.architecture.gates:
|
|
856
|
-
# If the circuit is defined on a subset of qubit_set, choose the first qubtis in the set
|
|
857
|
-
active_qubit_set = qubit_set[: len(qc.qubits)]
|
|
858
|
-
# All-to-all coupling map on the active qubits
|
|
859
|
-
effective_coupling_map = [[x, y] for x in active_qubit_set for y in active_qubit_set if x != y]
|
|
860
|
-
else:
|
|
861
|
-
if self.choose_qubits_routine == "naive":
|
|
862
|
-
active_qubit_set = None
|
|
863
|
-
effective_coupling_map = self.backend.coupling_map
|
|
864
|
-
else:
|
|
865
|
-
active_qubit_set = qubit_set
|
|
866
|
-
effective_coupling_map = self.backend.coupling_map.reduce(active_qubit_set)
|
|
867
|
-
|
|
868
|
-
transpilation_params = {
|
|
869
|
-
"backend": self.backend,
|
|
870
|
-
"qubits": active_qubit_set,
|
|
871
|
-
"coupling_map": effective_coupling_map,
|
|
872
|
-
"qiskit_optim_level": self.qiskit_optim_level,
|
|
873
|
-
"optimize_sqg": self.optimize_sqg,
|
|
874
|
-
"routing_method": self.routing_method,
|
|
875
|
-
}
|
|
876
843
|
|
|
877
|
-
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
|
|
884
|
-
self.shots,
|
|
885
|
-
self.calset_id,
|
|
886
|
-
max_gates_per_batch=self.max_gates_per_batch,
|
|
887
|
-
max_circuits_per_batch=self.configuration.max_circuits_per_batch,
|
|
888
|
-
circuit_compilation_options=self.circuit_compilation_options,
|
|
889
|
-
)
|
|
890
|
-
qc_transpiled_list.append(transpiled_qc)
|
|
891
|
-
qcvv_logger.setLevel(logging.INFO)
|
|
892
|
-
|
|
893
|
-
if self.REM:
|
|
894
|
-
rem_counts = apply_readout_error_mitigation(
|
|
895
|
-
backend, transpiled_qc, [retrieve_all_counts(jobs)[0][0]], self.mit_shots
|
|
896
|
-
)
|
|
897
|
-
rem_distribution = rem_counts[0][0].nearest_probability_distribution()
|
|
898
|
-
execution_results.append(rem_distribution)
|
|
899
|
-
else:
|
|
900
|
-
execution_results.append(retrieve_all_counts(jobs)[0][0])
|
|
844
|
+
if len(qc.count_ops()) != 0:
|
|
845
|
+
qc_list.append(qc)
|
|
846
|
+
qc_all.append(qc)
|
|
847
|
+
qubit_to_node_copy = self.qubit_to_node.copy()
|
|
848
|
+
qubit_to_node_list.append(qubit_to_node_copy)
|
|
849
|
+
else:
|
|
850
|
+
qc_all.append([])
|
|
901
851
|
|
|
902
852
|
seed += 1
|
|
903
853
|
qcvv_logger.debug(f"Solved the MaxCut on graph {instance+1}/{self.num_instances}.")
|
|
904
854
|
|
|
855
|
+
qcvv_logger.setLevel(logging.WARNING)
|
|
856
|
+
if self.choose_qubits_routine == "naive":
|
|
857
|
+
active_qubit_set = None
|
|
858
|
+
effective_coupling_map = self.backend.coupling_map
|
|
859
|
+
else:
|
|
860
|
+
active_qubit_set = qubit_set
|
|
861
|
+
effective_coupling_map = self.backend.coupling_map.reduce(active_qubit_set)
|
|
862
|
+
|
|
863
|
+
transpilation_params = {
|
|
864
|
+
"backend": self.backend,
|
|
865
|
+
"qubits": active_qubit_set,
|
|
866
|
+
"coupling_map": effective_coupling_map,
|
|
867
|
+
"qiskit_optim_level": self.qiskit_optim_level,
|
|
868
|
+
"optimize_sqg": self.optimize_sqg,
|
|
869
|
+
"routing_method": self.routing_method,
|
|
870
|
+
}
|
|
871
|
+
|
|
872
|
+
transpiled_qc, _ = perform_backend_transpilation(qc_list, **transpilation_params)
|
|
873
|
+
|
|
874
|
+
sorted_transpiled_qc_list = {tuple(qubit_set): transpiled_qc}
|
|
875
|
+
# Execute on the backend
|
|
876
|
+
jobs, _ = submit_execute(
|
|
877
|
+
sorted_transpiled_qc_list,
|
|
878
|
+
self.backend,
|
|
879
|
+
self.shots,
|
|
880
|
+
self.calset_id,
|
|
881
|
+
max_gates_per_batch=self.max_gates_per_batch,
|
|
882
|
+
max_circuits_per_batch=self.configuration.max_circuits_per_batch,
|
|
883
|
+
circuit_compilation_options=self.circuit_compilation_options,
|
|
884
|
+
)
|
|
885
|
+
qc_transpiled_list.append(transpiled_qc)
|
|
886
|
+
qcvv_logger.setLevel(logging.INFO)
|
|
887
|
+
instance_with_edges = set(range(self.num_instances)) - set(no_edge_instances)
|
|
888
|
+
num_instances_with_edges = len(instance_with_edges)
|
|
889
|
+
if self.REM:
|
|
890
|
+
rem_counts = apply_readout_error_mitigation(
|
|
891
|
+
backend, transpiled_qc, retrieve_all_counts(jobs)[0], self.mit_shots
|
|
892
|
+
)
|
|
893
|
+
execution_results.extend(
|
|
894
|
+
rem_counts[0][instance].nearest_probability_distribution()
|
|
895
|
+
for instance in range(num_instances_with_edges)
|
|
896
|
+
)
|
|
897
|
+
# execution_results.append(rem_distribution)
|
|
898
|
+
else:
|
|
899
|
+
execution_results.extend(retrieve_all_counts(jobs)[0])
|
|
900
|
+
|
|
905
901
|
dataset.attrs.update(
|
|
906
902
|
{
|
|
907
903
|
num_nodes: {
|
|
@@ -918,10 +914,7 @@ class QScoreBenchmark(Benchmark):
|
|
|
918
914
|
|
|
919
915
|
qcvv_logger.debug(f"Adding counts for the random graph for {num_nodes} nodes to the dataset")
|
|
920
916
|
dataset, _ = add_counts_to_dataset(execution_results, str(num_nodes), dataset)
|
|
921
|
-
|
|
922
|
-
# self.untranspiled_circuits[str(num_nodes)].update({tuple(qubit_set): qc_list})
|
|
923
|
-
# self.transpiled_circuits[str(num_nodes)].update(sorted_transpiled_qc_list)
|
|
924
|
-
self.untranspiled_circuits.circuit_groups.append(CircuitGroup(name=str(num_nodes), circuits=qc_list))
|
|
917
|
+
self.untranspiled_circuits.circuit_groups.append(CircuitGroup(name=str(num_nodes), circuits=qc_all))
|
|
925
918
|
self.transpiled_circuits.circuit_groups.append(
|
|
926
919
|
CircuitGroup(name=str(num_nodes), circuits=qc_transpiled_list)
|
|
927
920
|
)
|
|
@@ -81,7 +81,7 @@ def plot_times(clops_data: xr.Dataset, observations: Dict[int, Dict[str, Dict[st
|
|
|
81
81
|
all_data.update(observations[1])
|
|
82
82
|
|
|
83
83
|
# Define colors
|
|
84
|
-
cmap =
|
|
84
|
+
cmap = plt.colormaps["winter"]
|
|
85
85
|
colors = [cmap(i) for i in np.linspace(0, 1, len(job_keys) + len(user_keys) + len(total_keys) + 1)]
|
|
86
86
|
|
|
87
87
|
# Plotting parameters
|
|
@@ -266,7 +266,7 @@ def exponential_rb(
|
|
|
266
266
|
Returns:
|
|
267
267
|
np.ndarray: the exponential fit function
|
|
268
268
|
"""
|
|
269
|
-
return (amplitude - offset) * (1 - depolarization_probability) ** depths + offset
|
|
269
|
+
return (amplitude - offset) * (1 - depolarization_probability) ** np.array(depths) + offset
|
|
270
270
|
|
|
271
271
|
|
|
272
272
|
def fit_decay_lmfit(
|
iqm/benchmarks/utils.py
CHANGED
|
@@ -567,35 +567,31 @@ def perform_backend_transpilation(
|
|
|
567
567
|
# Helper function considering whether optimize_sqg is done,
|
|
568
568
|
# and whether the coupling map is reduced (whether final physical layout must be fixed onto an auxiliary QC)
|
|
569
569
|
def transpile_and_optimize(qc, aux_qc=None):
|
|
570
|
-
transpiled = transpile(
|
|
571
|
-
qc,
|
|
572
|
-
basis_gates=basis_gates,
|
|
573
|
-
coupling_map=coupling_map,
|
|
574
|
-
optimization_level=qiskit_optim_level,
|
|
575
|
-
initial_layout=qubits if aux_qc is None else None,
|
|
576
|
-
routing_method=routing_method,
|
|
577
|
-
)
|
|
578
|
-
if optimize_sqg:
|
|
579
|
-
transpiled = optimize_single_qubit_gates(transpiled, drop_final_rz=drop_final_rz)
|
|
580
570
|
if backend.has_resonators():
|
|
571
|
+
coupling_map_red = (
|
|
572
|
+
backend.coupling_map.reduce(qubits[: qc.num_qubits]) if aux_qc is not None else coupling_map
|
|
573
|
+
)
|
|
581
574
|
transpiled = transpile_to_IQM(
|
|
582
|
-
qc,
|
|
575
|
+
qc,
|
|
576
|
+
backend=backend,
|
|
577
|
+
optimize_single_qubits=optimize_sqg,
|
|
578
|
+
remove_final_rzs=drop_final_rz,
|
|
579
|
+
coupling_map=coupling_map_red,
|
|
580
|
+
# initial_layout=qubits if aux_qc is None else None,
|
|
583
581
|
)
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
transpiled, qubits=qubits + [backend.num_qubits], clbits=list(range(qc.num_clbits))
|
|
595
|
-
)
|
|
596
|
-
else:
|
|
582
|
+
else:
|
|
583
|
+
transpiled = transpile(
|
|
584
|
+
qc,
|
|
585
|
+
basis_gates=basis_gates,
|
|
586
|
+
coupling_map=coupling_map,
|
|
587
|
+
optimization_level=qiskit_optim_level,
|
|
588
|
+
initial_layout=qubits if aux_qc is None else None,
|
|
589
|
+
routing_method=routing_method,
|
|
590
|
+
)
|
|
591
|
+
if aux_qc is not None:
|
|
597
592
|
transpiled = aux_qc.compose(transpiled, qubits=qubits, clbits=list(range(qc.num_clbits)))
|
|
598
|
-
|
|
593
|
+
if optimize_sqg:
|
|
594
|
+
transpiled = optimize_single_qubit_gates(transpiled, drop_final_rz=drop_final_rz)
|
|
599
595
|
return transpiled
|
|
600
596
|
|
|
601
597
|
qcvv_logger.info(
|
|
@@ -607,7 +603,7 @@ def perform_backend_transpilation(
|
|
|
607
603
|
transpiled_qc_list = [transpile_and_optimize(qc) for qc in qc_list]
|
|
608
604
|
else: # The coupling map will be reduced if the physical layout is to be fixed
|
|
609
605
|
if backend.has_resonators():
|
|
610
|
-
aux_qc_list = [QuantumCircuit(backend.num_qubits
|
|
606
|
+
aux_qc_list = [QuantumCircuit(backend.num_qubits, q.num_clbits) for q in qc_list]
|
|
611
607
|
else:
|
|
612
608
|
aux_qc_list = [QuantumCircuit(backend.num_qubits, q.num_clbits) for q in qc_list]
|
|
613
609
|
transpiled_qc_list = [transpile_and_optimize(qc, aux_qc=aux_qc_list[idx]) for idx, qc in enumerate(qc_list)]
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: iqm-benchmarks
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.42
|
|
4
4
|
Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
|
|
5
5
|
Author-email: IQM Finland Oy <developers@meetiqm.com>, Adrian Auer <adrian.auer@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Alessio Calzona <alessio.calzona@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Amin Hosseinkhani <amin.hosseinkhani@meetiqm.com>, Miikka Koistinen <miikka@meetiqm.com>, Nadia Milazzo <nadia.milazzo@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
|
|
6
6
|
Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
|
|
@@ -4,36 +4,36 @@ iqm/benchmarks/benchmark_definition.py,sha256=e4xe0wlWKZqj48_6-zTglMaMeoiA9aGkHr
|
|
|
4
4
|
iqm/benchmarks/circuit_containers.py,sha256=anEtZEsodYqOX-34oZRmuKGeEpp_VfgG5045Mz4-4hI,7562
|
|
5
5
|
iqm/benchmarks/logging_config.py,sha256=U7olP5Kr75AcLJqNODf9VBhJLVqIvA4AYR6J39D5rww,1052
|
|
6
6
|
iqm/benchmarks/readout_mitigation.py,sha256=Q2SOGWTNgmklOYkNxepAaSaXlxSj0QQyymYY1bOkT8A,11756
|
|
7
|
-
iqm/benchmarks/utils.py,sha256=
|
|
7
|
+
iqm/benchmarks/utils.py,sha256=sItoMsfUYiMWTSCNOTe_RWi2l1xTf2slvXkFiEMRwKU,41091
|
|
8
8
|
iqm/benchmarks/utils_plots.py,sha256=Q4h7gcKXf8Eizm13P0yL2I_P-QobHVFr9JCV83wrUi8,14942
|
|
9
9
|
iqm/benchmarks/utils_shadows.py,sha256=e77PV_uaAO5m_woox9lAzompKAvFeDJ-0AKJrNJ7NFg,9728
|
|
10
10
|
iqm/benchmarks/compressive_gst/__init__.py,sha256=LneifgYXtcwo2jcXo7GdUEHL6_peipukShhkrdaTRCA,929
|
|
11
11
|
iqm/benchmarks/compressive_gst/compressive_gst.py,sha256=2kiRttog4jR-vtMHu847GTFe5qL_i_uYr_4WMGqt9Ww,25653
|
|
12
12
|
iqm/benchmarks/compressive_gst/gst_analysis.py,sha256=g0kEovWbetoDRvX7JFrS9oOoNrqBxaFmprujJi7qQbU,36297
|
|
13
13
|
iqm/benchmarks/entanglement/__init__.py,sha256=sHVVToRWRCz0LSntk1rQaoSNNeyZLPoiTjUKWZWrk1E,778
|
|
14
|
-
iqm/benchmarks/entanglement/ghz.py,sha256=
|
|
15
|
-
iqm/benchmarks/entanglement/graph_states.py,sha256=
|
|
14
|
+
iqm/benchmarks/entanglement/ghz.py,sha256=12bf9ANfgzyR7Vs8REO-Xm68gisqn8Q7_WSfaNnAmOk,41213
|
|
15
|
+
iqm/benchmarks/entanglement/graph_states.py,sha256=7GMxuhbOeQXc3hn3yAwp51S-F-1qaP0AYXm6JtuL9gA,62560
|
|
16
16
|
iqm/benchmarks/optimization/__init__.py,sha256=_ajW_OibYLCtzU5AUv5c2zuuVYn8ZNeZUcUUSIGt51M,747
|
|
17
|
-
iqm/benchmarks/optimization/qscore.py,sha256=
|
|
17
|
+
iqm/benchmarks/optimization/qscore.py,sha256=D2BVVNAqO32uGu5_kLVl2XJUOBlRl1C-c6zYenaCBMg,37259
|
|
18
18
|
iqm/benchmarks/quantum_volume/__init__.py,sha256=i-Q4SpDWELBw7frXnxm1j4wJRcxbIyrS5uEK_v06YHo,951
|
|
19
|
-
iqm/benchmarks/quantum_volume/clops.py,sha256=
|
|
19
|
+
iqm/benchmarks/quantum_volume/clops.py,sha256=fLY0aPHjNbW33SuVM9brAgBYFncDHjY5Bwh6iXzbjiU,31099
|
|
20
20
|
iqm/benchmarks/quantum_volume/quantum_volume.py,sha256=pro7Lz-A5pPpT9UZ8wtXKTyhdWmTjQjRHt4BylDR-3U,36553
|
|
21
21
|
iqm/benchmarks/randomized_benchmarking/__init__.py,sha256=IkKo-7zUChxZZd3my_csQCJfJfZNsV3-JTvdG8uqys4,734
|
|
22
22
|
iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=yrmSJqhv7Lb1yqiqU9-2baqTljJPNmTUPQR-AH6GGfc,7800
|
|
23
23
|
iqm/benchmarks/randomized_benchmarking/clifford_2q.pkl,sha256=mJQLubWPOb-DbmFi4oKYJqAMW_Yyo3eJjRjLGl9Sqmo,10282247
|
|
24
24
|
iqm/benchmarks/randomized_benchmarking/multi_lmfit.py,sha256=Se1ygR4mXn_2_P82Ch31KBnCmY-g_A9NKzE9Ir8nEvw,3247
|
|
25
|
-
iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=
|
|
25
|
+
iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=1lXaqUq6BagOjsaEdKZIN4GAZ1jphk_3khZcaid65n0,54296
|
|
26
26
|
iqm/benchmarks/randomized_benchmarking/clifford_rb/__init__.py,sha256=bTDA156LAl7OLGcMec--1nzDrV1XpPRVq3CquTmucgE,677
|
|
27
27
|
iqm/benchmarks/randomized_benchmarking/clifford_rb/clifford_rb.py,sha256=IGBrq_a9eaVPknkBLKHKS4BOcumHn6TZdasUNKTZjGI,18685
|
|
28
28
|
iqm/benchmarks/randomized_benchmarking/direct_rb/__init__.py,sha256=lCIIeWMFZHnMUUEUTjUBvrhhUur6uBTHIVkxFBSfHC4,681
|
|
29
29
|
iqm/benchmarks/randomized_benchmarking/direct_rb/direct_rb.py,sha256=Cbx6B9q8Sqc_uPalX6fUEWJX6UEHCfWRof9u4brtx5A,48977
|
|
30
30
|
iqm/benchmarks/randomized_benchmarking/eplg/__init__.py,sha256=1MeGZTErElXJypQV2rQf7hwqLLvIp_JNVbwNhaP5vyI,696
|
|
31
|
-
iqm/benchmarks/randomized_benchmarking/eplg/eplg.py,sha256=
|
|
31
|
+
iqm/benchmarks/randomized_benchmarking/eplg/eplg.py,sha256=WZ3OwQ4C3K8SzudILAUwt71lb24vQQO9vaT0C9GCSOc,17215
|
|
32
32
|
iqm/benchmarks/randomized_benchmarking/interleaved_rb/__init__.py,sha256=sq6MgN_hwlpkOj10vyCU4e6eKSX-oLcF2L9na6W2Gt4,681
|
|
33
33
|
iqm/benchmarks/randomized_benchmarking/interleaved_rb/interleaved_rb.py,sha256=TaR1YFWBhOgm1hmEQzuwLYpp0yl0Xpuo3jAT6YhiXpc,28471
|
|
34
34
|
iqm/benchmarks/randomized_benchmarking/mirror_rb/__init__.py,sha256=jRKbivWCZ3xdO1k0sx-ygC3s5DUkGSModd975PoAtcg,692
|
|
35
35
|
iqm/benchmarks/randomized_benchmarking/mirror_rb/mirror_rb.py,sha256=n_5gt9636ZDMsM9hC3Zm5qP2bQr2sy41zxGhOh0XMjI,32932
|
|
36
|
-
iqm_benchmarks-2.
|
|
36
|
+
iqm_benchmarks-2.42.dist-info/licenses/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
|
|
37
37
|
mGST/LICENSE,sha256=TtHNq55cUcbglb7uhVudeBLUh_qPdUoAEvU0BBwFz-k,1098
|
|
38
38
|
mGST/README.md,sha256=v_5kw253csHF4-RfE-44KqFmBXIsSMRmOtN0AUPrRxE,5050
|
|
39
39
|
mGST/additional_fns.py,sha256=_SEJ10FRNM7_CroysT8hCLZTfpm6ZhEIDCY5zPTnhjo,31390
|
|
@@ -44,7 +44,7 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
|
|
|
44
44
|
mGST/qiskit_interface.py,sha256=ajx6Zn5FnrX_T7tMP8xnBLyG4c2ddFRm0Fu2_3r1t30,10118
|
|
45
45
|
mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
|
|
46
46
|
mGST/reporting/reporting.py,sha256=B8NWfpZrrSmyH7lwZxd0EbZMYLsAGK1YsHRB4D5qXH4,26002
|
|
47
|
-
iqm_benchmarks-2.
|
|
48
|
-
iqm_benchmarks-2.
|
|
49
|
-
iqm_benchmarks-2.
|
|
50
|
-
iqm_benchmarks-2.
|
|
47
|
+
iqm_benchmarks-2.42.dist-info/METADATA,sha256=JBIVb_IKpTjclpuMILV4Gmo3nZhs3FhwU5vsOtTjLPc,10872
|
|
48
|
+
iqm_benchmarks-2.42.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
49
|
+
iqm_benchmarks-2.42.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
|
|
50
|
+
iqm_benchmarks-2.42.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|