iqm-benchmarks 2.40__py3-none-any.whl → 2.41__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of iqm-benchmarks might be problematic. Click here for more details.

@@ -502,8 +502,7 @@ def plot_fidelities(
502
502
  layout_short = {str(qubit_layout): f" L{i}" for i, qubit_layout in enumerate(qubit_layouts)}
503
503
  recorded_labels = []
504
504
  x_positions = []
505
- cmap = plt.cm.get_cmap("winter")
506
- # colors = [cmap(0), cmap(1)]
505
+ cmap = plt.colormaps["winter"]
507
506
  for i, obs in enumerate(observations):
508
507
  label = "With REM" if "rem" in obs.name else "Unmitigated"
509
508
  if label in recorded_labels:
@@ -305,7 +305,7 @@ def plot_max_negativities(
305
305
  y = [a["value"] for a in sorted_negativities.values()]
306
306
  yerr = [a["uncertainty"] for a in sorted_negativities.values()]
307
307
 
308
- cmap = plt.get_cmap("winter")
308
+ cmap = plt.colormaps["winter"]
309
309
 
310
310
  fig = plt.figure()
311
311
  ax = plt.axes()
@@ -434,7 +434,7 @@ def plot_max_negativities_graph(
434
434
 
435
435
  negativity_edges = dict(zip(qubit_pairs, negativity_values))
436
436
 
437
- cmap = plt.cm.get_cmap("winter")
437
+ cmap = plt.colormaps["winter"]
438
438
 
439
439
  fig = plt.figure()
440
440
  ax = plt.axes()
@@ -81,7 +81,7 @@ def plot_times(clops_data: xr.Dataset, observations: Dict[int, Dict[str, Dict[st
81
81
  all_data.update(observations[1])
82
82
 
83
83
  # Define colors
84
- cmap = mpl.pyplot.get_cmap("winter")
84
+ cmap = plt.colormaps["winter"]
85
85
  colors = [cmap(i) for i in np.linspace(0, 1, len(job_keys) + len(user_keys) + len(total_keys) + 1)]
86
86
 
87
87
  # Plotting parameters
@@ -71,7 +71,7 @@ def plot_layered_fidelities_graph(
71
71
 
72
72
  fidelity_edges = dict(zip(qubit_pairs, fidelity_values))
73
73
 
74
- cmap = plt.cm.get_cmap("winter")
74
+ cmap = plt.colormaps["winter"]
75
75
 
76
76
  fig = plt.figure()
77
77
  ax = plt.axes()
@@ -266,7 +266,7 @@ def exponential_rb(
266
266
  Returns:
267
267
  np.ndarray: the exponential fit function
268
268
  """
269
- return (amplitude - offset) * (1 - depolarization_probability) ** depths + offset
269
+ return (amplitude - offset) * (1 - depolarization_probability) ** np.array(depths) + offset
270
270
 
271
271
 
272
272
  def fit_decay_lmfit(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: iqm-benchmarks
3
- Version: 2.40
3
+ Version: 2.41
4
4
  Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
5
5
  Author-email: IQM Finland Oy <developers@meetiqm.com>, Adrian Auer <adrian.auer@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Alessio Calzona <alessio.calzona@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Amin Hosseinkhani <amin.hosseinkhani@meetiqm.com>, Miikka Koistinen <miikka@meetiqm.com>, Nadia Milazzo <nadia.milazzo@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
6
6
  Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
@@ -11,29 +11,29 @@ iqm/benchmarks/compressive_gst/__init__.py,sha256=LneifgYXtcwo2jcXo7GdUEHL6_peip
11
11
  iqm/benchmarks/compressive_gst/compressive_gst.py,sha256=2kiRttog4jR-vtMHu847GTFe5qL_i_uYr_4WMGqt9Ww,25653
12
12
  iqm/benchmarks/compressive_gst/gst_analysis.py,sha256=g0kEovWbetoDRvX7JFrS9oOoNrqBxaFmprujJi7qQbU,36297
13
13
  iqm/benchmarks/entanglement/__init__.py,sha256=sHVVToRWRCz0LSntk1rQaoSNNeyZLPoiTjUKWZWrk1E,778
14
- iqm/benchmarks/entanglement/ghz.py,sha256=RGA6ynJFsfaCJv0nKccsiIzPk2G-iHHvIeW8LVu30HY,41249
15
- iqm/benchmarks/entanglement/graph_states.py,sha256=qv6nAgbvm1toSgNGLjBA8DpF9fN7UUlMpPeR_gixMcI,62561
14
+ iqm/benchmarks/entanglement/ghz.py,sha256=12bf9ANfgzyR7Vs8REO-Xm68gisqn8Q7_WSfaNnAmOk,41213
15
+ iqm/benchmarks/entanglement/graph_states.py,sha256=7GMxuhbOeQXc3hn3yAwp51S-F-1qaP0AYXm6JtuL9gA,62560
16
16
  iqm/benchmarks/optimization/__init__.py,sha256=_ajW_OibYLCtzU5AUv5c2zuuVYn8ZNeZUcUUSIGt51M,747
17
17
  iqm/benchmarks/optimization/qscore.py,sha256=C7_Vaj_JnjipBJacaa-rhH70Wgct3y1uzPMurZ4wPco,38068
18
18
  iqm/benchmarks/quantum_volume/__init__.py,sha256=i-Q4SpDWELBw7frXnxm1j4wJRcxbIyrS5uEK_v06YHo,951
19
- iqm/benchmarks/quantum_volume/clops.py,sha256=tmExq6kCaltL8VQsicB_uQ56FoCA8y-rmu1ir4gu5og,31105
19
+ iqm/benchmarks/quantum_volume/clops.py,sha256=fLY0aPHjNbW33SuVM9brAgBYFncDHjY5Bwh6iXzbjiU,31099
20
20
  iqm/benchmarks/quantum_volume/quantum_volume.py,sha256=pro7Lz-A5pPpT9UZ8wtXKTyhdWmTjQjRHt4BylDR-3U,36553
21
21
  iqm/benchmarks/randomized_benchmarking/__init__.py,sha256=IkKo-7zUChxZZd3my_csQCJfJfZNsV3-JTvdG8uqys4,734
22
22
  iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=yrmSJqhv7Lb1yqiqU9-2baqTljJPNmTUPQR-AH6GGfc,7800
23
23
  iqm/benchmarks/randomized_benchmarking/clifford_2q.pkl,sha256=mJQLubWPOb-DbmFi4oKYJqAMW_Yyo3eJjRjLGl9Sqmo,10282247
24
24
  iqm/benchmarks/randomized_benchmarking/multi_lmfit.py,sha256=Se1ygR4mXn_2_P82Ch31KBnCmY-g_A9NKzE9Ir8nEvw,3247
25
- iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=kX4ODF7MEB5olYKjpnUVon0hJ0irTOxz-z1exCa7mqc,54286
25
+ iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=1lXaqUq6BagOjsaEdKZIN4GAZ1jphk_3khZcaid65n0,54296
26
26
  iqm/benchmarks/randomized_benchmarking/clifford_rb/__init__.py,sha256=bTDA156LAl7OLGcMec--1nzDrV1XpPRVq3CquTmucgE,677
27
27
  iqm/benchmarks/randomized_benchmarking/clifford_rb/clifford_rb.py,sha256=IGBrq_a9eaVPknkBLKHKS4BOcumHn6TZdasUNKTZjGI,18685
28
28
  iqm/benchmarks/randomized_benchmarking/direct_rb/__init__.py,sha256=lCIIeWMFZHnMUUEUTjUBvrhhUur6uBTHIVkxFBSfHC4,681
29
29
  iqm/benchmarks/randomized_benchmarking/direct_rb/direct_rb.py,sha256=Cbx6B9q8Sqc_uPalX6fUEWJX6UEHCfWRof9u4brtx5A,48977
30
30
  iqm/benchmarks/randomized_benchmarking/eplg/__init__.py,sha256=1MeGZTErElXJypQV2rQf7hwqLLvIp_JNVbwNhaP5vyI,696
31
- iqm/benchmarks/randomized_benchmarking/eplg/eplg.py,sha256=VifpRgw8AHHu1NG9N86lcF0lFhFtauQUaclk5mc__EY,17217
31
+ iqm/benchmarks/randomized_benchmarking/eplg/eplg.py,sha256=WZ3OwQ4C3K8SzudILAUwt71lb24vQQO9vaT0C9GCSOc,17215
32
32
  iqm/benchmarks/randomized_benchmarking/interleaved_rb/__init__.py,sha256=sq6MgN_hwlpkOj10vyCU4e6eKSX-oLcF2L9na6W2Gt4,681
33
33
  iqm/benchmarks/randomized_benchmarking/interleaved_rb/interleaved_rb.py,sha256=TaR1YFWBhOgm1hmEQzuwLYpp0yl0Xpuo3jAT6YhiXpc,28471
34
34
  iqm/benchmarks/randomized_benchmarking/mirror_rb/__init__.py,sha256=jRKbivWCZ3xdO1k0sx-ygC3s5DUkGSModd975PoAtcg,692
35
35
  iqm/benchmarks/randomized_benchmarking/mirror_rb/mirror_rb.py,sha256=n_5gt9636ZDMsM9hC3Zm5qP2bQr2sy41zxGhOh0XMjI,32932
36
- iqm_benchmarks-2.40.dist-info/licenses/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
36
+ iqm_benchmarks-2.41.dist-info/licenses/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
37
37
  mGST/LICENSE,sha256=TtHNq55cUcbglb7uhVudeBLUh_qPdUoAEvU0BBwFz-k,1098
38
38
  mGST/README.md,sha256=v_5kw253csHF4-RfE-44KqFmBXIsSMRmOtN0AUPrRxE,5050
39
39
  mGST/additional_fns.py,sha256=_SEJ10FRNM7_CroysT8hCLZTfpm6ZhEIDCY5zPTnhjo,31390
@@ -44,7 +44,7 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
44
44
  mGST/qiskit_interface.py,sha256=ajx6Zn5FnrX_T7tMP8xnBLyG4c2ddFRm0Fu2_3r1t30,10118
45
45
  mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
46
46
  mGST/reporting/reporting.py,sha256=B8NWfpZrrSmyH7lwZxd0EbZMYLsAGK1YsHRB4D5qXH4,26002
47
- iqm_benchmarks-2.40.dist-info/METADATA,sha256=RyK1gtdTXKzMBsPMIAr9bdl9amIruwFL8FvoWLtLkp0,10872
48
- iqm_benchmarks-2.40.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
49
- iqm_benchmarks-2.40.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
50
- iqm_benchmarks-2.40.dist-info/RECORD,,
47
+ iqm_benchmarks-2.41.dist-info/METADATA,sha256=dhrtXPKZVscHp004aaBgn50XtkkakMKYT2wswyxZYfU,10872
48
+ iqm_benchmarks-2.41.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
49
+ iqm_benchmarks-2.41.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
50
+ iqm_benchmarks-2.41.dist-info/RECORD,,