iqm-benchmarks 2.35__py3-none-any.whl → 2.37__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -601,7 +601,6 @@ class QScoreBenchmark(Benchmark):
601
601
  self.session_timestamp = strftime("%Y%m%d-%H%M%S")
602
602
  self.execution_timestamp = ""
603
603
  self.seed = configuration.seed
604
- self.qpu_topology = configuration.qpu_topology
605
604
 
606
605
  self.graph_physical: Graph
607
606
  self.virtual_nodes: List[Tuple[int, int]]
@@ -747,10 +746,7 @@ class QScoreBenchmark(Benchmark):
747
746
  dataset = xr.Dataset()
748
747
  self.add_all_meta_to_dataset(dataset)
749
748
 
750
- if self.qpu_topology == "star":
751
- nqubits = self.backend.num_qubits - 1 # need to leave out the resonator
752
- else:
753
- nqubits = self.backend.num_qubits
749
+ nqubits = self.backend.num_qubits
754
750
 
755
751
  if self.choose_qubits_routine == "custom":
756
752
  if self.use_virtual_node:
@@ -778,7 +774,7 @@ class QScoreBenchmark(Benchmark):
778
774
  graph_list = []
779
775
  qubit_set_list = []
780
776
  theta_list = []
781
- ## updates the number of qubits to choose for the grpah problem.
777
+ ## updates the number of qubits to choose for the graph problem.
782
778
  if self.use_virtual_node:
783
779
  updated_num_nodes = num_nodes - 1
784
780
  else:
@@ -969,8 +965,6 @@ class QScoreConfiguration(BenchmarkConfigurationBase):
969
965
  * Default is False.
970
966
  mit_shots: (int): Number of shots used in readout error mitigation.
971
967
  * Default is 1000.
972
- qpu_topology: (str): Topology of the QPU, either "crystal" or "star".
973
- * Default is "crystal".
974
968
  """
975
969
 
976
970
  benchmark: Type[Benchmark] = QScoreBenchmark
@@ -988,4 +982,3 @@ class QScoreConfiguration(BenchmarkConfigurationBase):
988
982
  seed: int = 1
989
983
  REM: bool = False
990
984
  mit_shots: int = 1000
991
- qpu_topology: str = "crystal"
@@ -65,7 +65,7 @@ def plot_times(clops_data: xr.Dataset, observations: Dict[int, Dict[str, Dict[st
65
65
  Figure: the figure.
66
66
  """
67
67
  # Define the keys for different categories of times
68
- job_keys = ["submit_total", "compile_total", "execution_total"]
68
+ job_keys = ["compile_total", "execution_total"]
69
69
  total_keys = ["job_total"]
70
70
  user_keys = ["user_retrieve_total", "user_submit_total", "assign_parameters_total", "time_transpile"]
71
71
 
@@ -98,7 +98,7 @@ def plot_times(clops_data: xr.Dataset, observations: Dict[int, Dict[str, Dict[st
98
98
  # Plot user keys
99
99
  for i, (key, cumulative_value) in enumerate(zip(user_keys, np.cumsum([all_data[k] for k in user_keys]))):
100
100
  x = ax1.bar(
101
- 4 * sep,
101
+ 3 * sep,
102
102
  cumulative_value,
103
103
  barsize,
104
104
  zorder=1 - i / 10,
@@ -109,22 +109,9 @@ def plot_times(clops_data: xr.Dataset, observations: Dict[int, Dict[str, Dict[st
109
109
  ax1.bar_label(x, fmt=f"{key.replace('_total', ' ').replace('_', ' ')}: {all_data[key]:.2f}", fontsize=fontsize)
110
110
 
111
111
  # Plot total CLOPS time
112
- x_t = ax1.bar(3 * sep, clops_time, barsize, zorder=0, color=(colors[-1], alpha), edgecolor="k")
112
+ x_t = ax1.bar(2 * sep, clops_time, barsize, zorder=0, color=(colors[-1], alpha), edgecolor="k")
113
113
  ax1.bar_label(x_t, fmt=f"CLOPS time: {clops_time:.2f}", fontsize=fontsize)
114
114
 
115
- # Plot total keys
116
- for i, (key, cumulative_value) in enumerate(zip(total_keys, np.cumsum([all_data[k] for k in total_keys]))):
117
- x = ax1.bar(
118
- 2 * sep,
119
- cumulative_value,
120
- barsize,
121
- zorder=1 - i / 10,
122
- label=key,
123
- color=(colors[len(job_keys) + i], alpha),
124
- edgecolor="k",
125
- )
126
- ax1.bar_label(x, fmt=f"{key.replace('_total', ' ')}: {all_data[key]:.2f}", fontsize=fontsize)
127
-
128
115
  # Plot job keys
129
116
  for i, (key, cumulative_value) in enumerate(zip(job_keys, np.cumsum([all_data[k] for k in job_keys]))):
130
117
  x = ax1.bar(
@@ -145,8 +132,8 @@ def plot_times(clops_data: xr.Dataset, observations: Dict[int, Dict[str, Dict[st
145
132
  ax2.set_ylim(-0.2, 100)
146
133
 
147
134
  # Set x-ticks and labels
148
- time_types = ["Remote (components)", "Remote (total)", "Wall-time (CLOPS)", "Wall-time (all components)"]
149
- ax1.set_xticks([i * sep + 1 for i in range(4)], time_types, fontsize=fontsize)
135
+ time_types = ["Remote (components)", "Wall-time (CLOPS)", "Wall-time (all components)"]
136
+ ax1.set_xticks([i * sep + 1 for i in range(3)], time_types, fontsize=fontsize)
150
137
 
151
138
  # Set plot title
152
139
  if all_data["clops_h"]["value"] == 0:
@@ -187,8 +174,8 @@ def retrieve_clops_elapsed_times(job_meta: Dict[str, Dict[str, Any]]) -> Dict[st
187
174
  job_time_format = "%Y-%m-%dT%H:%M:%S.%f%z" # Is it possible to extract this automatically?
188
175
  compile_f = datetime.strptime(x["compile_end"], job_time_format)
189
176
  compile_i = datetime.strptime(x["compile_start"], job_time_format)
190
- submit_f = datetime.strptime(x["submit_end"], job_time_format)
191
- submit_i = datetime.strptime(x["submit_start"], job_time_format)
177
+ # submit_f = datetime.strptime(x["submit_end"], job_time_format)
178
+ # submit_i = datetime.strptime(x["submit_start"], job_time_format)
192
179
  execution_f = datetime.strptime(x["execution_end"], job_time_format)
193
180
  execution_i = datetime.strptime(x["execution_start"], job_time_format)
194
181
  job_f = datetime.strptime(x["job_end"], job_time_format)
@@ -197,7 +184,7 @@ def retrieve_clops_elapsed_times(job_meta: Dict[str, Dict[str, Any]]) -> Dict[st
197
184
  all_job_elapsed[update][batch] = {
198
185
  "job_total": job_f - job_i,
199
186
  "compile_total": compile_f - compile_i,
200
- "submit_total": submit_f - submit_i,
187
+ # "submit_total": submit_f - submit_i,
201
188
  "execution_total": execution_f - execution_i,
202
189
  }
203
190
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: iqm-benchmarks
3
- Version: 2.35
3
+ Version: 2.37
4
4
  Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
5
5
  Author-email: IQM Finland Oy <developers@meetiqm.com>, Adrian Auer <adrian.auer@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Alessio Calzona <alessio.calzona@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Amin Hosseinkhani <amin.hosseinkhani@meetiqm.com>, Miikka Koistinen <miikka@meetiqm.com>, Nadia Milazzo <nadia.milazzo@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
6
6
  Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
@@ -19,7 +19,7 @@ Requires-Dist: networkx<4.0,>=3.3
19
19
  Requires-Dist: rustworkx>=0.16.0
20
20
  Requires-Dist: numpy<2.0,>=1.25.2
21
21
  Requires-Dist: qiskit<1.3,>=1.2.4
22
- Requires-Dist: iqm-client[qiskit]<24.0,>=23.8
22
+ Requires-Dist: iqm-client[qiskit]<28.0,>=27.0
23
23
  Requires-Dist: requests<3.0,>=2.32.3
24
24
  Requires-Dist: scikit-optimize<0.11.0,>=0.10.2
25
25
  Requires-Dist: tabulate<1.0.0,>=0.9.0
@@ -14,9 +14,9 @@ iqm/benchmarks/entanglement/__init__.py,sha256=sHVVToRWRCz0LSntk1rQaoSNNeyZLPoiT
14
14
  iqm/benchmarks/entanglement/ghz.py,sha256=RGA6ynJFsfaCJv0nKccsiIzPk2G-iHHvIeW8LVu30HY,41249
15
15
  iqm/benchmarks/entanglement/graph_states.py,sha256=qv6nAgbvm1toSgNGLjBA8DpF9fN7UUlMpPeR_gixMcI,62561
16
16
  iqm/benchmarks/optimization/__init__.py,sha256=_ajW_OibYLCtzU5AUv5c2zuuVYn8ZNeZUcUUSIGt51M,747
17
- iqm/benchmarks/optimization/qscore.py,sha256=L83BXVbAm16Cml9ePlJ5vbntKK7JXe-qaaFoIBtN_s4,38430
17
+ iqm/benchmarks/optimization/qscore.py,sha256=C7_Vaj_JnjipBJacaa-rhH70Wgct3y1uzPMurZ4wPco,38068
18
18
  iqm/benchmarks/quantum_volume/__init__.py,sha256=i-Q4SpDWELBw7frXnxm1j4wJRcxbIyrS5uEK_v06YHo,951
19
- iqm/benchmarks/quantum_volume/clops.py,sha256=9_4xljndh4iUcyPRPvYaslpeye1XPH2u5O1FMfhr9Mk,31608
19
+ iqm/benchmarks/quantum_volume/clops.py,sha256=tmExq6kCaltL8VQsicB_uQ56FoCA8y-rmu1ir4gu5og,31105
20
20
  iqm/benchmarks/quantum_volume/quantum_volume.py,sha256=pro7Lz-A5pPpT9UZ8wtXKTyhdWmTjQjRHt4BylDR-3U,36553
21
21
  iqm/benchmarks/randomized_benchmarking/__init__.py,sha256=IkKo-7zUChxZZd3my_csQCJfJfZNsV3-JTvdG8uqys4,734
22
22
  iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=yrmSJqhv7Lb1yqiqU9-2baqTljJPNmTUPQR-AH6GGfc,7800
@@ -33,7 +33,7 @@ iqm/benchmarks/randomized_benchmarking/interleaved_rb/__init__.py,sha256=sq6MgN_
33
33
  iqm/benchmarks/randomized_benchmarking/interleaved_rb/interleaved_rb.py,sha256=TaR1YFWBhOgm1hmEQzuwLYpp0yl0Xpuo3jAT6YhiXpc,28471
34
34
  iqm/benchmarks/randomized_benchmarking/mirror_rb/__init__.py,sha256=jRKbivWCZ3xdO1k0sx-ygC3s5DUkGSModd975PoAtcg,692
35
35
  iqm/benchmarks/randomized_benchmarking/mirror_rb/mirror_rb.py,sha256=n_5gt9636ZDMsM9hC3Zm5qP2bQr2sy41zxGhOh0XMjI,32932
36
- iqm_benchmarks-2.35.dist-info/licenses/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
36
+ iqm_benchmarks-2.37.dist-info/licenses/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
37
37
  mGST/LICENSE,sha256=TtHNq55cUcbglb7uhVudeBLUh_qPdUoAEvU0BBwFz-k,1098
38
38
  mGST/README.md,sha256=v_5kw253csHF4-RfE-44KqFmBXIsSMRmOtN0AUPrRxE,5050
39
39
  mGST/additional_fns.py,sha256=_SEJ10FRNM7_CroysT8hCLZTfpm6ZhEIDCY5zPTnhjo,31390
@@ -44,7 +44,7 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
44
44
  mGST/qiskit_interface.py,sha256=ajx6Zn5FnrX_T7tMP8xnBLyG4c2ddFRm0Fu2_3r1t30,10118
45
45
  mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
46
46
  mGST/reporting/reporting.py,sha256=B8NWfpZrrSmyH7lwZxd0EbZMYLsAGK1YsHRB4D5qXH4,26002
47
- iqm_benchmarks-2.35.dist-info/METADATA,sha256=jjcZ8ule8iMp6gXuOUpYvchlPYGGQkFFSZRxqpRAv3A,10823
48
- iqm_benchmarks-2.35.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
49
- iqm_benchmarks-2.35.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
50
- iqm_benchmarks-2.35.dist-info/RECORD,,
47
+ iqm_benchmarks-2.37.dist-info/METADATA,sha256=vBqATxYBHaK7ljlugmz8Wuj4SsegPAfzsFcw2lwEgAM,10823
48
+ iqm_benchmarks-2.37.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
49
+ iqm_benchmarks-2.37.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
50
+ iqm_benchmarks-2.37.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (79.0.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5