iqm-benchmarks 1.9__py3-none-any.whl → 1.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of iqm-benchmarks might be problematic. Click here for more details.

@@ -135,6 +135,7 @@ def default_analysis_function(result: BenchmarkAnalysisResult) -> BenchmarkAnaly
135
135
  def merge_datasets_dac(datasets: List[xr.Dataset]) -> xr.Dataset:
136
136
  """
137
137
  Merges a list of datasets recursively to minimize dataset sizes during merge
138
+
138
139
  Args:
139
140
  datasets: List[xr.Dateset]
140
141
  A list of xarray datasets
@@ -369,6 +369,7 @@ def create_predefined_gate_set(gate_set, num_qubits) -> Tuple[List[QuantumCircui
369
369
 
370
370
  The circuits are assigned to the specified qubit_layouts on the backend only during transipilation, so the qubit labels
371
371
  at this stage may not represent the actual qubit labels on the backend.
372
+
372
373
  Args:
373
374
  gate_set: str
374
375
  The name of the gate set
@@ -365,7 +365,8 @@ def generate_ghz_spanning_tree(
365
365
  n_state: int | None = None,
366
366
  ) -> Tuple[QuantumCircuit, List[int]]:
367
367
  """
368
- Generates a GHZ state in log-depth by computing a minimal spanning tree for a given coupling map
368
+ Generates a GHZ state in log-depth by computing a minimal spanning tree for a given coupling map.
369
+
369
370
  Args:
370
371
  graph: networkx.Graph
371
372
  A graph of the backend coupling map
@@ -622,8 +623,9 @@ class GHZBenchmark(Benchmark):
622
623
 
623
624
  def generate_native_ghz(self, qubit_layout: List[int], qubit_count: int, routine: str) -> QuantumCircuit:
624
625
  """
625
- Generate a circuit preparing a GHZ state,
626
- according to a given routine and transpiled to the native gate set and topology
626
+ Generate a circuit preparing a GHZ state,
627
+ according to a given routine and transpiled to the native gate set and topology.
628
+
627
629
  Args:
628
630
  qubit_layout: List[int]
629
631
  The subset of system-qubits used in the protocol, indexed from 0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: iqm-benchmarks
3
- Version: 1.9
3
+ Version: 1.11
4
4
  Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
5
5
  Author-email: IQM Finland Oy <developers@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
6
6
  Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
@@ -13,17 +13,17 @@ Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  Requires-Dist: lmfit>=1.2
15
15
  Requires-Dist: matplotlib<4,>=3.6.3
16
- Requires-Dist: more-itertools==10.1.0
16
+ Requires-Dist: more-itertools<11.0.0,>=10.1.0
17
17
  Requires-Dist: mthree<2.7,>=2.6
18
- Requires-Dist: networkx==3.3
18
+ Requires-Dist: networkx<4.0,>=3.3
19
19
  Requires-Dist: numpy<2.0,>=1.25.2
20
- Requires-Dist: qiskit>=1.0
21
- Requires-Dist: qiskit-iqm>=15.1
22
- Requires-Dist: scikit-optimize==0.10.2
23
- Requires-Dist: tabulate==0.9.0
24
- Requires-Dist: uncertainties==3.2.2
25
- Requires-Dist: pycurl==7.45.3
26
- Requires-Dist: xarray==2024.6.0
20
+ Requires-Dist: qiskit<2.0,>=1.0
21
+ Requires-Dist: qiskit-iqm<16.0,>=15.1
22
+ Requires-Dist: scikit-optimize<0.11.0,>=0.10.2
23
+ Requires-Dist: tabulate<1.0.0,>=0.9.0
24
+ Requires-Dist: uncertainties<3.3.0,>=3.2.2
25
+ Requires-Dist: pycurl<8.0,>=7.45.3
26
+ Requires-Dist: xarray<2025.0.0,>=2024.6.0
27
27
  Requires-Dist: types-pycurl
28
28
  Provides-Extra: develop
29
29
  Requires-Dist: tox==4.16.0; extra == "develop"
@@ -45,6 +45,10 @@ Requires-Dist: pytest-cov==4.1.0; extra == "test"
45
45
  Requires-Dist: pytest-isort==3.1.0; extra == "test"
46
46
  Requires-Dist: pytest-mypy==0.10.3; extra == "test"
47
47
  Requires-Dist: pytest-pylint==0.21.0; extra == "test"
48
+ Provides-Extra: docs
49
+ Requires-Dist: sphinx==7.2.6; extra == "docs"
50
+ Requires-Dist: sphinx-book-theme==1.1.2; extra == "docs"
51
+ Requires-Dist: myst-parser<5,>=4.0.0; extra == "docs"
48
52
 
49
53
  # IQM Benchmarks
50
54
 
@@ -52,7 +56,7 @@ IQM Benchmarks is a suite of Quantum Characterization, Verification, and Validat
52
56
 
53
57
 
54
58
  Below is a list of the benchmarks currently available in the suite:
55
- * Gates / Layers:
59
+ * Gates / Layers:
56
60
  - Standard Clifford Randomized Benchmarking [[Phys. Rev. A 85, 042311](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.042311) (2012)]
57
61
  - Interleaved Randomized Benchmarking [[Phys. Rev. Lett. 109, 080505](https://doi.org/10.1103/PhysRevLett.109.080505) (2012)]
58
62
  - Compressive Gate Set Tomography [[PRX Quantum 4, 010325](https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010325) (2023)]
@@ -60,9 +64,9 @@ Below is a list of the benchmarks currently available in the suite:
60
64
  * Holistic:
61
65
  - Quantum Volume [[Phys. Rev. A 100, 032328](https://doi.org/10.1103/PhysRevA.100.032328) (2019)]
62
66
  - CLOPS [[arXiv:2110.14108 [quant-ph]](https://arxiv.org/abs/2110.14108) (2021)]
63
- * Entanglement:
67
+ * Entanglement:
64
68
  - GHZ State Fidelity [[arXiv:0712.0921 [quant-ph]](https://arxiv.org/abs/0712.0921) (2007)]
65
- * Optimization:
69
+ * Optimization:
66
70
  - Q-Score [[IEEE Trans. Quantum Eng., 2](https://doi.org/10.1109/TQE.2021.3090207) (2021)]
67
71
 
68
72
  The project is split into different benchmarks, all sharing the `Benchmark` class or the legacy `BenchmarkBase` class. Each individual benchmark takes as an argument their own `BenchmarkConfigurationBase` class. All the (legacy) benchmarks executed at once are wrapped by the `BenchmarkExperiment` class, which handles dependencies among the benchmarks, storing the results, producing the plots...
@@ -104,6 +108,12 @@ To run the tests, you can use the following command:
104
108
  tox -e test
105
109
  ```
106
110
 
111
+ To build the API documentation as HTML:
112
+
113
+ ```bash
114
+ tox -e docs
115
+ ```
116
+
107
117
  ## Characterize Physical Hardware
108
118
 
109
119
  The IQM Benchmarks suite is designed to be used with real quantum hardware. To use the suite, you will need to have access to a quantum computer. The suite is designed to work with both IQM Resonance (IQM's quantum cloud service) and on-prem devices, but can be easily adapted to work with other quantum computing platforms.
@@ -1,15 +1,15 @@
1
1
  iqm/benchmarks/__init__.py,sha256=7EOYlsJriQHKAlb3tHpPY4bh4wLbsssZg4NV0XW0WBU,2128
2
2
  iqm/benchmarks/benchmark.py,sha256=SGhBcSxLPUu-cVXAjG4Db2TRobFCRBYoE1NtTDK1lJg,4432
3
- iqm/benchmarks/benchmark_definition.py,sha256=zdsZcZm8U_C9PVhgktKPF0AX8neu-6VdWjtcCua2XEs,10310
3
+ iqm/benchmarks/benchmark_definition.py,sha256=aRpOmeR5LOg64K6konSmko87UZ7r3uN98nkiCIOz1EU,10311
4
4
  iqm/benchmarks/benchmark_experiment.py,sha256=0BFNn04jyD1Yj-pIKnuZjCD00v3pU5EnwkRzJUBc0n4,6540
5
5
  iqm/benchmarks/logging_config.py,sha256=U7olP5Kr75AcLJqNODf9VBhJLVqIvA4AYR6J39D5rww,1052
6
6
  iqm/benchmarks/readout_mitigation.py,sha256=ugdWwdSpNoCNoqQTRBdSjzMsb9WxFQzKgGFpJmUHChE,12287
7
7
  iqm/benchmarks/utils.py,sha256=OoHDBwlr_O9PK90vwidBEFtxJa5CrOSc2suYEPpXLKE,20238
8
8
  iqm/benchmarks/compressive_gst/__init__.py,sha256=4F_5YxExn4ysGQaEs-WNfm0yiFBxkKtGAYBZFWnRsSk,915
9
- iqm/benchmarks/compressive_gst/compressive_gst.py,sha256=GcI9jznZFc7JIrlkVTtMgYabpTeQb_BPJ6MZlLADk-M,20678
9
+ iqm/benchmarks/compressive_gst/compressive_gst.py,sha256=qAbAix1PhDwiPPZ82kAHIR6JN-S1oWFdwf6hxVL9ZZk,20679
10
10
  iqm/benchmarks/compressive_gst/gst_analysis.py,sha256=qaF9zDIadPGe9I0l_SC3EfnODZiykzVRxdl4Pu9zZAY,34813
11
11
  iqm/benchmarks/entanglement/__init__.py,sha256=9T7prOwqMmFWdb4t6ETAHZXKK5o6FvU2DvVb6WhNi-U,682
12
- iqm/benchmarks/entanglement/ghz.py,sha256=_CYVWVyFMSFsHPOFlhENXEtpezvvuKthrq7AaUTyjf4,38474
12
+ iqm/benchmarks/entanglement/ghz.py,sha256=7Vz15n5D_qEfFaRPkSbEgAbM8aQXBMT0dkRVMIPg7jA,38470
13
13
  iqm/benchmarks/optimization/__init__.py,sha256=_ajW_OibYLCtzU5AUv5c2zuuVYn8ZNeZUcUUSIGt51M,747
14
14
  iqm/benchmarks/optimization/qscore.py,sha256=_s5_w5QTlaeDcHX1BmAevVctHOTVobee1eGkFx7DTEs,27942
15
15
  iqm/benchmarks/quantum_volume/__init__.py,sha256=i-Q4SpDWELBw7frXnxm1j4wJRcxbIyrS5uEK_v06YHo,951
@@ -36,8 +36,8 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
36
36
  mGST/qiskit_interface.py,sha256=2XuJ4WFViLsHCTpEZncwsLbRr-cELEYhegTpRPzCcuI,10080
37
37
  mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
38
38
  mGST/reporting/reporting.py,sha256=-XBy3OCJIMOsA8cApwKjhVKBwnjSAoxm-voHNbRWytM,25803
39
- iqm_benchmarks-1.9.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
40
- iqm_benchmarks-1.9.dist-info/METADATA,sha256=fSZa5u9cJ5NPakoKA-yBiMR6cOaC9997jAyjmIrQfZs,8771
41
- iqm_benchmarks-1.9.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
42
- iqm_benchmarks-1.9.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
43
- iqm_benchmarks-1.9.dist-info/RECORD,,
39
+ iqm_benchmarks-1.11.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
40
+ iqm_benchmarks-1.11.dist-info/METADATA,sha256=dDdF6Dk_RVT-lzXzdWorltqvIezLl_OJCLrNSTfDstU,9074
41
+ iqm_benchmarks-1.11.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
42
+ iqm_benchmarks-1.11.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
43
+ iqm_benchmarks-1.11.dist-info/RECORD,,