iqm-benchmarks 1.8__py3-none-any.whl → 1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of iqm-benchmarks might be problematic. Click here for more details.

@@ -306,7 +306,7 @@ def clops_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
306
306
  fig_name, fig = plot_times(dataset, observations)
307
307
  plots[fig_name] = fig
308
308
  else:
309
- plots["no_backend_elapsed"] = "There is no elapsed-time data associated to jobs (e.g., execution on simulator)"
309
+ qcvv_logger.info("There is no elapsed-time data associated to jobs (e.g., execution on simulator)")
310
310
 
311
311
  # Sort the final dataset
312
312
  dataset.attrs = dict(sorted(dataset.attrs.items()))
@@ -339,24 +339,26 @@ def qv_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
339
339
  # Compute the HO probabilities
340
340
  qv_result = compute_heavy_output_probabilities(execution_results[str(qubits)], ideal_heavy_outputs[str(qubits)])
341
341
 
342
- observations = [
343
- BenchmarkObservation(
344
- name="average_heavy_output_probability",
345
- value=cumulative_hop(qv_result)[-1],
346
- uncertainty=cumulative_std(qv_result)[-1],
347
- identifier=BenchmarkObservationIdentifier(qubits),
348
- ),
349
- BenchmarkObservation(
350
- name="is_succesful",
351
- value=is_successful(qv_result, num_sigmas),
352
- identifier=BenchmarkObservationIdentifier(qubits),
353
- ),
354
- BenchmarkObservation(
355
- name="QV_result",
356
- value=2 ** len(qubits) if is_successful(qv_result) else 1,
357
- identifier=BenchmarkObservationIdentifier(qubits),
358
- ),
359
- ]
342
+ observations.extend(
343
+ [
344
+ BenchmarkObservation(
345
+ name="average_heavy_output_probability",
346
+ value=cumulative_hop(qv_result)[-1],
347
+ uncertainty=cumulative_std(qv_result)[-1],
348
+ identifier=BenchmarkObservationIdentifier(qubits),
349
+ ),
350
+ BenchmarkObservation(
351
+ name="is_succesful",
352
+ value=is_successful(qv_result, num_sigmas),
353
+ identifier=BenchmarkObservationIdentifier(qubits),
354
+ ),
355
+ BenchmarkObservation(
356
+ name="QV_result",
357
+ value=2 ** len(qubits) if is_successful(qv_result) else 1,
358
+ identifier=BenchmarkObservationIdentifier(qubits),
359
+ ),
360
+ ]
361
+ )
360
362
 
361
363
  dataset.attrs[qubits_idx].update(
362
364
  {
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: iqm-benchmarks
3
- Version: 1.8
3
+ Version: 1.9
4
4
  Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
5
5
  Author-email: IQM Finland Oy <developers@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
6
6
  Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
@@ -13,8 +13,8 @@ iqm/benchmarks/entanglement/ghz.py,sha256=_CYVWVyFMSFsHPOFlhENXEtpezvvuKthrq7AaU
13
13
  iqm/benchmarks/optimization/__init__.py,sha256=_ajW_OibYLCtzU5AUv5c2zuuVYn8ZNeZUcUUSIGt51M,747
14
14
  iqm/benchmarks/optimization/qscore.py,sha256=_s5_w5QTlaeDcHX1BmAevVctHOTVobee1eGkFx7DTEs,27942
15
15
  iqm/benchmarks/quantum_volume/__init__.py,sha256=i-Q4SpDWELBw7frXnxm1j4wJRcxbIyrS5uEK_v06YHo,951
16
- iqm/benchmarks/quantum_volume/clops.py,sha256=GSuDnAB-XzFP7DLVsYC9zjvf7NAQqQHIgX0TAxiFvOs,31451
17
- iqm/benchmarks/quantum_volume/quantum_volume.py,sha256=jnVh1A-WC9DjpE8nvVIa87Ov9iihB17NOh8aiwjlu0I,36883
16
+ iqm/benchmarks/quantum_volume/clops.py,sha256=PvxnKYSBwJgLOuDcCKB4H_IBzQiLw4RqXAOzquiEPxU,31439
17
+ iqm/benchmarks/quantum_volume/quantum_volume.py,sha256=sy1MDz4U_6JCwc0W85GjC2VHvxUO4fdvHekd2oV4tww,36979
18
18
  iqm/benchmarks/randomized_benchmarking/__init__.py,sha256=IkKo-7zUChxZZd3my_csQCJfJfZNsV3-JTvdG8uqys4,734
19
19
  iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=vvSd0pRWxtzyirohO9yf_58mjevkc2-pbuWIEb-4gaw,46928
20
20
  iqm/benchmarks/randomized_benchmarking/clifford_2q.pkl,sha256=ZipqU3crPhz2T35qGFgB4GvMyoi_7pnu8NqW5ZP8NXg,90707258
@@ -36,8 +36,8 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
36
36
  mGST/qiskit_interface.py,sha256=2XuJ4WFViLsHCTpEZncwsLbRr-cELEYhegTpRPzCcuI,10080
37
37
  mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
38
38
  mGST/reporting/reporting.py,sha256=-XBy3OCJIMOsA8cApwKjhVKBwnjSAoxm-voHNbRWytM,25803
39
- iqm_benchmarks-1.8.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
40
- iqm_benchmarks-1.8.dist-info/METADATA,sha256=_7XsVSrsoIIO75e04So0rDtAraUG9NYyE5oeXAgmsLo,8771
41
- iqm_benchmarks-1.8.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
42
- iqm_benchmarks-1.8.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
43
- iqm_benchmarks-1.8.dist-info/RECORD,,
39
+ iqm_benchmarks-1.9.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
40
+ iqm_benchmarks-1.9.dist-info/METADATA,sha256=fSZa5u9cJ5NPakoKA-yBiMR6cOaC9997jAyjmIrQfZs,8771
41
+ iqm_benchmarks-1.9.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
42
+ iqm_benchmarks-1.9.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
43
+ iqm_benchmarks-1.9.dist-info/RECORD,,