iqm-benchmarks 1.6__py3-none-any.whl → 1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of iqm-benchmarks might be problematic. Click here for more details.

iqm/benchmarks/utils.py CHANGED
@@ -138,37 +138,6 @@ def count_native_gates(
138
138
  return avg_native_operations
139
139
 
140
140
 
141
- # DD code to be adapted to Pulla version once released
142
- # @timeit
143
- # def execute_with_dd(
144
- # backend: IQMBackendBase, transpiled_circuits: List[QuantumCircuit], shots: int, dd_strategy: DDStrategy
145
- # ) -> List[Dict[str, int]]:
146
- # """Executes a list of transpiled quantum circuits with dynamical decoupling according to a specified strategy
147
- # Args:
148
- # backend (IQMBackendBase):
149
- # transpiled_circuits (List[QuantumCircuit]):
150
- # shots (int):
151
- # dd_strategy (DDStrategy):
152
- #
153
- # Returns:
154
- # List[Dict[str, int]]: The counts of the execution with dynamical decoupling
155
- # """
156
- # warnings.warn("Suppressing INFO messages from Pulla with logging.disable(sys.maxsize) - update if problematic!")
157
- # logging.disable(sys.maxsize)
158
- #
159
- # pulla_obj = Pulla(cocos_url=iqm_url)
160
- #
161
- # execution_results = dd.execute_with_dd(
162
- # pulla_obj,
163
- # backend=backend,
164
- # circuits=transpiled_circuits,
165
- # shots=shots,
166
- # dd_strategy=dd_strategy,
167
- # )
168
- #
169
- # return execution_results
170
-
171
-
172
141
  # pylint: disable=too-many-branches
173
142
  def get_iqm_backend(backend_label: str) -> IQMBackendBase:
174
143
  """Get the IQM backend object from a backend name (str).
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: iqm-benchmarks
3
- Version: 1.6
3
+ Version: 1.8
4
4
  Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
5
5
  Author-email: IQM Finland Oy <developers@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
6
6
  Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
@@ -12,14 +12,13 @@ Requires-Python: >=3.11
12
12
  Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  Requires-Dist: lmfit>=1.2
15
- Requires-Dist: matplotlib==3.9.0
15
+ Requires-Dist: matplotlib<4,>=3.6.3
16
16
  Requires-Dist: more-itertools==10.1.0
17
- Requires-Dist: mthree==2.6.3
17
+ Requires-Dist: mthree<2.7,>=2.6
18
18
  Requires-Dist: networkx==3.3
19
- Requires-Dist: numpy>=1.25.2
20
- Requires-Dist: qiskit==0.45.3
21
- Requires-Dist: qiskit-aer==0.13.3
22
- Requires-Dist: qiskit-iqm==15.1
19
+ Requires-Dist: numpy<2.0,>=1.25.2
20
+ Requires-Dist: qiskit>=1.0
21
+ Requires-Dist: qiskit-iqm>=15.1
23
22
  Requires-Dist: scikit-optimize==0.10.2
24
23
  Requires-Dist: tabulate==0.9.0
25
24
  Requires-Dist: uncertainties==3.2.2
@@ -49,15 +48,22 @@ Requires-Dist: pytest-pylint==0.21.0; extra == "test"
49
48
 
50
49
  # IQM Benchmarks
51
50
 
52
- The IQM Benchmarks is a suite of quantum characterization, verification, and validation (QCVV) tools for quantum computing. It is designed to be a comprehensive tool for benchmarking quantum hardware. The suite is designed to be modular, allowing users to easily add new benchmarks and customize existing ones. The suite is designed to be easy to use, with a simple API that allows users to run benchmarks with a single command.
51
+ IQM Benchmarks is a suite of Quantum Characterization, Verification, and Validation (QCVV) tools for quantum computing. It is designed to be a comprehensive tool for benchmarking quantum hardware. The suite is designed to be modular, allowing users to easily add new benchmarks and customize existing ones. The suite is designed to be easy to use, with a simple API that allows users to run benchmarks with a single command.
53
52
 
54
53
 
55
54
  Below is a list of the benchmarks currently available in the suite:
56
- * Randomized Benchmarking: A suite of randomized benchmarking protocols for characterizing the performance of quantum gates (Clifford Randomized Benchmarking, Mirror Randomized Benchmarking, Interleaved Randomized Benchmarking).
57
- * Quantum Volume: A benchmark for characterizing the performance of quantum computers.
58
- * Q-Score: A benchmark that estimates the size of combinatorial optimization problems a given number of qubits can execute with meaningful results.
59
- * GHZ State Benchmarking: A benchmark for characterizing the performance of multi-qubit entangled states.
60
-
55
+ * Gates / Layers:
56
+ - Standard Clifford Randomized Benchmarking [[Phys. Rev. A 85, 042311](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.042311) (2012)]
57
+ - Interleaved Randomized Benchmarking [[Phys. Rev. Lett. 109, 080505](https://doi.org/10.1103/PhysRevLett.109.080505) (2012)]
58
+ - Compressive Gate Set Tomography [[PRX Quantum 4, 010325](https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010325) (2023)]
59
+ - Mirror Randomized Benchmarking [[Phys. Rev. Lett. 129, 150502](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.150502) (2022)]
60
+ * Holistic:
61
+ - Quantum Volume [[Phys. Rev. A 100, 032328](https://doi.org/10.1103/PhysRevA.100.032328) (2019)]
62
+ - CLOPS [[arXiv:2110.14108 [quant-ph]](https://arxiv.org/abs/2110.14108) (2021)]
63
+ * Entanglement:
64
+ - GHZ State Fidelity [[arXiv:0712.0921 [quant-ph]](https://arxiv.org/abs/0712.0921) (2007)]
65
+ * Optimization:
66
+ - Q-Score [[IEEE Trans. Quantum Eng., 2](https://doi.org/10.1109/TQE.2021.3090207) (2021)]
61
67
 
62
68
  The project is split into different benchmarks, all sharing the `Benchmark` class or the legacy `BenchmarkBase` class. Each individual benchmark takes as an argument their own `BenchmarkConfigurationBase` class. All the (legacy) benchmarks executed at once are wrapped by the `BenchmarkExperiment` class, which handles dependencies among the benchmarks, storing the results, producing the plots...
63
69
 
@@ -3,22 +3,23 @@ iqm/benchmarks/benchmark.py,sha256=SGhBcSxLPUu-cVXAjG4Db2TRobFCRBYoE1NtTDK1lJg,4
3
3
  iqm/benchmarks/benchmark_definition.py,sha256=zdsZcZm8U_C9PVhgktKPF0AX8neu-6VdWjtcCua2XEs,10310
4
4
  iqm/benchmarks/benchmark_experiment.py,sha256=0BFNn04jyD1Yj-pIKnuZjCD00v3pU5EnwkRzJUBc0n4,6540
5
5
  iqm/benchmarks/logging_config.py,sha256=U7olP5Kr75AcLJqNODf9VBhJLVqIvA4AYR6J39D5rww,1052
6
- iqm/benchmarks/readout_mitigation.py,sha256=cx8K2EAjhYfVKGSRlpoh9xBFQZZhyL63wPMtzNL3hAg,12329
7
- iqm/benchmarks/utils.py,sha256=fNuGkN_GI73nZD6xDN_r97Pr6I8uIDhPXZqdQkQvDpM,21291
6
+ iqm/benchmarks/readout_mitigation.py,sha256=ugdWwdSpNoCNoqQTRBdSjzMsb9WxFQzKgGFpJmUHChE,12287
7
+ iqm/benchmarks/utils.py,sha256=OoHDBwlr_O9PK90vwidBEFtxJa5CrOSc2suYEPpXLKE,20238
8
8
  iqm/benchmarks/compressive_gst/__init__.py,sha256=4F_5YxExn4ysGQaEs-WNfm0yiFBxkKtGAYBZFWnRsSk,915
9
- iqm/benchmarks/compressive_gst/compressive_gst.py,sha256=iLBG6HBPfW3y4EYs6DItuBjqBbMQIoCFsJlUSgH_w8w,46288
9
+ iqm/benchmarks/compressive_gst/compressive_gst.py,sha256=GcI9jznZFc7JIrlkVTtMgYabpTeQb_BPJ6MZlLADk-M,20678
10
+ iqm/benchmarks/compressive_gst/gst_analysis.py,sha256=qaF9zDIadPGe9I0l_SC3EfnODZiykzVRxdl4Pu9zZAY,34813
10
11
  iqm/benchmarks/entanglement/__init__.py,sha256=9T7prOwqMmFWdb4t6ETAHZXKK5o6FvU2DvVb6WhNi-U,682
11
- iqm/benchmarks/entanglement/ghz.py,sha256=BFadLxux6vGWz1IlKOJkQA_qKAOa6HR63vhwrREZelI,36058
12
+ iqm/benchmarks/entanglement/ghz.py,sha256=_CYVWVyFMSFsHPOFlhENXEtpezvvuKthrq7AaUTyjf4,38474
12
13
  iqm/benchmarks/optimization/__init__.py,sha256=_ajW_OibYLCtzU5AUv5c2zuuVYn8ZNeZUcUUSIGt51M,747
13
14
  iqm/benchmarks/optimization/qscore.py,sha256=_s5_w5QTlaeDcHX1BmAevVctHOTVobee1eGkFx7DTEs,27942
14
15
  iqm/benchmarks/quantum_volume/__init__.py,sha256=i-Q4SpDWELBw7frXnxm1j4wJRcxbIyrS5uEK_v06YHo,951
15
16
  iqm/benchmarks/quantum_volume/clops.py,sha256=GSuDnAB-XzFP7DLVsYC9zjvf7NAQqQHIgX0TAxiFvOs,31451
16
17
  iqm/benchmarks/quantum_volume/quantum_volume.py,sha256=jnVh1A-WC9DjpE8nvVIa87Ov9iihB17NOh8aiwjlu0I,36883
17
18
  iqm/benchmarks/randomized_benchmarking/__init__.py,sha256=IkKo-7zUChxZZd3my_csQCJfJfZNsV3-JTvdG8uqys4,734
18
- iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=SVcye1bsjxf1hvC1ku2vHOIZQRG5hy1loAOugpVhUE8,42517
19
- iqm/benchmarks/randomized_benchmarking/clifford_2q.pkl,sha256=BLDpXdyDGkFUxCMHyUMDBnNclCQTsty-kIXwiuY31eA,82994083
19
+ iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=vvSd0pRWxtzyirohO9yf_58mjevkc2-pbuWIEb-4gaw,46928
20
+ iqm/benchmarks/randomized_benchmarking/clifford_2q.pkl,sha256=ZipqU3crPhz2T35qGFgB4GvMyoi_7pnu8NqW5ZP8NXg,90707258
20
21
  iqm/benchmarks/randomized_benchmarking/multi_lmfit.py,sha256=Se1ygR4mXn_2_P82Ch31KBnCmY-g_A9NKzE9Ir8nEvw,3247
21
- iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=hKe3qz2dQtcGEOODhcEP1OBH3e68ryDYFiYJ0PDGEJs,37863
22
+ iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=62T01SYfyIwArLhVmmgQllk78RKH3jhdWKOX2gnLMzU,37892
22
23
  iqm/benchmarks/randomized_benchmarking/clifford_rb/__init__.py,sha256=bTDA156LAl7OLGcMec--1nzDrV1XpPRVq3CquTmucgE,677
23
24
  iqm/benchmarks/randomized_benchmarking/clifford_rb/clifford_rb.py,sha256=uo6cPhoQQ9qAGeZFZG23jxaR88_qKdiqtlBrG_mAGWg,17470
24
25
  iqm/benchmarks/randomized_benchmarking/interleaved_rb/__init__.py,sha256=sq6MgN_hwlpkOj10vyCU4e6eKSX-oLcF2L9na6W2Gt4,681
@@ -35,8 +36,8 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
35
36
  mGST/qiskit_interface.py,sha256=2XuJ4WFViLsHCTpEZncwsLbRr-cELEYhegTpRPzCcuI,10080
36
37
  mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
37
38
  mGST/reporting/reporting.py,sha256=-XBy3OCJIMOsA8cApwKjhVKBwnjSAoxm-voHNbRWytM,25803
38
- iqm_benchmarks-1.6.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
39
- iqm_benchmarks-1.6.dist-info/METADATA,sha256=OX09p3ToNx4S2wsndIBj0w5RzyaB9Sh5EAq2hBtvKds,8374
40
- iqm_benchmarks-1.6.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
41
- iqm_benchmarks-1.6.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
42
- iqm_benchmarks-1.6.dist-info/RECORD,,
39
+ iqm_benchmarks-1.8.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
40
+ iqm_benchmarks-1.8.dist-info/METADATA,sha256=_7XsVSrsoIIO75e04So0rDtAraUG9NYyE5oeXAgmsLo,8771
41
+ iqm_benchmarks-1.8.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
42
+ iqm_benchmarks-1.8.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
43
+ iqm_benchmarks-1.8.dist-info/RECORD,,