iqm-benchmarks 1.4__py3-none-any.whl → 1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of iqm-benchmarks might be problematic. Click here for more details.

@@ -125,13 +125,13 @@ def clifford_rb_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
125
125
 
126
126
  processed_results = {
127
127
  "avg_gate_fidelity": {"value": fidelity.value, "uncertainty": fidelity.stderr},
128
- "decay_rate": {"value": popt["decay_rate"].value, "uncertainty": popt["decay_rate"].stderr},
129
- "fit_amplitude": {"value": popt["amplitude"].value, "uncertainty": popt["amplitude"].stderr},
130
- "fit_offset": {"value": popt["offset"].value, "uncertainty": popt["offset"].stderr},
131
128
  }
132
129
 
133
130
  dataset.attrs[qubits_idx].update(
134
131
  {
132
+ "decay_rate": {"value": popt["decay_rate"].value, "uncertainty": popt["decay_rate"].stderr},
133
+ "fit_amplitude": {"value": popt["amplitude"].value, "uncertainty": popt["amplitude"].stderr},
134
+ "fit_offset": {"value": popt["offset"].value, "uncertainty": popt["offset"].stderr},
135
135
  "fidelities": fidelities[str(qubits)],
136
136
  "avg_fidelities_nominal_values": average_fidelities,
137
137
  "avg_fidelities_stderr": stddevs_from_mean,
@@ -167,9 +167,6 @@ def interleaved_rb_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
167
167
 
168
168
  processed_results[rb_type] = {
169
169
  "avg_gate_fidelity": {"value": fidelity.value, "uncertainty": fidelity.stderr},
170
- "decay_rate": {"value": popt["decay_rate"].value, "uncertainty": popt["decay_rate"].stderr},
171
- "fit_amplitude": {"value": popt["amplitude"].value, "uncertainty": popt["amplitude"].stderr},
172
- "fit_offset": {"value": popt["offset"].value, "uncertainty": popt["offset"].stderr},
173
170
  }
174
171
 
175
172
  observations.extend(
@@ -187,6 +184,9 @@ def interleaved_rb_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
187
184
  dataset.attrs[qubits_idx].update(
188
185
  {
189
186
  rb_type: {
187
+ "decay_rate": {"value": popt["decay_rate"].value, "uncertainty": popt["decay_rate"].stderr},
188
+ "fit_amplitude": {"value": popt["amplitude"].value, "uncertainty": popt["amplitude"].stderr},
189
+ "fit_offset": {"value": popt["offset"].value, "uncertainty": popt["offset"].stderr},
190
190
  "fidelities": fidelities[str(qubits)][rb_type],
191
191
  "avg_fidelities_nominal_values": average_fidelities,
192
192
  "avg_fidelities_stderr": stddevs_from_mean,
@@ -508,13 +508,13 @@ def mrb_analysis(run: BenchmarkRunResult) -> BenchmarkAnalysisResult:
508
508
 
509
509
  processed_results = {
510
510
  "avg_gate_fidelity": {"value": fidelity.value, "uncertainty": fidelity.stderr},
511
- "decay_rate": {"value": popt["decay_rate"].value, "uncertainty": popt["decay_rate"].stderr},
512
- "fit_amplitude": {"value": popt["amplitude"].value, "uncertainty": popt["amplitude"].stderr},
513
- "fit_offset": {"value": popt["offset"].value, "uncertainty": popt["offset"].stderr},
514
511
  }
515
512
 
516
513
  dataset.attrs[qubits_idx].update(
517
514
  {
515
+ "decay_rate": {"value": popt["decay_rate"].value, "uncertainty": popt["decay_rate"].stderr},
516
+ "fit_amplitude": {"value": popt["amplitude"].value, "uncertainty": popt["amplitude"].stderr},
517
+ "fit_offset": {"value": popt["offset"].value, "uncertainty": popt["offset"].stderr},
518
518
  "polarizations": polarizations,
519
519
  "avg_polarization_nominal_values": average_polarizations,
520
520
  "avg_polatization_stderr": stddevs_from_mean,
@@ -614,13 +614,13 @@ def plot_rb_decay(
614
614
  str(q): observations[q_idx]["avg_gate_fidelity"]["uncertainty"] for q_idx, q in enumerate(qubits_array)
615
615
  }
616
616
  decay_rate[identifier] = {
617
- str(q): observations[q_idx]["decay_rate"]["value"] for q_idx, q in enumerate(qubits_array)
617
+ str(q): dataset.attrs[q_idx]["decay_rate"]["value"] for q_idx, q in enumerate(qubits_array)
618
618
  }
619
619
  offset[identifier] = {
620
- str(q): observations[q_idx]["fit_offset"]["value"] for q_idx, q in enumerate(qubits_array)
620
+ str(q): dataset.attrs[q_idx]["fit_offset"]["value"] for q_idx, q in enumerate(qubits_array)
621
621
  }
622
622
  amplitude[identifier] = {
623
- str(q): observations[q_idx]["fit_amplitude"]["value"] for q_idx, q in enumerate(qubits_array)
623
+ str(q): dataset.attrs[q_idx]["fit_amplitude"]["value"] for q_idx, q in enumerate(qubits_array)
624
624
  }
625
625
  else:
626
626
  rb_type_keys = list(observations[0].keys())
@@ -648,13 +648,14 @@ def plot_rb_decay(
648
648
  for q_idx, q in enumerate(qubits_array)
649
649
  }
650
650
  decay_rate[rb_type] = {
651
- str(q): observations[q_idx][rb_type]["decay_rate"]["value"] for q_idx, q in enumerate(qubits_array)
651
+ str(q): dataset.attrs[q_idx][rb_type]["decay_rate"]["value"] for q_idx, q in enumerate(qubits_array)
652
652
  }
653
+ print(dataset.attrs)
653
654
  offset[rb_type] = {
654
- str(q): observations[q_idx][rb_type]["fit_offset"]["value"] for q_idx, q in enumerate(qubits_array)
655
+ str(q): dataset.attrs[q_idx][rb_type]["fit_offset"]["value"] for q_idx, q in enumerate(qubits_array)
655
656
  }
656
657
  amplitude[rb_type] = {
657
- str(q): observations[q_idx][rb_type]["fit_amplitude"]["value"] for q_idx, q in enumerate(qubits_array)
658
+ str(q): dataset.attrs[q_idx][rb_type]["fit_amplitude"]["value"] for q_idx, q in enumerate(qubits_array)
658
659
  }
659
660
 
660
661
  for index_irb, key in enumerate(rb_type_keys):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: iqm-benchmarks
3
- Version: 1.4
3
+ Version: 1.6
4
4
  Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
5
5
  Author-email: IQM Finland Oy <developers@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>
6
6
  Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
@@ -11,7 +11,7 @@ Classifier: Intended Audience :: Science/Research
11
11
  Requires-Python: >=3.11
12
12
  Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
- Requires-Dist: lmfit==1.3.1
14
+ Requires-Dist: lmfit>=1.2
15
15
  Requires-Dist: matplotlib==3.9.0
16
16
  Requires-Dist: more-itertools==10.1.0
17
17
  Requires-Dist: mthree==2.6.3
@@ -22,7 +22,7 @@ Requires-Dist: qiskit-aer==0.13.3
22
22
  Requires-Dist: qiskit-iqm==15.1
23
23
  Requires-Dist: scikit-optimize==0.10.2
24
24
  Requires-Dist: tabulate==0.9.0
25
- Requires-Dist: uncertainties==3.2.1
25
+ Requires-Dist: uncertainties==3.2.2
26
26
  Requires-Dist: pycurl==7.45.3
27
27
  Requires-Dist: xarray==2024.6.0
28
28
  Requires-Dist: types-pycurl
@@ -18,13 +18,13 @@ iqm/benchmarks/randomized_benchmarking/__init__.py,sha256=IkKo-7zUChxZZd3my_csQC
18
18
  iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl,sha256=SVcye1bsjxf1hvC1ku2vHOIZQRG5hy1loAOugpVhUE8,42517
19
19
  iqm/benchmarks/randomized_benchmarking/clifford_2q.pkl,sha256=BLDpXdyDGkFUxCMHyUMDBnNclCQTsty-kIXwiuY31eA,82994083
20
20
  iqm/benchmarks/randomized_benchmarking/multi_lmfit.py,sha256=Se1ygR4mXn_2_P82Ch31KBnCmY-g_A9NKzE9Ir8nEvw,3247
21
- iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=RZX1G9PBCwqwHk_ylqPHLtWk3GMN5Tc2OchnaEv9W2Y,37824
21
+ iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py,sha256=hKe3qz2dQtcGEOODhcEP1OBH3e68ryDYFiYJ0PDGEJs,37863
22
22
  iqm/benchmarks/randomized_benchmarking/clifford_rb/__init__.py,sha256=bTDA156LAl7OLGcMec--1nzDrV1XpPRVq3CquTmucgE,677
23
- iqm/benchmarks/randomized_benchmarking/clifford_rb/clifford_rb.py,sha256=wuWjUMjjiYzK8-RZR3kz2X43T5F0mIMc7SRRBoIJMX4,17458
23
+ iqm/benchmarks/randomized_benchmarking/clifford_rb/clifford_rb.py,sha256=uo6cPhoQQ9qAGeZFZG23jxaR88_qKdiqtlBrG_mAGWg,17470
24
24
  iqm/benchmarks/randomized_benchmarking/interleaved_rb/__init__.py,sha256=sq6MgN_hwlpkOj10vyCU4e6eKSX-oLcF2L9na6W2Gt4,681
25
- iqm/benchmarks/randomized_benchmarking/interleaved_rb/interleaved_rb.py,sha256=UW0A7wfYgWA4nOk-RvvBLDo5NGfQ_txCyy1XC7UCghs,26181
25
+ iqm/benchmarks/randomized_benchmarking/interleaved_rb/interleaved_rb.py,sha256=hTjjitBp0CEkOnvZj_byJ2CzPHiwXaDhxIO8O8dcAj4,26205
26
26
  iqm/benchmarks/randomized_benchmarking/mirror_rb/__init__.py,sha256=ZekEqI_89nXzGO1vjM-b5Uwwicy59M4fYHXfA-f0MIg,674
27
- iqm/benchmarks/randomized_benchmarking/mirror_rb/mirror_rb.py,sha256=LhRWaJzmXyYPmcS3xZy50tRwk_g9XoEf9KJuYon2L9g,34451
27
+ iqm/benchmarks/randomized_benchmarking/mirror_rb/mirror_rb.py,sha256=v1UOCVK4_fcOB2VNjMqQB8tp4JwytjdY7RM_lXAtFy0,34463
28
28
  mGST/LICENSE,sha256=TtHNq55cUcbglb7uhVudeBLUh_qPdUoAEvU0BBwFz-k,1098
29
29
  mGST/README.md,sha256=v_5kw253csHF4-RfE-44KqFmBXIsSMRmOtN0AUPrRxE,5050
30
30
  mGST/additional_fns.py,sha256=_SEJ10FRNM7_CroysT8hCLZTfpm6ZhEIDCY5zPTnhjo,31390
@@ -35,8 +35,8 @@ mGST/optimization.py,sha256=YHwkzIkYvsZOPjclR-BCQWh24jeqjuXp0BB0WX5Lwow,10559
35
35
  mGST/qiskit_interface.py,sha256=2XuJ4WFViLsHCTpEZncwsLbRr-cELEYhegTpRPzCcuI,10080
36
36
  mGST/reporting/figure_gen.py,sha256=6Xd8vwfy09hLY1YbJY6TRevuMsQSU4MsWqemly3ZO0I,12970
37
37
  mGST/reporting/reporting.py,sha256=-XBy3OCJIMOsA8cApwKjhVKBwnjSAoxm-voHNbRWytM,25803
38
- iqm_benchmarks-1.4.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
39
- iqm_benchmarks-1.4.dist-info/METADATA,sha256=sq--YraFmxi6m68G_ydmz6PX3TCMgnFarw1yRy1Zocg,8376
40
- iqm_benchmarks-1.4.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
41
- iqm_benchmarks-1.4.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
42
- iqm_benchmarks-1.4.dist-info/RECORD,,
38
+ iqm_benchmarks-1.6.dist-info/LICENSE,sha256=2Ncb40-hqkTil78RPv3-YiJfKaJ8te9USJgliKqIdSY,11558
39
+ iqm_benchmarks-1.6.dist-info/METADATA,sha256=OX09p3ToNx4S2wsndIBj0w5RzyaB9Sh5EAq2hBtvKds,8374
40
+ iqm_benchmarks-1.6.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
41
+ iqm_benchmarks-1.6.dist-info/top_level.txt,sha256=3G23Z-1LGf-IOzTCUl6QwWqiQ3USz25Zt90Ihq192to,9
42
+ iqm_benchmarks-1.6.dist-info/RECORD,,