iplotx 0.11.1__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- iplotx/art3d/edge/__init__.py +120 -1
- iplotx/artists.py +4 -2
- iplotx/edge/__init__.py +1 -0
- iplotx/ingest/providers/tree/dendropy.py +59 -0
- iplotx/{network.py → network/__init__.py} +12 -9
- iplotx/{groups.py → network/groups.py} +6 -6
- iplotx/plotting.py +2 -2
- iplotx/style/leaf_info.py +1 -0
- iplotx/{tree.py → tree/__init__.py} +45 -8
- iplotx/{cascades.py → tree/cascades.py} +4 -5
- iplotx/tree/scalebar.py +326 -0
- iplotx/utils/matplotlib.py +78 -0
- iplotx/version.py +1 -1
- iplotx/vertex.py +1 -1
- {iplotx-0.11.1.dist-info → iplotx-1.0.0.dist-info}/METADATA +10 -6
- {iplotx-0.11.1.dist-info → iplotx-1.0.0.dist-info}/RECORD +17 -15
- {iplotx-0.11.1.dist-info → iplotx-1.0.0.dist-info}/WHEEL +0 -0
iplotx/art3d/edge/__init__.py
CHANGED
|
@@ -2,13 +2,26 @@
|
|
|
2
2
|
Module containing code to manipulate edge visualisations in 3D, especially the Edge3DCollection class.
|
|
3
3
|
"""
|
|
4
4
|
|
|
5
|
-
|
|
5
|
+
import numpy as np
|
|
6
|
+
from matplotlib import (
|
|
7
|
+
colors as mcolors,
|
|
8
|
+
)
|
|
9
|
+
from matplotlib.collections import (
|
|
10
|
+
LineCollection,
|
|
11
|
+
)
|
|
12
|
+
from mpl_toolkits.mplot3d import (
|
|
13
|
+
Axes3D,
|
|
14
|
+
)
|
|
6
15
|
from mpl_toolkits.mplot3d.art3d import (
|
|
7
16
|
Line3DCollection,
|
|
17
|
+
_viewlim_mask,
|
|
8
18
|
)
|
|
9
19
|
|
|
10
20
|
from ...utils.matplotlib import (
|
|
11
21
|
_forwarder,
|
|
22
|
+
_proj_transform_vectors,
|
|
23
|
+
_zalpha,
|
|
24
|
+
_get_data_scale,
|
|
12
25
|
)
|
|
13
26
|
from ...edge import (
|
|
14
27
|
EdgeCollection,
|
|
@@ -73,11 +86,113 @@ class Edge3DCollection(Line3DCollection):
|
|
|
73
86
|
segments3d.append(segment)
|
|
74
87
|
self.set_segments(segments3d)
|
|
75
88
|
|
|
89
|
+
def do_3d_projection(self):
|
|
90
|
+
"""
|
|
91
|
+
Project the points according to renderer matrix.
|
|
92
|
+
"""
|
|
93
|
+
segments = np.asanyarray(self._segments3d)
|
|
94
|
+
|
|
95
|
+
mask = False
|
|
96
|
+
if np.ma.isMA(segments):
|
|
97
|
+
mask = segments.mask
|
|
98
|
+
|
|
99
|
+
if self._axlim_clip:
|
|
100
|
+
viewlim_mask = _viewlim_mask(
|
|
101
|
+
segments[..., 0], segments[..., 1], segments[..., 2], self.axes
|
|
102
|
+
)
|
|
103
|
+
if np.any(viewlim_mask):
|
|
104
|
+
# broadcast mask to 3D
|
|
105
|
+
viewlim_mask = np.broadcast_to(
|
|
106
|
+
viewlim_mask[..., np.newaxis], (*viewlim_mask.shape, 3)
|
|
107
|
+
)
|
|
108
|
+
mask = mask | viewlim_mask
|
|
109
|
+
xyzs = np.ma.array(_proj_transform_vectors(segments, self.axes.M), mask=mask)
|
|
110
|
+
segments_2d = xyzs[..., 0:2]
|
|
111
|
+
LineCollection.set_segments(self, segments_2d)
|
|
112
|
+
|
|
113
|
+
# Use the average projected z value of each line for depthshade
|
|
114
|
+
xyzs_mean = xyzs.mean(axis=1)
|
|
115
|
+
self._data_scale = _get_data_scale(*(xyzs_mean.T))
|
|
116
|
+
self._vzs = xyzs_mean[..., 2]
|
|
117
|
+
|
|
118
|
+
# FIXME
|
|
119
|
+
if len(xyzs) > 0:
|
|
120
|
+
minz = min(xyzs[..., 2].min(), 1e9)
|
|
121
|
+
else:
|
|
122
|
+
minz = np.nan
|
|
123
|
+
return minz
|
|
124
|
+
|
|
125
|
+
def _maybe_depth_shade_and_sort_colors(self, color_array):
|
|
126
|
+
color_array = (
|
|
127
|
+
_zalpha(
|
|
128
|
+
color_array,
|
|
129
|
+
self._vzs,
|
|
130
|
+
min_alpha=self._depthshade_minalpha,
|
|
131
|
+
_data_scale=self._data_scale,
|
|
132
|
+
)
|
|
133
|
+
if self._vzs is not None and self._depthshade
|
|
134
|
+
else color_array
|
|
135
|
+
)
|
|
136
|
+
return mcolors.to_rgba_array(color_array, self._alpha)
|
|
137
|
+
|
|
138
|
+
def set_edgecolor(self, color):
|
|
139
|
+
"""Set the edge color of the collection."""
|
|
140
|
+
self._edgecolors = mcolors.to_rgba_array(color, self._alpha)
|
|
141
|
+
self._edgecolors_noshade = self._edgecolors.copy()
|
|
142
|
+
|
|
143
|
+
def get_edgecolor(self):
|
|
144
|
+
"""Set the edge color of the collection, including depth shading."""
|
|
145
|
+
# We need this check here to make sure we do not double-apply the depth
|
|
146
|
+
# based alpha shading when the edge color is "face" which means the
|
|
147
|
+
# edge colour should be identical to the face colour.
|
|
148
|
+
if not hasattr(self, "_edgecolors_noshade"):
|
|
149
|
+
self._edgecolors_noshade = self._edgecolors.copy()
|
|
150
|
+
return self._maybe_depth_shade_and_sort_colors(self._edgecolors_noshade)
|
|
151
|
+
|
|
152
|
+
set_edgecolors = set_edgecolor
|
|
153
|
+
get_edgecolors = get_edgecolor
|
|
154
|
+
|
|
155
|
+
def get_depthshade(self):
|
|
156
|
+
"""Get whether depth shading is performed on collection members."""
|
|
157
|
+
return self._depthshade
|
|
158
|
+
|
|
159
|
+
def get_depthshade_minalpha(self):
|
|
160
|
+
"""The minimum alpha value used by depth-shading."""
|
|
161
|
+
return self._depthshade_minalpha
|
|
162
|
+
|
|
163
|
+
def set_depthshade(
|
|
164
|
+
self,
|
|
165
|
+
depthshade,
|
|
166
|
+
depthshade_minalpha=0.1,
|
|
167
|
+
):
|
|
168
|
+
"""
|
|
169
|
+
Set whether depth shading is performed on collection members.
|
|
170
|
+
|
|
171
|
+
Parameters
|
|
172
|
+
----------
|
|
173
|
+
depthshade : bool
|
|
174
|
+
Whether to shade the patches in order to give the appearance of
|
|
175
|
+
depth.
|
|
176
|
+
depthshade_minalpha : float
|
|
177
|
+
Sets the minimum alpha value used by depth-shading.
|
|
178
|
+
|
|
179
|
+
.. versionadded:: 3.11
|
|
180
|
+
"""
|
|
181
|
+
self._depthshade = depthshade
|
|
182
|
+
self._depthshade_minalpha = depthshade_minalpha
|
|
183
|
+
self.stale = True
|
|
184
|
+
|
|
76
185
|
def _update_before_draw(self) -> None:
|
|
77
186
|
"""Update the collection before drawing."""
|
|
78
187
|
if isinstance(self.axes, Axes3D) and hasattr(self, "do_3d_projection"):
|
|
79
188
|
self.do_3d_projection()
|
|
80
189
|
|
|
190
|
+
if not hasattr(self, "_edgecolors_noshade"):
|
|
191
|
+
self._edgecolors_noshade = self._edgecolors.copy()
|
|
192
|
+
self._edgecolors = self._maybe_depth_shade_and_sort_colors(
|
|
193
|
+
self._edgecolors_noshade,
|
|
194
|
+
)
|
|
195
|
+
|
|
81
196
|
# TODO: Here's where we would shorten the edges to fit the vertex
|
|
82
197
|
# projections from 3D onto 2D, if we wanted to do that. Because edges
|
|
83
198
|
# in 3D are chains of segments rathen than splines, the shortening
|
|
@@ -111,6 +226,7 @@ def edge_collection_2d_to_3d(
|
|
|
111
226
|
col: EdgeCollection,
|
|
112
227
|
zdir: str = "z",
|
|
113
228
|
axlim_clip: bool = False,
|
|
229
|
+
depthshade: bool = True,
|
|
114
230
|
):
|
|
115
231
|
"""Convert a 2D EdgeCollection to a 3D Edge3DCollection.
|
|
116
232
|
|
|
@@ -127,6 +243,9 @@ def edge_collection_2d_to_3d(
|
|
|
127
243
|
# NOTE: after this line, none of the EdgeCollection methods will work
|
|
128
244
|
# It's become a static drawer now. It uses segments instead of paths.
|
|
129
245
|
col.__class__ = Edge3DCollection
|
|
246
|
+
col._depthshade = depthshade
|
|
247
|
+
col._depthshade_minalpha = 0.1
|
|
248
|
+
|
|
130
249
|
col._compute_edge_segments()
|
|
131
250
|
|
|
132
251
|
col._axlim_clip = axlim_clip
|
iplotx/artists.py
CHANGED
|
@@ -3,19 +3,21 @@ All artists defined in iplotx.
|
|
|
3
3
|
"""
|
|
4
4
|
|
|
5
5
|
from .network import NetworkArtist
|
|
6
|
-
from .
|
|
6
|
+
from .network.groups import GroupingCollection
|
|
7
7
|
from .vertex import VertexCollection
|
|
8
8
|
from .edge import EdgeCollection
|
|
9
9
|
from .label import LabelCollection
|
|
10
10
|
from .edge.arrow import EdgeArrowCollection
|
|
11
11
|
from .edge.leaf import LeafEdgeCollection
|
|
12
|
-
from .cascades import CascadeCollection
|
|
13
12
|
from .art3d.vertex import Vertex3DCollection
|
|
14
13
|
from .art3d.edge import Edge3DCollection
|
|
14
|
+
from .tree import TreeArtist
|
|
15
|
+
from .tree.cascades import CascadeCollection
|
|
15
16
|
|
|
16
17
|
|
|
17
18
|
___all__ = (
|
|
18
19
|
NetworkArtist,
|
|
20
|
+
GroupingCollection,
|
|
19
21
|
TreeArtist,
|
|
20
22
|
VertexCollection,
|
|
21
23
|
EdgeCollection,
|
iplotx/edge/__init__.py
CHANGED
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
from typing import (
|
|
2
|
+
Any,
|
|
3
|
+
Optional,
|
|
4
|
+
Sequence,
|
|
5
|
+
)
|
|
6
|
+
import importlib
|
|
7
|
+
|
|
8
|
+
from ...typing import (
|
|
9
|
+
TreeDataProvider,
|
|
10
|
+
)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class DendropyDataProvider(TreeDataProvider):
|
|
14
|
+
def is_rooted(self) -> bool:
|
|
15
|
+
return True
|
|
16
|
+
|
|
17
|
+
def get_root(self) -> Any:
|
|
18
|
+
"""Get the root of the tree."""
|
|
19
|
+
return next(self.preorder())
|
|
20
|
+
|
|
21
|
+
def preorder(self) -> Any:
|
|
22
|
+
"""Preorder traversal of the tree.
|
|
23
|
+
|
|
24
|
+
NOTE: This will work on both entire Trees and Nodes (which means a subtree including self).
|
|
25
|
+
"""
|
|
26
|
+
if hasattr(self.tree, "preorder_node_iter"):
|
|
27
|
+
return self.tree.preorder_node_iter()
|
|
28
|
+
return self.tree.preorder_iter()
|
|
29
|
+
|
|
30
|
+
def postorder(self) -> Any:
|
|
31
|
+
"""Preorder traversal of the tree.
|
|
32
|
+
|
|
33
|
+
NOTE: This will work on both entire Trees and Nodes (which means a subtree including self).
|
|
34
|
+
"""
|
|
35
|
+
if hasattr(self.tree, "postorder_node_iter"):
|
|
36
|
+
return self.tree.postorder_node_iter()
|
|
37
|
+
return self.tree.postorder_iter()
|
|
38
|
+
|
|
39
|
+
def get_leaves(self) -> Sequence[Any]:
|
|
40
|
+
"""Get a list of leaves."""
|
|
41
|
+
return self.tree.leaf_nodes()
|
|
42
|
+
|
|
43
|
+
@staticmethod
|
|
44
|
+
def get_children(node: Any) -> Sequence[Any]:
|
|
45
|
+
return node.child_nodes()
|
|
46
|
+
|
|
47
|
+
@staticmethod
|
|
48
|
+
def get_branch_length(node: Any) -> Optional[float]:
|
|
49
|
+
return node.edge.length
|
|
50
|
+
|
|
51
|
+
@staticmethod
|
|
52
|
+
def check_dependencies() -> bool:
|
|
53
|
+
return importlib.util.find_spec("dendropy") is not None
|
|
54
|
+
|
|
55
|
+
@staticmethod
|
|
56
|
+
def tree_type():
|
|
57
|
+
import dendropy
|
|
58
|
+
|
|
59
|
+
return dendropy.Tree
|
|
@@ -7,33 +7,33 @@ import numpy as np
|
|
|
7
7
|
import pandas as pd
|
|
8
8
|
import matplotlib as mpl
|
|
9
9
|
|
|
10
|
-
from
|
|
10
|
+
from ..typing import (
|
|
11
11
|
GraphType,
|
|
12
12
|
LayoutType,
|
|
13
13
|
)
|
|
14
|
-
from
|
|
14
|
+
from ..style import (
|
|
15
15
|
get_style,
|
|
16
16
|
rotate_style,
|
|
17
17
|
)
|
|
18
|
-
from
|
|
18
|
+
from ..utils.matplotlib import (
|
|
19
19
|
_stale_wrapper,
|
|
20
20
|
_forwarder,
|
|
21
21
|
_build_cmap_fun,
|
|
22
22
|
)
|
|
23
|
-
from
|
|
23
|
+
from ..ingest import (
|
|
24
24
|
ingest_network_data,
|
|
25
25
|
)
|
|
26
|
-
from
|
|
26
|
+
from ..vertex import (
|
|
27
27
|
VertexCollection,
|
|
28
28
|
)
|
|
29
|
-
from
|
|
29
|
+
from ..edge import (
|
|
30
30
|
EdgeCollection,
|
|
31
31
|
make_stub_patch as make_undirected_edge_patch,
|
|
32
32
|
)
|
|
33
|
-
from
|
|
33
|
+
from ..art3d.vertex import (
|
|
34
34
|
vertex_collection_2d_to_3d,
|
|
35
35
|
)
|
|
36
|
-
from
|
|
36
|
+
from ..art3d.edge import (
|
|
37
37
|
Edge3DCollection,
|
|
38
38
|
edge_collection_2d_to_3d,
|
|
39
39
|
)
|
|
@@ -279,10 +279,11 @@ class NetworkArtist(mpl.artist.Artist):
|
|
|
279
279
|
)
|
|
280
280
|
|
|
281
281
|
if self.get_ndim() == 3:
|
|
282
|
+
depthshade = get_style(".vertex").get("depthshade", True)
|
|
282
283
|
vertex_collection_2d_to_3d(
|
|
283
284
|
self._vertices,
|
|
284
285
|
zs=self.get_layout().iloc[:, 2].values,
|
|
285
|
-
depthshade=
|
|
286
|
+
depthshade=depthshade,
|
|
286
287
|
)
|
|
287
288
|
|
|
288
289
|
def _add_edges(self):
|
|
@@ -367,8 +368,10 @@ class NetworkArtist(mpl.artist.Artist):
|
|
|
367
368
|
self._edges.set_array(colorarray)
|
|
368
369
|
|
|
369
370
|
if self.get_ndim() == 3:
|
|
371
|
+
depthshade = get_style(".edge").get("depthshade", True)
|
|
370
372
|
edge_collection_2d_to_3d(
|
|
371
373
|
self._edges,
|
|
374
|
+
depthshade=depthshade,
|
|
372
375
|
)
|
|
373
376
|
|
|
374
377
|
@_stale_wrapper
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
"""
|
|
2
|
-
Module for vertex groupings code, especially the
|
|
2
|
+
Module for vertex groupings code, especially the GroupingCollection class.
|
|
3
3
|
"""
|
|
4
4
|
|
|
5
5
|
from typing import Union
|
|
@@ -9,22 +9,22 @@ import matplotlib as mpl
|
|
|
9
9
|
from matplotlib.collections import PatchCollection
|
|
10
10
|
|
|
11
11
|
|
|
12
|
-
from
|
|
12
|
+
from ..typing import (
|
|
13
13
|
GroupingType,
|
|
14
14
|
LayoutType,
|
|
15
15
|
)
|
|
16
|
-
from
|
|
16
|
+
from ..ingest.heuristics import (
|
|
17
17
|
normalise_layout,
|
|
18
18
|
normalise_grouping,
|
|
19
19
|
)
|
|
20
|
-
from
|
|
21
|
-
from
|
|
20
|
+
from ..style import get_style, rotate_style
|
|
21
|
+
from ..utils.geometry import (
|
|
22
22
|
convex_hull,
|
|
23
23
|
_compute_group_path_with_vertex_padding,
|
|
24
24
|
)
|
|
25
25
|
|
|
26
26
|
|
|
27
|
-
class
|
|
27
|
+
class GroupingCollection(PatchCollection):
|
|
28
28
|
"""Matplotlib artist for a vertex grouping (clustering/cover).
|
|
29
29
|
|
|
30
30
|
This class is used to plot patches surrounding groups of vertices in a network.
|
iplotx/plotting.py
CHANGED
|
@@ -13,7 +13,7 @@ from .typing import (
|
|
|
13
13
|
TreeType,
|
|
14
14
|
)
|
|
15
15
|
from .network import NetworkArtist
|
|
16
|
-
from .groups import
|
|
16
|
+
from .network.groups import GroupingCollection
|
|
17
17
|
from .tree import TreeArtist
|
|
18
18
|
from .style import context
|
|
19
19
|
|
|
@@ -101,7 +101,7 @@ def network(
|
|
|
101
101
|
nwkart = None
|
|
102
102
|
|
|
103
103
|
if grouping is not None:
|
|
104
|
-
grpart =
|
|
104
|
+
grpart = GroupingCollection(
|
|
105
105
|
grouping,
|
|
106
106
|
layout,
|
|
107
107
|
network=network,
|
iplotx/style/leaf_info.py
CHANGED
|
@@ -10,38 +10,41 @@ import numpy as np
|
|
|
10
10
|
import pandas as pd
|
|
11
11
|
import matplotlib as mpl
|
|
12
12
|
|
|
13
|
-
from
|
|
13
|
+
from ..style import (
|
|
14
14
|
context,
|
|
15
15
|
get_style,
|
|
16
16
|
rotate_style,
|
|
17
17
|
merge_styles,
|
|
18
18
|
)
|
|
19
|
-
from
|
|
19
|
+
from ..utils.matplotlib import (
|
|
20
20
|
_stale_wrapper,
|
|
21
21
|
_forwarder,
|
|
22
22
|
_build_cmap_fun,
|
|
23
23
|
)
|
|
24
|
-
from
|
|
24
|
+
from ..ingest import (
|
|
25
25
|
ingest_tree_data,
|
|
26
26
|
data_providers,
|
|
27
27
|
)
|
|
28
|
-
from
|
|
28
|
+
from ..vertex import (
|
|
29
29
|
VertexCollection,
|
|
30
30
|
)
|
|
31
|
-
from
|
|
31
|
+
from ..edge import (
|
|
32
32
|
EdgeCollection,
|
|
33
33
|
make_stub_patch as make_undirected_edge_patch,
|
|
34
34
|
)
|
|
35
|
-
from
|
|
35
|
+
from ..edge.leaf import (
|
|
36
36
|
LeafEdgeCollection,
|
|
37
37
|
)
|
|
38
|
-
from
|
|
38
|
+
from ..label import (
|
|
39
39
|
LabelCollection,
|
|
40
40
|
)
|
|
41
41
|
from .cascades import (
|
|
42
42
|
CascadeCollection,
|
|
43
43
|
)
|
|
44
|
-
from .
|
|
44
|
+
from .scalebar import (
|
|
45
|
+
TreeScalebarArtist,
|
|
46
|
+
)
|
|
47
|
+
from ..network import (
|
|
45
48
|
_update_from_internal,
|
|
46
49
|
)
|
|
47
50
|
|
|
@@ -663,6 +666,40 @@ class TreeArtist(mpl.artist.Artist):
|
|
|
663
666
|
"""Get the orientation of the tree layout."""
|
|
664
667
|
return self._ipx_internal_data.get("orientation", None)
|
|
665
668
|
|
|
669
|
+
def scalebar(
|
|
670
|
+
self,
|
|
671
|
+
loc: str = "upper left",
|
|
672
|
+
**kwargs,
|
|
673
|
+
):
|
|
674
|
+
"""Create scalebar for the tree.
|
|
675
|
+
|
|
676
|
+
Parameters:
|
|
677
|
+
legth: Length of the scalebar in data units.
|
|
678
|
+
loc: Location of the scalebar. Same options as `matplotlib.legend`.
|
|
679
|
+
kwargs: Additional keyword arguments passed to `TreeScalebarArtist`. These are
|
|
680
|
+
generally the same options that you would pass to a legend, such as
|
|
681
|
+
bbox_to_anchor, bbox_transform, etc.
|
|
682
|
+
Returns:
|
|
683
|
+
The artist with the tree scale bar.
|
|
684
|
+
"""
|
|
685
|
+
if self.axes is None:
|
|
686
|
+
raise RuntimeError("Cannot add a scalebar if the artist is not in an Axes.")
|
|
687
|
+
|
|
688
|
+
scalebar = TreeScalebarArtist(
|
|
689
|
+
self,
|
|
690
|
+
layout=self.get_layout_name(),
|
|
691
|
+
loc=loc,
|
|
692
|
+
)
|
|
693
|
+
|
|
694
|
+
# Remove previous scalebars if any
|
|
695
|
+
for art in self.axes._children:
|
|
696
|
+
if isinstance(art, TreeScalebarArtist) and art._treeartist == self:
|
|
697
|
+
art.remove()
|
|
698
|
+
|
|
699
|
+
self.axes.add_artist(scalebar)
|
|
700
|
+
|
|
701
|
+
return scalebar
|
|
702
|
+
|
|
666
703
|
def style_subtree(
|
|
667
704
|
self,
|
|
668
705
|
nodes: Sequence[Hashable],
|
|
@@ -5,16 +5,15 @@ from typing import (
|
|
|
5
5
|
import warnings
|
|
6
6
|
import numpy as np
|
|
7
7
|
import pandas as pd
|
|
8
|
+
import matplotlib as mpl
|
|
8
9
|
|
|
9
|
-
from
|
|
10
|
+
from ..typing import (
|
|
10
11
|
TreeType,
|
|
11
12
|
)
|
|
12
|
-
from
|
|
13
|
+
from ..ingest.typing import (
|
|
13
14
|
TreeDataProvider,
|
|
14
15
|
)
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
from .style import (
|
|
16
|
+
from ..style import (
|
|
18
17
|
copy_with_deep_values,
|
|
19
18
|
rotate_style,
|
|
20
19
|
)
|
iplotx/tree/scalebar.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
1
|
+
from typing import (
|
|
2
|
+
Any,
|
|
3
|
+
)
|
|
4
|
+
import numpy as np
|
|
5
|
+
from matplotlib import (
|
|
6
|
+
_api,
|
|
7
|
+
)
|
|
8
|
+
from matplotlib import collections as mcoll
|
|
9
|
+
from matplotlib.legend import Legend
|
|
10
|
+
from matplotlib.legend_handler import HandlerErrorbar
|
|
11
|
+
from matplotlib.lines import Line2D
|
|
12
|
+
from matplotlib.offsetbox import (
|
|
13
|
+
HPacker,
|
|
14
|
+
VPacker,
|
|
15
|
+
DrawingArea,
|
|
16
|
+
TextArea,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def _update_prop(legend_artist, orig_handle):
|
|
21
|
+
# NOTE: This is de facto a bug in mpl, because Line2D.set_linestyle()
|
|
22
|
+
# does two things: it reformats tuple-style dashing, and it sets the
|
|
23
|
+
# artist as stale. We want to do the former only here, so we reset
|
|
24
|
+
# the artist as the original stale state after calling it.
|
|
25
|
+
stale_orig = legend_artist.stale
|
|
26
|
+
legend_artist.set_linestyle(orig_handle.get_linestyle()[0])
|
|
27
|
+
legend_artist.stale = stale_orig
|
|
28
|
+
|
|
29
|
+
# These other properties can be set directly.
|
|
30
|
+
legend_artist._linewidth = orig_handle.get_linewidth()[0]
|
|
31
|
+
legend_artist._color = orig_handle.get_edgecolor()[0]
|
|
32
|
+
legend_artist._gapcolor = orig_handle._gapcolor
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class TreeScalebarArtist(Legend):
|
|
36
|
+
def __init__(
|
|
37
|
+
self,
|
|
38
|
+
treeartist,
|
|
39
|
+
layout: str = "horizontal",
|
|
40
|
+
frameon=False,
|
|
41
|
+
**kwargs,
|
|
42
|
+
):
|
|
43
|
+
handles = [treeartist.get_edges()]
|
|
44
|
+
labels = [""]
|
|
45
|
+
self._layout = layout
|
|
46
|
+
self._treeartist = treeartist
|
|
47
|
+
|
|
48
|
+
if layout == "vertical":
|
|
49
|
+
handler_kwargs = dict(xerr_size=0, yerr_size=1)
|
|
50
|
+
else:
|
|
51
|
+
handler_kwargs = dict(xerr_size=1)
|
|
52
|
+
handler = TreeLegendHandler(
|
|
53
|
+
update_func=_update_prop,
|
|
54
|
+
**handler_kwargs,
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
super().__init__(
|
|
58
|
+
treeartist.axes,
|
|
59
|
+
handles,
|
|
60
|
+
labels,
|
|
61
|
+
handler_map={handles[0]: handler},
|
|
62
|
+
frameon=frameon,
|
|
63
|
+
**kwargs,
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
def _init_legend_box(self, handles, labels, markerfirst=True):
|
|
67
|
+
"""
|
|
68
|
+
Create the legend box.
|
|
69
|
+
|
|
70
|
+
This is a modified version of the original Legend._init_legend_box
|
|
71
|
+
method to accommodate a scale bar.
|
|
72
|
+
"""
|
|
73
|
+
|
|
74
|
+
fontsize = self._fontsize
|
|
75
|
+
|
|
76
|
+
# legend_box is a HPacker, horizontally packed with columns.
|
|
77
|
+
# Each column is a VPacker, vertically packed with legend items.
|
|
78
|
+
# Each legend item is a HPacker packed with:
|
|
79
|
+
# - handlebox: a DrawingArea which contains the legend handle.
|
|
80
|
+
# - labelbox: a TextArea which contains the legend text.
|
|
81
|
+
|
|
82
|
+
text_list = [] # the list of text instances
|
|
83
|
+
handle_list = [] # the list of handle instances
|
|
84
|
+
handles_and_labels = []
|
|
85
|
+
|
|
86
|
+
# The approximate height and descent of text. These values are
|
|
87
|
+
# only used for plotting the legend handle.
|
|
88
|
+
descent = 0.35 * fontsize * (self.handleheight - 0.7) # heuristic.
|
|
89
|
+
height = fontsize * self.handleheight - descent
|
|
90
|
+
# each handle needs to be drawn inside a box of (x, y, w, h) =
|
|
91
|
+
# (0, -descent, width, height). And their coordinates should
|
|
92
|
+
# be given in the display coordinates.
|
|
93
|
+
|
|
94
|
+
# The transformation of each handle will be automatically set
|
|
95
|
+
# to self.get_transform(). If the artist does not use its
|
|
96
|
+
# default transform (e.g., Collections), you need to
|
|
97
|
+
# manually set their transform to the self.get_transform().
|
|
98
|
+
legend_handler_map = self.get_legend_handler_map()
|
|
99
|
+
|
|
100
|
+
for orig_handle, label in zip(handles, labels):
|
|
101
|
+
handler = self.get_legend_handler(legend_handler_map, orig_handle)
|
|
102
|
+
if handler is None:
|
|
103
|
+
_api.warn_external(
|
|
104
|
+
"Legend does not support handles for "
|
|
105
|
+
f"{type(orig_handle).__name__} "
|
|
106
|
+
"instances.\nA proxy artist may be used "
|
|
107
|
+
"instead.\nSee: https://matplotlib.org/"
|
|
108
|
+
"stable/users/explain/axes/legend_guide.html"
|
|
109
|
+
"#controlling-the-legend-entries"
|
|
110
|
+
)
|
|
111
|
+
# No handle for this artist, so we just defer to None.
|
|
112
|
+
handle_list.append(None)
|
|
113
|
+
else:
|
|
114
|
+
handlebox = DrawingArea(
|
|
115
|
+
width=self.handlelength * fontsize,
|
|
116
|
+
height=height,
|
|
117
|
+
xdescent=0.0,
|
|
118
|
+
ydescent=descent,
|
|
119
|
+
)
|
|
120
|
+
# Create the artist for the legend which represents the
|
|
121
|
+
# original artist/handle.
|
|
122
|
+
handle_list.append(handler.legend_artist(self, orig_handle, fontsize, handlebox))
|
|
123
|
+
|
|
124
|
+
# The scale bar line is in this handle
|
|
125
|
+
bar_handle = handle_list[-1]
|
|
126
|
+
label = self._get_label_from_bar_handle(bar_handle)
|
|
127
|
+
|
|
128
|
+
textbox = TextArea(
|
|
129
|
+
label,
|
|
130
|
+
multilinebaseline=True,
|
|
131
|
+
textprops=dict(
|
|
132
|
+
verticalalignment="baseline",
|
|
133
|
+
horizontalalignment="left",
|
|
134
|
+
fontproperties=self.prop,
|
|
135
|
+
),
|
|
136
|
+
)
|
|
137
|
+
text_list.append(textbox._text)
|
|
138
|
+
|
|
139
|
+
handles_and_labels.append((handlebox, textbox))
|
|
140
|
+
|
|
141
|
+
columnbox = []
|
|
142
|
+
# array_split splits n handles_and_labels into ncols columns, with the
|
|
143
|
+
# first n%ncols columns having an extra entry. filter(len, ...)
|
|
144
|
+
# handles the case where n < ncols: the last ncols-n columns are empty
|
|
145
|
+
# and get filtered out.
|
|
146
|
+
for handles_and_labels_column in filter(
|
|
147
|
+
len, np.array_split(handles_and_labels, self._ncols)
|
|
148
|
+
):
|
|
149
|
+
# pack handlebox and labelbox into itembox
|
|
150
|
+
if self._layout == "vertical":
|
|
151
|
+
itempacker = HPacker
|
|
152
|
+
else:
|
|
153
|
+
itempacker = VPacker
|
|
154
|
+
itemboxes = [
|
|
155
|
+
itempacker(
|
|
156
|
+
pad=0,
|
|
157
|
+
sep=self.handletextpad * fontsize,
|
|
158
|
+
children=[h, t] if markerfirst else [t, h],
|
|
159
|
+
align="center",
|
|
160
|
+
)
|
|
161
|
+
for h, t in handles_and_labels_column
|
|
162
|
+
]
|
|
163
|
+
# pack columnbox
|
|
164
|
+
alignment = "baseline" if markerfirst else "right"
|
|
165
|
+
columnbox.append(
|
|
166
|
+
VPacker(
|
|
167
|
+
pad=0, sep=self.labelspacing * fontsize, align=alignment, children=itemboxes
|
|
168
|
+
)
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
mode = "expand" if self._mode == "expand" else "fixed"
|
|
172
|
+
sep = self.columnspacing * fontsize
|
|
173
|
+
self._legend_handle_box = HPacker(
|
|
174
|
+
pad=0, sep=sep, align="baseline", mode=mode, children=columnbox
|
|
175
|
+
)
|
|
176
|
+
self._legend_title_box = TextArea("")
|
|
177
|
+
self._legend_box = VPacker(
|
|
178
|
+
pad=self.borderpad * fontsize,
|
|
179
|
+
sep=self.labelspacing * fontsize,
|
|
180
|
+
align=self._alignment,
|
|
181
|
+
children=[self._legend_title_box, self._legend_handle_box],
|
|
182
|
+
)
|
|
183
|
+
self._legend_box.set_figure(self.get_figure(root=False))
|
|
184
|
+
self._legend_box.axes = self.axes
|
|
185
|
+
self.texts = text_list
|
|
186
|
+
self.legend_handles = handle_list
|
|
187
|
+
|
|
188
|
+
def _get_label_from_bar_handle(self, bar_handle: Any) -> str:
|
|
189
|
+
# Extract the x coordinates of the scale bar
|
|
190
|
+
p0, p1 = bar_handle.get_segments()[0]
|
|
191
|
+
|
|
192
|
+
bar_trans = bar_handle.get_transform()
|
|
193
|
+
data_trans = self.parent.transData
|
|
194
|
+
# FIXME: this is off, probably because of some Packer anchor additional transform
|
|
195
|
+
composite_trans = data_trans.inverted() + bar_trans
|
|
196
|
+
|
|
197
|
+
p0_data = composite_trans.transform(p0)
|
|
198
|
+
p1_data = composite_trans.transform(p1)
|
|
199
|
+
distance = np.linalg.norm(p1_data - p0_data)
|
|
200
|
+
label = f"{distance:.2f}"
|
|
201
|
+
return label
|
|
202
|
+
|
|
203
|
+
def draw(self, renderer):
|
|
204
|
+
bar_handle = self.legend_handles[0]
|
|
205
|
+
label = self._get_label_from_bar_handle(bar_handle)
|
|
206
|
+
|
|
207
|
+
text_handle = (
|
|
208
|
+
self._legend_box.get_children()[1].get_children()[0].get_children()[0].get_children()[1]
|
|
209
|
+
)
|
|
210
|
+
# Bypass stale=True (we are already redrawing)
|
|
211
|
+
text_handle.set_text(label)
|
|
212
|
+
|
|
213
|
+
super().draw(renderer)
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
class TreeLegendHandler(HandlerErrorbar):
|
|
217
|
+
def __init__(self, marker_size=6, **kw):
|
|
218
|
+
self.marker_size = marker_size
|
|
219
|
+
super().__init__(**kw)
|
|
220
|
+
|
|
221
|
+
def create_artists(
|
|
222
|
+
self,
|
|
223
|
+
legend,
|
|
224
|
+
orig_handle,
|
|
225
|
+
xdescent,
|
|
226
|
+
ydescent,
|
|
227
|
+
width,
|
|
228
|
+
height,
|
|
229
|
+
fontsize,
|
|
230
|
+
trans,
|
|
231
|
+
):
|
|
232
|
+
# docstring inherited
|
|
233
|
+
plotline = orig_handle
|
|
234
|
+
|
|
235
|
+
xdata, xdata_marker = self.get_xdata(legend, xdescent, ydescent, width, height, fontsize)
|
|
236
|
+
ydata = np.full_like(xdata, (height - ydescent) / 2)
|
|
237
|
+
|
|
238
|
+
xdata_marker = np.asarray(xdata_marker)
|
|
239
|
+
ydata_marker = np.asarray(ydata[: len(xdata_marker)])
|
|
240
|
+
|
|
241
|
+
xerr_size, yerr_size = self.get_err_size(
|
|
242
|
+
legend, xdescent, ydescent, width, height, fontsize
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
if legend._layout == "vertical":
|
|
246
|
+
xdata, ydata = np.array(
|
|
247
|
+
[
|
|
248
|
+
((x, y - yerr_size), (x, y + yerr_size))
|
|
249
|
+
for x, y in zip(xdata_marker, ydata_marker)
|
|
250
|
+
]
|
|
251
|
+
).T
|
|
252
|
+
|
|
253
|
+
legline = Line2D(xdata, ydata)
|
|
254
|
+
|
|
255
|
+
legline_marker = Line2D(xdata_marker, ydata_marker)
|
|
256
|
+
|
|
257
|
+
# when plotlines are None (only errorbars are drawn), we just
|
|
258
|
+
# make legline invisible.
|
|
259
|
+
if plotline is None:
|
|
260
|
+
legline.set_visible(False)
|
|
261
|
+
legline_marker.set_visible(False)
|
|
262
|
+
else:
|
|
263
|
+
self.update_prop(legline, plotline, legend)
|
|
264
|
+
|
|
265
|
+
legline.set_drawstyle("default")
|
|
266
|
+
legline.set_marker("none")
|
|
267
|
+
|
|
268
|
+
self.update_prop(legline_marker, plotline, legend)
|
|
269
|
+
legline_marker.set_linestyle("None")
|
|
270
|
+
|
|
271
|
+
if legend.markerscale != 1:
|
|
272
|
+
newsz = legline_marker.get_markersize() * legend.markerscale
|
|
273
|
+
legline_marker.set_markersize(newsz)
|
|
274
|
+
|
|
275
|
+
handle_barlinecols = []
|
|
276
|
+
handle_caplines = []
|
|
277
|
+
|
|
278
|
+
if legend._layout != "vertical":
|
|
279
|
+
verts = [
|
|
280
|
+
((x - xerr_size, y), (x + xerr_size, y)) for x, y in zip(xdata_marker, ydata_marker)
|
|
281
|
+
]
|
|
282
|
+
coll = mcoll.LineCollection(verts)
|
|
283
|
+
self.update_prop(coll, plotline, legend)
|
|
284
|
+
handle_barlinecols.append(coll)
|
|
285
|
+
|
|
286
|
+
# Always show the cap lines
|
|
287
|
+
if True:
|
|
288
|
+
capline_left = Line2D(xdata_marker - xerr_size, ydata_marker)
|
|
289
|
+
capline_right = Line2D(xdata_marker + xerr_size, ydata_marker)
|
|
290
|
+
self.update_prop(capline_left, plotline, legend)
|
|
291
|
+
self.update_prop(capline_right, plotline, legend)
|
|
292
|
+
capline_left.set_marker("|")
|
|
293
|
+
capline_right.set_marker("|")
|
|
294
|
+
|
|
295
|
+
handle_caplines.append(capline_left)
|
|
296
|
+
handle_caplines.append(capline_right)
|
|
297
|
+
|
|
298
|
+
else:
|
|
299
|
+
verts = [
|
|
300
|
+
((x, y - yerr_size), (x, y + yerr_size)) for x, y in zip(xdata_marker, ydata_marker)
|
|
301
|
+
]
|
|
302
|
+
coll = mcoll.LineCollection(verts)
|
|
303
|
+
self.update_prop(coll, plotline, legend)
|
|
304
|
+
handle_barlinecols.append(coll)
|
|
305
|
+
|
|
306
|
+
# Always show the cap lines
|
|
307
|
+
if True:
|
|
308
|
+
capline_left = Line2D(xdata_marker, ydata_marker - yerr_size)
|
|
309
|
+
capline_right = Line2D(xdata_marker, ydata_marker + yerr_size)
|
|
310
|
+
self.update_prop(capline_left, plotline, legend)
|
|
311
|
+
self.update_prop(capline_right, plotline, legend)
|
|
312
|
+
capline_left.set_marker("_")
|
|
313
|
+
capline_right.set_marker("_")
|
|
314
|
+
|
|
315
|
+
handle_caplines.append(capline_left)
|
|
316
|
+
handle_caplines.append(capline_right)
|
|
317
|
+
|
|
318
|
+
artists = [
|
|
319
|
+
*handle_barlinecols,
|
|
320
|
+
*handle_caplines,
|
|
321
|
+
legline,
|
|
322
|
+
legline_marker,
|
|
323
|
+
]
|
|
324
|
+
for artist in artists:
|
|
325
|
+
artist.set_transform(trans)
|
|
326
|
+
return artists
|
iplotx/utils/matplotlib.py
CHANGED
|
@@ -4,6 +4,7 @@ from math import atan2
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
import pandas as pd
|
|
6
6
|
import matplotlib as mpl
|
|
7
|
+
import matplotlib.colors as mcolors
|
|
7
8
|
|
|
8
9
|
from .geometry import (
|
|
9
10
|
_evaluate_squared_bezier,
|
|
@@ -204,3 +205,80 @@ def _build_cmap_fun(
|
|
|
204
205
|
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
|
|
205
206
|
|
|
206
207
|
return lambda x: cmap(norm(x))
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
# NOTE: this is polyfill from future matplotlib versions
|
|
211
|
+
# LICENSED UNDER THE MPL LICENSE from:
|
|
212
|
+
# https://github.com/matplotlib/matplotlib/blob/main/lib/mpl_toolkits/mplot3d/proj3d.py
|
|
213
|
+
def _proj_transform_vectors(vecs, M):
|
|
214
|
+
"""
|
|
215
|
+
Vectorized version of ``_proj_transform_vec``.
|
|
216
|
+
|
|
217
|
+
Parameters
|
|
218
|
+
----------
|
|
219
|
+
vecs : ... x 3 np.ndarray
|
|
220
|
+
Input vectors
|
|
221
|
+
M : 4 x 4 np.ndarray
|
|
222
|
+
Projection matrix
|
|
223
|
+
"""
|
|
224
|
+
vecs_shape = vecs.shape
|
|
225
|
+
vecs = vecs.reshape(-1, 3).T
|
|
226
|
+
|
|
227
|
+
vecs_pad = np.empty((vecs.shape[0] + 1,) + vecs.shape[1:])
|
|
228
|
+
vecs_pad[:-1] = vecs
|
|
229
|
+
vecs_pad[-1] = 1
|
|
230
|
+
product = np.dot(M, vecs_pad)
|
|
231
|
+
tvecs = product[:3] / product[3]
|
|
232
|
+
|
|
233
|
+
return tvecs.T.reshape(vecs_shape)
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
def _zalpha(
|
|
237
|
+
colors,
|
|
238
|
+
zs,
|
|
239
|
+
min_alpha=0.3,
|
|
240
|
+
_data_scale=None,
|
|
241
|
+
):
|
|
242
|
+
"""Modify the alpha values of the color list according to z-depth."""
|
|
243
|
+
|
|
244
|
+
if len(colors) == 0 or len(zs) == 0:
|
|
245
|
+
return np.zeros((0, 4))
|
|
246
|
+
|
|
247
|
+
# Alpha values beyond the range 0-1 inclusive make no sense, so clip them
|
|
248
|
+
min_alpha = np.clip(min_alpha, 0, 1)
|
|
249
|
+
|
|
250
|
+
if _data_scale is None or _data_scale == 0:
|
|
251
|
+
# Don't scale the alpha values since we have no valid data scale for reference
|
|
252
|
+
sats = np.ones_like(zs)
|
|
253
|
+
|
|
254
|
+
else:
|
|
255
|
+
# Deeper points have an increasingly transparent appearance
|
|
256
|
+
sats = np.clip(1 - (zs - np.min(zs)) / _data_scale, min_alpha, 1)
|
|
257
|
+
|
|
258
|
+
rgba = np.broadcast_to(mcolors.to_rgba_array(colors), (len(zs), 4))
|
|
259
|
+
|
|
260
|
+
# Change the alpha values of the colors using the generated alpha multipliers
|
|
261
|
+
return np.column_stack([rgba[:, :3], rgba[:, 3] * sats])
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
def _get_data_scale(X, Y, Z):
|
|
265
|
+
"""
|
|
266
|
+
Estimate the scale of the 3D data for use in depth shading
|
|
267
|
+
|
|
268
|
+
Parameters
|
|
269
|
+
----------
|
|
270
|
+
X, Y, Z : masked arrays
|
|
271
|
+
The data to estimate the scale of.
|
|
272
|
+
"""
|
|
273
|
+
# Account for empty datasets. Assume that X Y and Z have the same number
|
|
274
|
+
# of elements.
|
|
275
|
+
if not np.ma.count(X):
|
|
276
|
+
return 0
|
|
277
|
+
|
|
278
|
+
# Estimate the scale using the RSS of the ranges of the dimensions
|
|
279
|
+
# Note that we don't use np.ma.ptp() because we otherwise get a build
|
|
280
|
+
# warning about handing empty arrays.
|
|
281
|
+
ptp_x = X.max() - X.min()
|
|
282
|
+
ptp_y = Y.max() - Y.min()
|
|
283
|
+
ptp_z = Z.max() - Z.min()
|
|
284
|
+
return np.sqrt(ptp_x**2 + ptp_y**2 + ptp_z**2)
|
iplotx/version.py
CHANGED
iplotx/vertex.py
CHANGED
|
@@ -398,7 +398,7 @@ def make_patch(
|
|
|
398
398
|
**kwargs,
|
|
399
399
|
) -> tuple[Patch, float]:
|
|
400
400
|
"""Make a patch of the given marker shape and size."""
|
|
401
|
-
forbidden_props = ["label", "cmap", "norm", "cascade", "deep"]
|
|
401
|
+
forbidden_props = ["label", "cmap", "norm", "cascade", "deep", "depthshade"]
|
|
402
402
|
for prop in forbidden_props:
|
|
403
403
|
if prop in kwargs:
|
|
404
404
|
kwargs.pop(prop)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: iplotx
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 1.0.0
|
|
4
4
|
Summary: Plot networkx from igraph and networkx.
|
|
5
5
|
Project-URL: Homepage, https://github.com/fabilab/iplotx
|
|
6
6
|
Project-URL: Documentation, https://readthedocs.org/iplotx
|
|
@@ -10,8 +10,9 @@ Project-URL: Changelog, https://github.com/fabilab/iplotx/blob/main/CHANGELOG.md
|
|
|
10
10
|
Author-email: Fabio Zanini <fabio.zanini@unsw.edu.au>
|
|
11
11
|
Maintainer-email: Fabio Zanini <fabio.zanini@unsw.edu.au>
|
|
12
12
|
License: MIT
|
|
13
|
-
Keywords: graph,network,plotting,visualisation
|
|
13
|
+
Keywords: graph,network,phylogeny,plotting,tree,visualisation
|
|
14
14
|
Classifier: Development Status :: 5 - Production/Stable
|
|
15
|
+
Classifier: Framework :: Matplotlib
|
|
15
16
|
Classifier: Intended Audience :: Developers
|
|
16
17
|
Classifier: Intended Audience :: Education
|
|
17
18
|
Classifier: Intended Audience :: Science/Research
|
|
@@ -52,13 +53,14 @@ Supports:
|
|
|
52
53
|
- **networks**:
|
|
53
54
|
- [networkx](https://networkx.org/)
|
|
54
55
|
- [igraph](igraph.readthedocs.io/)
|
|
55
|
-
- [minimal network data structure](https://iplotx.readthedocs.io/en/latest/gallery/plot_simplenetworkdataprovider.html#sphx-glr-gallery-plot-simplenetworkdataprovider-py) (
|
|
56
|
+
- [minimal network data structure](https://iplotx.readthedocs.io/en/latest/gallery/plot_simplenetworkdataprovider.html#sphx-glr-gallery-plot-simplenetworkdataprovider-py) (zero dependency)
|
|
56
57
|
- **trees**:
|
|
57
58
|
- [ETE4](https://etetoolkit.github.io/ete/)
|
|
58
59
|
- [cogent3](https://cogent3.org/)
|
|
59
60
|
- [Biopython](https://biopython.org/)
|
|
60
61
|
- [scikit-bio](https://scikit.bio)
|
|
61
|
-
- [
|
|
62
|
+
- [dendropy](https://jeetsukumaran.github.io/DendroPy/index.html)
|
|
63
|
+
- [minimal tree data structure](https://iplotx.readthedocs.io/en/latest/gallery/tree/plot_simpletreedataprovider.html#sphx-glr-gallery-tree-plot-simpletreedataprovider-py) (zero dependency)
|
|
62
64
|
|
|
63
65
|
In addition to the above, *any* network or tree analysis library can register an [entry point](https://iplotx.readthedocs.io/en/latest/providers.html#creating-a-custom-data-provider) to gain compatibility with `iplotx` with no intervention from our side.
|
|
64
66
|
|
|
@@ -89,15 +91,17 @@ See [gallery](https://iplotx.readthedocs.io/en/latest/gallery/index.html).
|
|
|
89
91
|
|
|
90
92
|
## Features
|
|
91
93
|
- Plot networks from multiple libraries including networkx and igraph, using matplotlib as a backend. ✅
|
|
92
|
-
- Plot trees from multiple libraries such as cogent3, ETE4, skbio, and
|
|
94
|
+
- Plot trees from multiple libraries such as cogent3, ETE4, skbio, biopython, and dendropy. ✅
|
|
93
95
|
- Flexible yet easy styling, including an internal library of styles ✅
|
|
94
96
|
- Interactive plotting, e.g. zooming and panning after the plot is created. ✅
|
|
95
97
|
- Store the plot to disk thanks to the many matplotlib backends (SVG, PNG, PDF, etc.). ✅
|
|
96
|
-
-
|
|
98
|
+
- 3D network visualisation with depth shading. ✅
|
|
99
|
+
- Efficient plotting of large graphs (up to ~1 million nodes on a laptop). ✅
|
|
97
100
|
- Edit plotting elements after the plot is created, e.g. changing node colors, labels, etc. ✅
|
|
98
101
|
- Animations, e.g. showing the evolution of a network over time. ✅
|
|
99
102
|
- Mouse and keyboard interaction, e.g. hovering over nodes/edges to get information about them. ✅
|
|
100
103
|
- Node clustering and covers, e.g. showing communities in a network. ✅
|
|
104
|
+
- Edge tension, edge waypoints, and edge ports. ✅
|
|
101
105
|
- Choice of tree layouts and orientations. ✅
|
|
102
106
|
- Tree-specific options: cascades, subtree styling, split edges, etc. ✅
|
|
103
107
|
- (WIP) Support uni- and bi-directional communication between graph object and plot object.🏗️
|
|
@@ -1,20 +1,16 @@
|
|
|
1
1
|
iplotx/__init__.py,sha256=RzSct91jO8abrxOIn33rKEnDUgYpu1oj4olbObgX_hs,489
|
|
2
|
-
iplotx/artists.py,sha256=
|
|
3
|
-
iplotx/cascades.py,sha256=OPqF7Huls-HFmDA5MCF6DEZlUeRVaXsbQcHBoKAgNJs,8182
|
|
4
|
-
iplotx/groups.py,sha256=g6ahm61BSBmd2weIjr40MvPi_GcNRgvNb9YklQsiza4,6784
|
|
2
|
+
iplotx/artists.py,sha256=2dBDT240zGwKb6tIc_y9pXeyU3LuYeF9wjj2tvi4KJo,730
|
|
5
3
|
iplotx/label.py,sha256=7eS8ByadrhdIFOZz19U4VrS-oXY_ndFYNB-D4RZbFqI,9573
|
|
6
4
|
iplotx/layout.py,sha256=KxmRLqjo8AYCBAmXez8rIiLU2sM34qhb6ox9AHYwRyE,4839
|
|
7
|
-
iplotx/
|
|
8
|
-
iplotx/plotting.py,sha256=icEefWJnS2lEGLp4t1LhDSP40JuvNKgOie3FDLOnTMk,13195
|
|
9
|
-
iplotx/tree.py,sha256=TxbNoBHS0CfswrcMIWCNtnOl_3e4-PwCrVo0goywC0U,28807
|
|
5
|
+
iplotx/plotting.py,sha256=FvV33DCuEjJwO9ytiYJuQmfOywgF-cDANd6nEE5s8R0,13211
|
|
10
6
|
iplotx/typing.py,sha256=QLdzV358IiD1CFe88MVp0D77FSx5sSAVUmM_2WPPE8I,1463
|
|
11
|
-
iplotx/version.py,sha256=
|
|
12
|
-
iplotx/vertex.py,sha256=
|
|
7
|
+
iplotx/version.py,sha256=Zw6LAvjlzbItG1QBPJb1Tuqkb2PVUYsDwCVRYEJusgc,66
|
|
8
|
+
iplotx/vertex.py,sha256=_yYyvusn4vYvi6RBEW6CHa3vnbv43GnZylnMIaK4bG0,16040
|
|
13
9
|
iplotx/art3d/vertex.py,sha256=Xf8Um30X2doCd8KdNN7332F6BxC4k72Mb_GeRAuzQfQ,2545
|
|
14
|
-
iplotx/art3d/edge/__init__.py,sha256=
|
|
10
|
+
iplotx/art3d/edge/__init__.py,sha256=uw1U_mMXqcZAvea-7JbU1PUKULQD1CMMrbwY02tiWRQ,8529
|
|
15
11
|
iplotx/art3d/edge/arrow.py,sha256=14BFXY9kDOUGPZl2fMD9gRVGyaaN5kyd-l6ikBg6WHU,3601
|
|
16
12
|
iplotx/art3d/edge/geometry.py,sha256=76VUmpPG-4Mls7x_994dMwdDPrWWnjT7nHJsHfwK_hA,2467
|
|
17
|
-
iplotx/edge/__init__.py,sha256=
|
|
13
|
+
iplotx/edge/__init__.py,sha256=lkrMkQFx9PNzorKc9trQ8MggC-nZSyALhvP78DMvhN4,26363
|
|
18
14
|
iplotx/edge/arrow.py,sha256=U7vvBo7IMwo1qiyU9cyUEwraOaBcJLgdu9oU2OyoHL4,17453
|
|
19
15
|
iplotx/edge/geometry.py,sha256=jkTMvQC5425GjB_fmGLIPJeSDAr_7NZF8zZDLTrSj34,15541
|
|
20
16
|
iplotx/edge/leaf.py,sha256=SyGMv2PIOoH0pey8-aMVaZheK3hNe1Qz_okcyWbc4E4,4268
|
|
@@ -27,16 +23,22 @@ iplotx/ingest/providers/network/networkx.py,sha256=ehCg4npL073HX-eAG-VoP6refLPsM
|
|
|
27
23
|
iplotx/ingest/providers/network/simple.py,sha256=e_aHhiHhN9DrMoNrt7tEMPURXGhQ1TYRPzsxDEptUlc,3766
|
|
28
24
|
iplotx/ingest/providers/tree/biopython.py,sha256=4N_54cVyHHPcASJZGr6pHKE2p5R3i8Cm307SLlSLHLA,1480
|
|
29
25
|
iplotx/ingest/providers/tree/cogent3.py,sha256=JmELbDK7LyybiJzFNbmeqZ4ySJoDajvFfJebpNfFKWo,1073
|
|
26
|
+
iplotx/ingest/providers/tree/dendropy.py,sha256=uRMe46PfDPUTeNInUO2Gbp4pVr-WIFIZQvrND2tovsg,1548
|
|
30
27
|
iplotx/ingest/providers/tree/ete4.py,sha256=D7usSq0MOjzrk3EoLi834IlaDGwv7_qG6Qt0ptfKqfI,928
|
|
31
28
|
iplotx/ingest/providers/tree/simple.py,sha256=aV9wGqBomJ5klM_aJQeuL_Q_J1pLCv6AFN98BPDiKUw,2593
|
|
32
29
|
iplotx/ingest/providers/tree/skbio.py,sha256=O1KUr8tYi28pZ3VVjapgO4Uj-YpMuix3GhOH5je8Lv4,822
|
|
30
|
+
iplotx/network/__init__.py,sha256=oEv6f8oFYrtcI_NKabr8a_oIWTc1jXXTl_yO1xox_rE,13575
|
|
31
|
+
iplotx/network/groups.py,sha256=E_eYVXRHjv1DcyA4RupTkMa-rRFrIKkt9Rxn_Elw9Nc,6796
|
|
33
32
|
iplotx/style/__init__.py,sha256=rf1GutrE8hHUhCoe4FGKYX-aNtHuu_U-kYQnqUxZNrY,10282
|
|
34
|
-
iplotx/style/leaf_info.py,sha256=
|
|
33
|
+
iplotx/style/leaf_info.py,sha256=3xBn7xv9Uy2KAqdhM9S6ew5ZBJrGRTXRL3xXb8atfLw,1018
|
|
35
34
|
iplotx/style/library.py,sha256=58Y8BlllGLsR4pQM7_PVCP5tH6_4GkchXZvJpqGHlcg,8534
|
|
35
|
+
iplotx/tree/__init__.py,sha256=6a8cbTd-OS-x8GEZJeRo3vneVjI98AiQW_gIo1H7h3Y,29969
|
|
36
|
+
iplotx/tree/cascades.py,sha256=on5GyqbWasl1zgK7bYXYQE0LOSfHc1z-1hnm0GWd6aw,8184
|
|
37
|
+
iplotx/tree/scalebar.py,sha256=QC2l-Nx39g8fkO1tHHvbrtzLncfQc9L57BQniSk2h5Q,11849
|
|
36
38
|
iplotx/utils/geometry.py,sha256=6RrC6qaB0-1vIk1LhGA4CfsiMd-9JNniSPyL_l9mshE,9245
|
|
37
39
|
iplotx/utils/internal.py,sha256=WWfcZDGK8Ut1y_tOHRGg9wSqY1bwSeLQO7dHM_8Tvwo,107
|
|
38
|
-
iplotx/utils/matplotlib.py,sha256=
|
|
40
|
+
iplotx/utils/matplotlib.py,sha256=p_53Oamof0RI4mtV8HrdDtZbgVqUxeUZ_KDvLZSiBUQ,8604
|
|
39
41
|
iplotx/utils/style.py,sha256=vyNP80nDYVinqm6_9ltCJCtjK35ZcGlHvOskNv3eQBc,4225
|
|
40
|
-
iplotx-0.
|
|
41
|
-
iplotx-0.
|
|
42
|
-
iplotx-0.
|
|
42
|
+
iplotx-1.0.0.dist-info/METADATA,sha256=VsUs2_FiPrGNcfAfnL-T0fB9RObJCdAUvjaEUO46vFg,5086
|
|
43
|
+
iplotx-1.0.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
44
|
+
iplotx-1.0.0.dist-info/RECORD,,
|
|
File without changes
|