ipex-llm 2.2.0b20250405__py3-none-manylinux2010_x86_64.whl → 2.3.0b20250407__py3-none-manylinux2010_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2072,12 +2072,31 @@ def _optimize_post(model):
2072
2072
  convert_forward(model.thinker.visual, module.Qwen2_5OmniVisionSdpaAttention,
2073
2073
  qwen2_5_omni_vision_attention_forward)
2074
2074
 
2075
+ # audio opt
2076
+ from ipex_llm.transformers.models.qwen2_5_omni import qwen2_5_omni_audio_attention_forward
2077
+ convert_forward(model.thinker.audio_tower, module.Qwen2_5OmniAudioAttention,
2078
+ qwen2_5_omni_audio_attention_forward)
2079
+ convert_forward(model.thinker.audio_tower, module.Qwen2_5OmniAudioSdpaAttention,
2080
+ qwen2_5_omni_audio_attention_forward)
2081
+
2075
2082
  # tts opt
2076
- if hasattr(model, "talker"):
2077
- convert_forward(model.talker, module.Qwen2_5OmniAttention,
2083
+ if model.has_talker:
2084
+ # talker part
2085
+ convert_forward(model.talker.model, module.Qwen2_5OmniAttention,
2086
+ qwen2_5_omni_attention_forward)
2087
+ convert_forward(model.talker.model, module.Qwen2_5OmniSdpaAttention,
2078
2088
  qwen2_5_omni_attention_forward)
2079
- convert_forward(model.talker, module.Qwen2_5OmniThinkerModel,
2089
+ convert_forward(model.talker.model, module.Qwen2_5OmniTalkerModel,
2080
2090
  qwen2_5_omni_thinker_model_forward)
2091
+ convert_forward(model.talker.model, module.Qwen2MLP, qwen2_mlp_forward)
2092
+
2093
+ # token2wav part
2094
+ from ipex_llm.transformers.models.qwen2_5_omni import dit_attention_forward
2095
+ from ipex_llm.transformers.models.qwen2_5_omni import _create_block_diff
2096
+ convert_forward(model.token2wav, module.DiTAttention, dit_attention_forward)
2097
+ dit_model = model.token2wav.code2wav_dit_model
2098
+ dit_model._create_block_diff = MethodType(_create_block_diff, dit_model)
2099
+
2081
2100
  return model
2082
2101
 
2083
2102
 
@@ -20,9 +20,11 @@
20
20
  import math
21
21
  import torch
22
22
  from typing import Optional, Tuple, List, Union
23
- from transformers.cache_utils import Cache
23
+ from transformers.cache_utils import Cache, EncoderDecoderCache
24
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
24
25
  from transformers.modeling_outputs import BaseModelOutputWithPast
25
26
  from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import Qwen2_5OmniAttention
27
+ from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import apply_rotary_pos_emb
26
28
  from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import apply_rotary_pos_emb_vision
27
29
  from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import apply_multimodal_rotary_pos_emb
28
30
 
@@ -284,3 +286,160 @@ def qwen2_5_omni_vision_attention_forward(
284
286
  attn_output = attn_output.reshape(seq_length, -1)
285
287
  attn_output = self.proj(attn_output)
286
288
  return attn_output
289
+
290
+
291
+ def qwen2_5_omni_audio_attention_forward(
292
+ self,
293
+ hidden_states: torch.Tensor,
294
+ key_value_states: Optional[torch.Tensor] = None,
295
+ past_key_value: Optional[EncoderDecoderCache] = None,
296
+ cu_seqlens: Optional[torch.Tensor] = None,
297
+ layer_head_mask: Optional[torch.Tensor] = None,
298
+ output_attentions: bool = False,
299
+ cache_position: Optional[torch.LongTensor] = None,
300
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
301
+ """Input shape: Batch x Time x Channel"""
302
+
303
+ # if key_value_states are provided this layer is used as a cross-attention layer
304
+ # for the decoder
305
+ is_cross_attention = key_value_states is not None
306
+ seq_length, _ = hidden_states.size()
307
+
308
+ # get query proj
309
+ query_states = self.q_proj(hidden_states)
310
+ query_states = query_states.reshape(seq_length, self.num_heads, -1)
311
+
312
+ seq_lens = cu_seqlens.tolist()
313
+ invalidInputError(seq_lens[0] == 0 and seq_lens[-1] == seq_length,
314
+ "unexpected input")
315
+
316
+ if past_key_value is not None:
317
+ is_updated = past_key_value.is_updated.get(self.layer_idx)
318
+ if is_cross_attention:
319
+ # after the first generated id,
320
+ # we can subsequently re-use all key/value_states from cache
321
+ past_key_value.is_updated[self.layer_idx] = True
322
+ past_key_value = past_key_value.cross_attention_cache
323
+ else:
324
+ past_key_value = past_key_value.self_attention_cache
325
+
326
+ # use key_value_states if cross attention
327
+ current_states = key_value_states if key_value_states is not None else hidden_states
328
+ if is_cross_attention and past_key_value and is_updated:
329
+ # reuse k,v, cross_attentions
330
+ key_states = past_key_value.key_cache[self.layer_idx]
331
+ value_states = past_key_value.value_cache[self.layer_idx]
332
+ else:
333
+ key_states = self.k_proj(current_states).reshape(seq_length, self.num_heads, -1)
334
+ value_states = self.v_proj(current_states).reshape(seq_length, self.num_heads, -1)
335
+ if past_key_value is not None:
336
+ # save all key/value_states to cache to be re-used for fast auto-regressive generation
337
+ cache_position = cache_position if not is_cross_attention else None
338
+ key_states, value_states = past_key_value.update(
339
+ key_states, value_states, self.layer_idx, {"cache_position": cache_position}
340
+ )
341
+
342
+ if layer_head_mask is None and use_sdp_non_causal(query_states.size(-1),
343
+ query_states.device, query_states.dtype):
344
+ kv_length = key_states.size(0)
345
+ padding_kv_length = (kv_length + 128 - 1) // 128 * 128
346
+ attention_mask = torch.full(
347
+ [1, 1, seq_length, padding_kv_length], torch.finfo(query_states.dtype).min,
348
+ device=query_states.device, dtype=query_states.dtype,
349
+ )
350
+ for i in range(1, len(cu_seqlens)):
351
+ attention_mask[..., seq_lens[i - 1]:seq_lens[i], seq_lens[i - 1]:seq_lens[i]] = 0
352
+
353
+ q = query_states.transpose(0, 1).unsqueeze(0)
354
+ k = key_states.transpose(0, 1).unsqueeze(0).contiguous()
355
+ v = value_states.transpose(0, 1).unsqueeze(0).contiguous()
356
+ # q, k, v: [1, num_heads, seq_length, head_dim]
357
+
358
+ attn_weights = None
359
+ attn_output = scaled_dot_product_attention(q, k, v, attention_mask, False)
360
+ attn_output = attn_output.permute(0, 2, 1, 3).squeeze(0)
361
+ # attn_output: [seq_length, num_heads, head_dim]
362
+ else:
363
+ attention_mask = torch.full(
364
+ [1, seq_length, key_states.size(0)], torch.finfo(query_states.dtype).min,
365
+ device=query_states.device, dtype=query_states.dtype,
366
+ )
367
+ for i in range(1, len(cu_seqlens)):
368
+ attention_mask[..., seq_lens[i - 1]:seq_lens[i], seq_lens[i - 1]:seq_lens[i]] = 0
369
+
370
+ query_states = query_states.transpose(0, 1)
371
+ key_states = key_states.transpose(0, 1)
372
+ value_states = value_states.transpose(0, 1)
373
+
374
+ attn_weights = torch.matmul(query_states,
375
+ key_states.transpose(1, 2)) / math.sqrt(self.head_dim)
376
+ attn_weights = attn_weights + attention_mask
377
+ attn_weights = attention_softmax(attn_weights)
378
+
379
+ if layer_head_mask is not None:
380
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights
381
+
382
+ attn_output = torch.matmul(attn_weights, value_states).transpose(0, 1)
383
+
384
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state`s
385
+ # because `attn_output` can be partitioned across GPUs when using tensor-parallelism.
386
+ attn_output = attn_output.reshape(seq_length, self.embed_dim)
387
+ attn_output = self.out_proj(attn_output)
388
+
389
+ return attn_output, attn_weights, past_key_value
390
+
391
+
392
+ def dit_attention_forward(
393
+ self,
394
+ x,
395
+ rope=None,
396
+ mask=None,
397
+ ) -> torch.Tensor:
398
+ batch_size = x.shape[0]
399
+
400
+ # `sample` projections.
401
+ query = self.to_q(x)
402
+ key = self.to_k(x)
403
+ value = self.to_v(x)
404
+
405
+ # attention
406
+ inner_dim = key.shape[-1]
407
+ head_dim = inner_dim // self.heads
408
+ query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
409
+ key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
410
+ value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
411
+
412
+ # apply rotary position embedding
413
+ # Due to training process, only first head is applied with RoPE, will be fixed at next release
414
+ cos, sin = rope
415
+ query[:, :1], key[:, :1] = apply_rotary_pos_emb(query[:, :1], key[:, :1], cos, sin)
416
+
417
+ if use_sdp_non_causal(head_dim, query.device, query.dtype):
418
+ mask = torch.where(mask, 0, torch.finfo(query.dtype).min)
419
+ x = scaled_dot_product_attention(query, key.contiguous(), value.contiguous(), mask, False)
420
+ x = x.transpose(1, 2)
421
+ else:
422
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self._attn_implementation]
423
+ x, _ = attention_interface(self, query, key, value, attention_mask=mask, is_causal=False)
424
+
425
+ # mask
426
+ x = x.reshape(batch_size, -1, self.heads * head_dim)
427
+ x = x.to(query.dtype)
428
+
429
+ # linear proj
430
+ x = self.to_out[0](x)
431
+ # dropout
432
+ x = self.to_out[1](x)
433
+
434
+ return x
435
+
436
+
437
+ def _create_block_diff(self, x):
438
+ batch, seq_len = x.shape[0], x.shape[1]
439
+ block_indices = torch.arange(seq_len, device=x.device) // self.block_size
440
+
441
+ block_i = block_indices.unsqueeze(1) # [seq_length, 1]
442
+ block_j = block_indices.unsqueeze(0) # [1, seq_length]
443
+
444
+ block_diff = block_j - block_i # (n, n)
445
+ return block_diff.unsqueeze(0).unsqueeze(0)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ipex-llm
3
- Version: 2.2.0b20250405
3
+ Version: 2.3.0b20250407
4
4
  Summary: Large Language Model Develop Toolkit
5
5
  Home-page: https://github.com/intel-analytics/ipex-llm
6
6
  Author: BigDL Authors
@@ -27,7 +27,7 @@ Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine
27
27
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'all'
28
28
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'all'
29
29
  Provides-Extra: cpp
30
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250405 ; extra == 'cpp'
30
+ Requires-Dist: bigdl-core-cpp ==2.7.0b20250407 ; extra == 'cpp'
31
31
  Requires-Dist: setuptools ; extra == 'cpp'
32
32
  Requires-Dist: onednn-devel ==2025.0.1 ; (platform_system == "Windows") and extra == 'cpp'
33
33
  Requires-Dist: onednn ==2025.0.1 ; (platform_system == "Windows") and extra == 'cpp'
@@ -60,7 +60,7 @@ Requires-Dist: transformers ==4.40.0 ; extra == 'npu'
60
60
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'npu'
61
61
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'npu'
62
62
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'npu'
63
- Requires-Dist: bigdl-core-npu ==2.6.0b20250405 ; (platform_system == "Windows") and extra == 'npu'
63
+ Requires-Dist: bigdl-core-npu ==2.7.0b20250407 ; (platform_system == "Windows") and extra == 'npu'
64
64
  Provides-Extra: serving
65
65
  Requires-Dist: py-cpuinfo ; extra == 'serving'
66
66
  Requires-Dist: fschat[model_worker,webui] ==0.2.36 ; extra == 'serving'
@@ -80,9 +80,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu'
80
80
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu'
81
81
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu'
82
82
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu'
83
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250405 ; extra == 'xpu'
84
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250405 ; extra == 'xpu'
85
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250405 ; extra == 'xpu'
83
+ Requires-Dist: bigdl-core-xe-21 ==2.7.0b20250407 ; extra == 'xpu'
84
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.7.0b20250407 ; extra == 'xpu'
85
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.7.0b20250407 ; extra == 'xpu'
86
86
  Provides-Extra: xpu-2-1
87
87
  Requires-Dist: py-cpuinfo ; extra == 'xpu-2-1'
88
88
  Requires-Dist: protobuf ; extra == 'xpu-2-1'
@@ -97,9 +97,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu-2-1'
97
97
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu-2-1'
98
98
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu-2-1'
99
99
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu-2-1'
100
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250405 ; extra == 'xpu-2-1'
101
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250405 ; extra == 'xpu-2-1'
102
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250405 ; extra == 'xpu-2-1'
100
+ Requires-Dist: bigdl-core-xe-21 ==2.7.0b20250407 ; extra == 'xpu-2-1'
101
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.7.0b20250407 ; extra == 'xpu-2-1'
102
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.7.0b20250407 ; extra == 'xpu-2-1'
103
103
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-1'
104
104
  Requires-Dist: dpcpp-cpp-rt ==2024.0.2 ; (platform_system == "Windows") and extra == 'xpu-2-1'
105
105
  Requires-Dist: mkl-dpcpp ==2024.0.0 ; (platform_system == "Windows") and extra == 'xpu-2-1'
@@ -117,7 +117,7 @@ Requires-Dist: setuptools ; extra == 'xpu-2-6'
117
117
  Requires-Dist: torch ==2.6.0+xpu ; extra == 'xpu-2-6'
118
118
  Requires-Dist: torchvision ==0.21.0+xpu ; extra == 'xpu-2-6'
119
119
  Requires-Dist: torchaudio ==2.6.0+xpu ; extra == 'xpu-2-6'
120
- Requires-Dist: bigdl-core-xe-all ==2.6.0b20250405 ; extra == 'xpu-2-6'
120
+ Requires-Dist: bigdl-core-xe-all ==2.7.0b20250407 ; extra == 'xpu-2-6'
121
121
  Requires-Dist: onednn-devel ==2025.0.1 ; extra == 'xpu-2-6'
122
122
  Requires-Dist: onednn ==2025.0.1 ; extra == 'xpu-2-6'
123
123
  Requires-Dist: dpcpp-cpp-rt ==2025.0.2 ; extra == 'xpu-2-6'
@@ -132,7 +132,7 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-2-6-arl'
132
132
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-2-6-arl'
133
133
  Requires-Dist: tabulate ; extra == 'xpu-2-6-arl'
134
134
  Requires-Dist: setuptools ; extra == 'xpu-2-6-arl'
135
- Requires-Dist: bigdl-core-xe-all ==2.6.0b20250405 ; extra == 'xpu-2-6-arl'
135
+ Requires-Dist: bigdl-core-xe-all ==2.7.0b20250407 ; extra == 'xpu-2-6-arl'
136
136
  Requires-Dist: onednn-devel ==2025.0.1 ; extra == 'xpu-2-6-arl'
137
137
  Requires-Dist: onednn ==2025.0.1 ; extra == 'xpu-2-6-arl'
138
138
  Requires-Dist: dpcpp-cpp-rt ==2025.0.2 ; extra == 'xpu-2-6-arl'
@@ -155,9 +155,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arc'
155
155
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arc'
156
156
  Requires-Dist: tabulate ; extra == 'xpu-arc'
157
157
  Requires-Dist: setuptools ; extra == 'xpu-arc'
158
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250405 ; extra == 'xpu-arc'
159
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250405 ; extra == 'xpu-arc'
160
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250405 ; extra == 'xpu-arc'
158
+ Requires-Dist: bigdl-core-xe-23 ==2.7.0b20250407 ; extra == 'xpu-arc'
159
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.7.0b20250407 ; extra == 'xpu-arc'
160
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.7.0b20250407 ; extra == 'xpu-arc'
161
161
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arc'
162
162
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
163
163
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
@@ -178,9 +178,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arl'
178
178
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arl'
179
179
  Requires-Dist: tabulate ; extra == 'xpu-arl'
180
180
  Requires-Dist: setuptools ; extra == 'xpu-arl'
181
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250405 ; extra == 'xpu-arl'
182
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250405 ; extra == 'xpu-arl'
183
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250405 ; extra == 'xpu-arl'
181
+ Requires-Dist: bigdl-core-xe-23 ==2.7.0b20250407 ; extra == 'xpu-arl'
182
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.7.0b20250407 ; extra == 'xpu-arl'
183
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.7.0b20250407 ; extra == 'xpu-arl'
184
184
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arl'
185
185
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
186
186
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
@@ -201,9 +201,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-lnl'
201
201
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-lnl'
202
202
  Requires-Dist: tabulate ; extra == 'xpu-lnl'
203
203
  Requires-Dist: setuptools ; extra == 'xpu-lnl'
204
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250405 ; extra == 'xpu-lnl'
205
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250405 ; extra == 'xpu-lnl'
206
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250405 ; extra == 'xpu-lnl'
204
+ Requires-Dist: bigdl-core-xe-23 ==2.7.0b20250407 ; extra == 'xpu-lnl'
205
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.7.0b20250407 ; extra == 'xpu-lnl'
206
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.7.0b20250407 ; extra == 'xpu-lnl'
207
207
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-lnl'
208
208
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
209
209
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
@@ -94,7 +94,7 @@ ipex_llm/serving/fastchat/tgi_api_protocol.py,sha256=brT3k3-V0NJrU4fRqUwWjC0O3iO
94
94
  ipex_llm/serving/fastchat/tgi_api_server.py,sha256=agNTAEiZPSuj3dEdIdYKwkoY0cXOUDX06DiM9VP2knQ,24418
95
95
  ipex_llm/serving/fastchat/vllm_worker.py,sha256=ZLz2Q9GxJO6r_LOiP6epgCRjBGk-K4EB1SNEWSJp5DA,11091
96
96
  ipex_llm/transformers/__init__.py,sha256=BreA3EY6hkNq0rVixb_sUuTLzMrcWXTt3yRsshCPHHQ,1214
97
- ipex_llm/transformers/convert.py,sha256=D3QSoD48NzOKz9rKIsgrI0sNzdmJvb0sP4k_0f8Lcmo,105824
97
+ ipex_llm/transformers/convert.py,sha256=xqqZFGcdDRko2IYgfSgDRs8ef4THUR25IAhSyDV0VUs,106933
98
98
  ipex_llm/transformers/convert_ipex.py,sha256=_nSnUTQy-yfkKaqGdqnBdWztZf3NGmnbZ0TKaDrF4X4,14617
99
99
  ipex_llm/transformers/embedding.py,sha256=bdgk59DvD4ZZyxRzewXOR7g56nThgO6uhIwk8QL7f-s,9299
100
100
  ipex_llm/transformers/kv.py,sha256=k4TU18LlA-Sbq9WNNQnfuzu3RSFBwFhmaV3BcGN5bAo,19191
@@ -178,7 +178,7 @@ ipex_llm/transformers/models/phi3.py,sha256=AaWB7TPQdrDYgpcVHglG0Q0480bxNOw1mFeP
178
178
  ipex_llm/transformers/models/phixtral.py,sha256=MDTMghcu7qAmZmRcUGqXXDXhSU3y_N59HRIXmlcjp5g,4890
179
179
  ipex_llm/transformers/models/qwen.py,sha256=A3WiVCzA7NLkcjp4zhFkZvKZzZWZlg0WFuVV_556TAI,19543
180
180
  ipex_llm/transformers/models/qwen2.py,sha256=zK-FpUaxEhjD4gZa1ZvArodAilz29T_cpeAqfCGosc0,14317
181
- ipex_llm/transformers/models/qwen2_5_omni.py,sha256=uAm_dZBAf53nYt3d1bFitFcIWJV80wqU4q4NJRbwxIE,12015
181
+ ipex_llm/transformers/models/qwen2_5_omni.py,sha256=gNnWvGiPntn6GlyIUtCVYCSIMPU6FG9TCS7fhWbwerY,18779
182
182
  ipex_llm/transformers/models/qwen2_moe.py,sha256=a0gYo-ngf8SxaEnBdZUJDnPS6Mkn_poDd8xqhx50icI,19516
183
183
  ipex_llm/transformers/models/qwen2_vl.py,sha256=G-9e2oN4f5p5IWQ-zsBZuONxTura3BjlgyT2meigbHQ,13579
184
184
  ipex_llm/transformers/models/qwen_vl.py,sha256=j7Nzzz2Qvynu9yrCXmoEfERjw43hXof5TbXIs7Ms-oY,17105
@@ -263,11 +263,11 @@ ipex_llm/vllm/xpu/engine/__init__.py,sha256=pY_CpyuZd72fr6s32ejeKHKFW0K4vUU2rzZj
263
263
  ipex_llm/vllm/xpu/engine/engine.py,sha256=NvCMbp0X8NVrOqbwm4FTvXOptTRLzu9jQsy37ZHnTk8,9493
264
264
  ipex_llm/vllm/xpu/entrypoints/openai/api_server.py,sha256=IjiSze9vzBCAkLu_VwIcJwuO1jyFna7DLrj6aSL7RaQ,35220
265
265
  ipex_llm/vllm/xpu/entrypoints/openai/cli_args.py,sha256=hB398yYtKauASRzevctScdbFIjiiSGMAe1bwEuIHrhY,10893
266
- ipex_llm-2.2.0b20250405.data/scripts/ipex-llm-init,sha256=fLQsT2dRL6H5bThb4GuIWotAuqoLsIxFwA-0c2qmaO8,6672
267
- ipex_llm-2.2.0b20250405.data/scripts/llm-chat,sha256=TdUnUmNapzuoe1c8IzrdVOQwWEg8IqsMSBRlOD3daZM,2249
268
- ipex_llm-2.2.0b20250405.data/scripts/llm-cli,sha256=RXGPlLElHxcKzoUxljEMBIAXbzCDysXL-Nxw-xF-7LU,2457
269
- ipex_llm-2.2.0b20250405.dist-info/METADATA,sha256=PgVyv73hHB7drLqtbM1eeXXGVckTSeeiLcIIgJu7OLg,13917
270
- ipex_llm-2.2.0b20250405.dist-info/WHEEL,sha256=PPJcBMAZibF_2GFE9NmOJGqiaSMPiNFbJd6QaJjdA6Y,109
271
- ipex_llm-2.2.0b20250405.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
272
- ipex_llm-2.2.0b20250405.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
273
- ipex_llm-2.2.0b20250405.dist-info/RECORD,,
266
+ ipex_llm-2.3.0b20250407.data/scripts/ipex-llm-init,sha256=fLQsT2dRL6H5bThb4GuIWotAuqoLsIxFwA-0c2qmaO8,6672
267
+ ipex_llm-2.3.0b20250407.data/scripts/llm-chat,sha256=TdUnUmNapzuoe1c8IzrdVOQwWEg8IqsMSBRlOD3daZM,2249
268
+ ipex_llm-2.3.0b20250407.data/scripts/llm-cli,sha256=RXGPlLElHxcKzoUxljEMBIAXbzCDysXL-Nxw-xF-7LU,2457
269
+ ipex_llm-2.3.0b20250407.dist-info/METADATA,sha256=8oGf4R8c2G6AyNdw28cESK3wjRjCnyghRmKtGC8dTLI,13917
270
+ ipex_llm-2.3.0b20250407.dist-info/WHEEL,sha256=PPJcBMAZibF_2GFE9NmOJGqiaSMPiNFbJd6QaJjdA6Y,109
271
+ ipex_llm-2.3.0b20250407.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
272
+ ipex_llm-2.3.0b20250407.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
273
+ ipex_llm-2.3.0b20250407.dist-info/RECORD,,