ipex-llm 2.2.0b20250210__py3-none-win_amd64.whl → 2.2.0b20250211__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. ipex_llm/libs/bloom-api.dll +0 -0
  2. ipex_llm/libs/bloom.dll +0 -0
  3. ipex_llm/libs/gptneox-api.dll +0 -0
  4. ipex_llm/libs/gptneox.dll +0 -0
  5. ipex_llm/libs/libbloom_avx.dll +0 -0
  6. ipex_llm/libs/libbloom_vnni.dll +0 -0
  7. ipex_llm/libs/libgptneox_avx.dll +0 -0
  8. ipex_llm/libs/libgptneox_vnni.dll +0 -0
  9. ipex_llm/libs/libllama_avx.dll +0 -0
  10. ipex_llm/libs/libllama_vnni.dll +0 -0
  11. ipex_llm/libs/libstarcoder_avx.dll +0 -0
  12. ipex_llm/libs/libstarcoder_vnni.dll +0 -0
  13. ipex_llm/libs/llama-api.dll +0 -0
  14. ipex_llm/libs/llama.dll +0 -0
  15. ipex_llm/libs/main-bloom.exe +0 -0
  16. ipex_llm/libs/main-gptneox.exe +0 -0
  17. ipex_llm/libs/main-llama.exe +0 -0
  18. ipex_llm/libs/main-starcoder.exe +0 -0
  19. ipex_llm/libs/pipeline.dll +0 -0
  20. ipex_llm/libs/quantize-bloom.exe +0 -0
  21. ipex_llm/libs/quantize-bloom_vnni.exe +0 -0
  22. ipex_llm/libs/quantize-gptneox.exe +0 -0
  23. ipex_llm/libs/quantize-gptneox_vnni.exe +0 -0
  24. ipex_llm/libs/quantize-llama.exe +0 -0
  25. ipex_llm/libs/quantize-llama_vnni.exe +0 -0
  26. ipex_llm/libs/quantize-starcoder.exe +0 -0
  27. ipex_llm/libs/quantize-starcoder_vnni.exe +0 -0
  28. ipex_llm/libs/starcoder-api.dll +0 -0
  29. ipex_llm/libs/starcoder.dll +0 -0
  30. ipex_llm/transformers/convert.py +21 -0
  31. ipex_llm/transformers/low_bit_linear.py +1 -1
  32. ipex_llm/transformers/models/baichuan_m1.py +240 -0
  33. {ipex_llm-2.2.0b20250210.dist-info → ipex_llm-2.2.0b20250211.dist-info}/METADATA +19 -19
  34. {ipex_llm-2.2.0b20250210.dist-info → ipex_llm-2.2.0b20250211.dist-info}/RECORD +40 -39
  35. {ipex_llm-2.2.0b20250210.data → ipex_llm-2.2.0b20250211.data}/scripts/ipex-llm-init.bat +0 -0
  36. {ipex_llm-2.2.0b20250210.data → ipex_llm-2.2.0b20250211.data}/scripts/llm-chat.ps1 +0 -0
  37. {ipex_llm-2.2.0b20250210.data → ipex_llm-2.2.0b20250211.data}/scripts/llm-cli.ps1 +0 -0
  38. {ipex_llm-2.2.0b20250210.dist-info → ipex_llm-2.2.0b20250211.dist-info}/WHEEL +0 -0
  39. {ipex_llm-2.2.0b20250210.dist-info → ipex_llm-2.2.0b20250211.dist-info}/entry_points.txt +0 -0
  40. {ipex_llm-2.2.0b20250210.dist-info → ipex_llm-2.2.0b20250211.dist-info}/top_level.txt +0 -0
Binary file
ipex_llm/libs/bloom.dll CHANGED
Binary file
Binary file
ipex_llm/libs/gptneox.dll CHANGED
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
ipex_llm/libs/llama.dll CHANGED
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
@@ -1062,6 +1062,11 @@ def _optimize_pre(model, qtype=None):
1062
1062
  from ipex_llm.transformers.models.glm import merge_qkv, split_mlp
1063
1063
  model.apply(merge_qkv)
1064
1064
  model.apply(split_mlp)
1065
+ elif model.config.model_type == "baichuan_m1":
1066
+ from ipex_llm.transformers.models.baichuan_m1 import pre_register_inv_freq
1067
+ model.apply(pre_register_inv_freq)
1068
+ elif model.config.model_type == "multi_modality":
1069
+ pass
1065
1070
 
1066
1071
  return model
1067
1072
 
@@ -1994,5 +1999,21 @@ def _optimize_post(model):
1994
1999
  model.llm.config.rope_scaling = {"rope_type": "default"}
1995
2000
  _optimize_post(model.llm)
1996
2001
  model.llm.config.model_type = "megrezo"
2002
+ elif model.config.model_type == "baichuan_m1":
2003
+ modeling_module_name = model.__class__.__module__
2004
+ module = importlib.import_module(modeling_module_name)
2005
+ from ipex_llm.transformers.models.common import rms_norm_forward
2006
+ from ipex_llm.transformers.models.baichuan_m1 import model_forward
2007
+ from ipex_llm.transformers.models.baichuan_m1 import eager_attention_forward
2008
+ convert_forward(model, module.BaichuanModel, model_forward)
2009
+ convert_forward(model, module.BaichuanRMSNorm, rms_norm_forward)
2010
+ convert_forward(model, module.BaichuanAttention, eager_attention_forward)
2011
+ elif model.config.model_type == "multi_modality":
2012
+ # vision
2013
+ vpm_modeling_module_name = model.vision_model.vision_tower.__class__.__module__
2014
+ vpm_module = importlib.import_module(vpm_modeling_module_name)
2015
+
2016
+ from ipex_llm.transformers.models.janus import vision_attention_forward
2017
+ convert_forward(model.vision_model, vpm_module.Attention, vision_attention_forward)
1997
2018
 
1998
2019
  return model
@@ -699,7 +699,7 @@ class LowBitLinear(nn.Linear):
699
699
  if is_server() and (not is_spr()) and \
700
700
  self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
701
701
  x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
702
- result = F.linear(x, x0_fp32)
702
+ result = F.linear(x.to(dtype=x0_fp32.dtype), x0_fp32)
703
703
  else:
704
704
  # Weight does not need a convert
705
705
  result = ggml_matmul_src1_x_src0_t(x0, x_2d, self.weight_shape, self.qtype)
@@ -0,0 +1,240 @@
1
+ #
2
+ # Copyright 2016 The BigDL Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # This file is adapted from
17
+ # https://huggingface.co/baichuan-inc/Baichuan-M1-14B-Instruct/blob/main/modeling_baichuan.py
18
+
19
+
20
+ import math
21
+ import torch
22
+ import torch.nn.functional as F
23
+
24
+ from typing import Optional, Tuple, Union
25
+ from transformers.cache_utils import Cache
26
+ from transformers.modeling_outputs import BaseModelOutputWithPast
27
+ from ipex_llm.utils.common import invalidInputError
28
+ from ipex_llm.transformers.models.utils import should_use_fuse_rope, repeat_kv
29
+ from ipex_llm.transformers.models.common import attention_softmax
30
+ from ipex_llm.transformers.models.common import scaled_dot_product_attention
31
+ from ipex_llm.transformers.kv import DynamicNormalCache
32
+
33
+
34
+ def pre_register_inv_freq(module: torch.nn.Module):
35
+ if module.__class__.__name__ == "RotaryEmbedding":
36
+ inv_freq = module.inv_freq
37
+ del module.inv_freq
38
+ module.register_buffer("inv_freq", inv_freq, persistent=False)
39
+
40
+
41
+ # copied from Baichuan M1
42
+ def custom_convolution(U, K):
43
+ """
44
+ U: Input matrix, shape (bs, seq, h, d)
45
+ K: Convolution kernel, shape (w, h)
46
+ Returns: Output matrix V, shape (bs, seq, h, d)
47
+ """
48
+ # h, w = K.shape
49
+ w = K.size(-1)
50
+ padding = (w - 1, 0)
51
+ U_padded = F.pad(U, (0, 0, 0, 0, *padding)) # Shape becomes (bs, seq+w-1, h, d)
52
+ U_unfolded = U_padded.unfold(1, w, 1) # Shape becomes (bs, seq+w-1, h, d, w)
53
+ V_unfolded = U_unfolded * K # Shape remains (bs, seq, h, d, w)
54
+ V = V_unfolded.sum(dim=-1) # Shape becomes (bs, seq, h, d)
55
+ return V
56
+
57
+
58
+ def model_forward(
59
+ self,
60
+ input_ids: torch.LongTensor = None,
61
+ attention_mask: Optional[torch.Tensor] = None,
62
+ position_ids: Optional[torch.LongTensor] = None,
63
+ seqlens: Optional[torch.LongTensor] = None,
64
+ past_key_values: Optional[Cache] = None,
65
+ inputs_embeds: Optional[torch.FloatTensor] = None,
66
+ use_cache: Optional[bool] = None,
67
+ output_attentions: Optional[bool] = None,
68
+ output_hidden_states: Optional[bool] = None,
69
+ return_dict: Optional[bool] = None,
70
+ cache_position: Optional[torch.LongTensor] = None,
71
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
72
+ output_attentions = (
73
+ output_attentions if output_attentions is not None
74
+ else self.config.output_attentions
75
+ )
76
+ output_hidden_states = (
77
+ output_hidden_states if output_hidden_states is not None
78
+ else self.config.output_hidden_states
79
+ )
80
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
81
+
82
+ invalidInputError((input_ids is None) ^ (inputs_embeds is None),
83
+ "You cannot specify both input_ids and inputs_embeds at the same time, "
84
+ "and must specify either one")
85
+
86
+ if inputs_embeds is None:
87
+ inputs_embeds = self.embed_tokens(input_ids)
88
+
89
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
90
+ use_cache = True if inputs_embeds.device.type == "xpu" else use_cache
91
+
92
+ # IPEX-LLM changes start: remove batch multi-pack and use ipex-llm's kv cache
93
+ # kept for BC (non `Cache` `past_key_values` inputs)
94
+ if use_cache and not isinstance(past_key_values, DynamicNormalCache):
95
+ past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
96
+ # IPEX-LLM changes end
97
+
98
+ if cache_position is None:
99
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
100
+ cache_position = torch.arange(
101
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
102
+ device=inputs_embeds.device
103
+ )
104
+ if position_ids is None:
105
+ position_ids = cache_position.unsqueeze(0)
106
+
107
+ causal_mask = self._update_causal_mask(
108
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
109
+ )
110
+
111
+ hidden_states = inputs_embeds
112
+
113
+ # create position embeddings to be shared across the decoder layers
114
+ # position_embeddings = self.rotary_emb(hidden_states, position_ids)
115
+ position_embeddings = None
116
+
117
+ # decoder layers
118
+ all_hidden_states = () if output_hidden_states else None
119
+ all_self_attns = () if output_attentions else None
120
+ next_decoder_cache = None
121
+
122
+ for decoder_layer in self.layers:
123
+ if output_hidden_states:
124
+ all_hidden_states += (hidden_states,)
125
+
126
+ layer_outputs = decoder_layer(
127
+ hidden_states,
128
+ attention_mask=causal_mask,
129
+ position_ids=position_ids,
130
+ seqlens=None,
131
+ past_key_value=past_key_values,
132
+ output_attentions=output_attentions,
133
+ use_cache=use_cache,
134
+ cache_position=cache_position,
135
+ position_embeddings=position_embeddings,
136
+ )
137
+
138
+ hidden_states = layer_outputs[0]
139
+ if use_cache:
140
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
141
+
142
+ if output_attentions:
143
+ all_self_attns += (layer_outputs[1],)
144
+
145
+ hidden_states = self.norm(hidden_states)
146
+
147
+ # add hidden states from the last decoder layer
148
+ if output_hidden_states:
149
+ all_hidden_states += (hidden_states,)
150
+
151
+ next_cache = next_decoder_cache if use_cache else None
152
+ if not return_dict:
153
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
154
+ if v is not None)
155
+ return BaseModelOutputWithPast(
156
+ last_hidden_state=hidden_states,
157
+ past_key_values=next_cache,
158
+ hidden_states=all_hidden_states,
159
+ attentions=all_self_attns,
160
+ )
161
+
162
+
163
+ def eager_attention_forward(
164
+ self,
165
+ hidden_states: torch.Tensor,
166
+ attention_mask: Optional[torch.Tensor] = None,
167
+ position_ids: Optional[torch.LongTensor] = None,
168
+ seqlens: Optional[torch.LongTensor] = None,
169
+ past_key_value: Optional[Cache] = None,
170
+ output_attentions: bool = False,
171
+ use_cache: bool = False,
172
+ cache_position: Optional[torch.LongTensor] = None,
173
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
174
+ ):
175
+ invalidInputError(seqlens is None, "`seq_lens` must be None")
176
+
177
+ bsz, q_len, _ = hidden_states.size()
178
+ qkv = self.W_pack(hidden_states)
179
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
180
+ query_states, key_states, value_states = qkv.split([self.num_heads,
181
+ self.num_key_value_heads,
182
+ self.num_key_value_heads], dim=2)
183
+ # q, k, v: [bsz, seq_len, num_heads, head_dim]
184
+
185
+ if past_key_value is None or past_key_value.get_seq_length(self.layer_idx) == 0: # prefill
186
+ self.last_k = key_states[:, -1:]
187
+ self.last_v = value_states[:, -1:]
188
+
189
+ key_states = custom_convolution(key_states, self.conv_k)
190
+ value_states = custom_convolution(value_states, self.conv_v)
191
+ else:
192
+ new_key_states = (self.conv_k[0, 0, :, 0, :1] * self.last_k +
193
+ self.conv_k[0, 0, :, 0, 1:] * key_states)
194
+ self.last_k = key_states
195
+ key_states = new_key_states
196
+
197
+ new_value_states = (self.conv_v[0, 0, :, 0, : 1] * self.last_v +
198
+ self.conv_v[0, 0, :, 0, 1:] * value_states)
199
+ self.last_v = value_states
200
+ value_states = new_value_states
201
+
202
+ query_states = query_states.transpose(1, 2)
203
+ key_states = key_states.transpose(1, 2)
204
+ value_states = value_states.transpose(1, 2)
205
+ # q, k, v: [bsz, num_heads, seq_len, head_dim]
206
+
207
+ invalidInputError(should_use_fuse_rope(hidden_states, position_ids, self.training),
208
+ "fuse rope must be used")
209
+ import xe_addons
210
+ xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
211
+ query_states, key_states)
212
+
213
+ # ignore sliding window
214
+ key_states, value_states = past_key_value.update(key_states, value_states,
215
+ self.layer_idx, None)
216
+ if self.head_dim <= 128:
217
+ attn_weights = None
218
+ attn_output = scaled_dot_product_attention(
219
+ query_states, key_states, value_states,
220
+ attention_mask, q_len == key_states.size(2)
221
+ )
222
+ else:
223
+ n_rep = self.num_heads // self.num_key_value_heads
224
+ key_states = repeat_kv(key_states, n_rep)
225
+ value_states = repeat_kv(value_states, n_rep)
226
+ attn_weights = torch.matmul(query_states,
227
+ key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
228
+ if attention_mask is not None:
229
+ attn_weights = attn_weights + attention_mask
230
+ attn_weights = attention_softmax(attn_weights)
231
+ attn_output = torch.matmul(attn_weights, value_states)
232
+
233
+ attn_output = attn_output.transpose(1, 2).contiguous()
234
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
235
+
236
+ attn_output = self.o_proj(attn_output)
237
+
238
+ if not output_attentions:
239
+ attn_weights = None
240
+ return attn_output, attn_weights, past_key_value
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ipex-llm
3
- Version: 2.2.0b20250210
3
+ Version: 2.2.0b20250211
4
4
  Summary: Large Language Model Develop Toolkit
5
5
  Home-page: https://github.com/intel-analytics/ipex-llm
6
6
  Author: BigDL Authors
@@ -27,7 +27,7 @@ Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine
27
27
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'all'
28
28
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'all'
29
29
  Provides-Extra: cpp
30
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250210 ; extra == 'cpp'
30
+ Requires-Dist: bigdl-core-cpp ==2.6.0b20250211 ; extra == 'cpp'
31
31
  Requires-Dist: setuptools ; extra == 'cpp'
32
32
  Requires-Dist: onednn-devel ==2025.0.1 ; (platform_system == "Windows") and extra == 'cpp'
33
33
  Requires-Dist: onednn ==2025.0.1 ; (platform_system == "Windows") and extra == 'cpp'
@@ -60,7 +60,7 @@ Requires-Dist: transformers ==4.40.0 ; extra == 'npu'
60
60
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'npu'
61
61
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'npu'
62
62
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'npu'
63
- Requires-Dist: bigdl-core-npu ==2.6.0b20250210 ; (platform_system == "Windows") and extra == 'npu'
63
+ Requires-Dist: bigdl-core-npu ==2.6.0b20250211 ; (platform_system == "Windows") and extra == 'npu'
64
64
  Provides-Extra: serving
65
65
  Requires-Dist: py-cpuinfo ; extra == 'serving'
66
66
  Requires-Dist: fschat[model_worker,webui] ==0.2.36 ; extra == 'serving'
@@ -80,9 +80,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu'
80
80
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu'
81
81
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu'
82
82
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu'
83
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250210 ; extra == 'xpu'
84
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250210 ; extra == 'xpu'
85
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250210 ; extra == 'xpu'
83
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250211 ; extra == 'xpu'
84
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250211 ; extra == 'xpu'
85
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250211 ; extra == 'xpu'
86
86
  Provides-Extra: xpu-2-1
87
87
  Requires-Dist: py-cpuinfo ; extra == 'xpu-2-1'
88
88
  Requires-Dist: protobuf ; extra == 'xpu-2-1'
@@ -97,9 +97,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu-2-1'
97
97
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu-2-1'
98
98
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu-2-1'
99
99
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu-2-1'
100
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250210 ; extra == 'xpu-2-1'
101
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250210 ; extra == 'xpu-2-1'
102
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250210 ; extra == 'xpu-2-1'
100
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250211 ; extra == 'xpu-2-1'
101
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250211 ; extra == 'xpu-2-1'
102
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250211 ; extra == 'xpu-2-1'
103
103
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-1'
104
104
  Requires-Dist: dpcpp-cpp-rt ==2024.0.2 ; (platform_system == "Windows") and extra == 'xpu-2-1'
105
105
  Requires-Dist: mkl-dpcpp ==2024.0.0 ; (platform_system == "Windows") and extra == 'xpu-2-1'
@@ -117,7 +117,7 @@ Requires-Dist: setuptools ; extra == 'xpu-2-6'
117
117
  Requires-Dist: torch ==2.6.0+xpu ; extra == 'xpu-2-6'
118
118
  Requires-Dist: torchvision ==0.21.0+xpu ; extra == 'xpu-2-6'
119
119
  Requires-Dist: torchaudio ==2.6.0+xpu ; extra == 'xpu-2-6'
120
- Requires-Dist: bigdl-core-xe-all ==2.6.0b20250210 ; extra == 'xpu-2-6'
120
+ Requires-Dist: bigdl-core-xe-all ==2.6.0b20250211 ; extra == 'xpu-2-6'
121
121
  Requires-Dist: onednn-devel ==2025.0.1 ; extra == 'xpu-2-6'
122
122
  Requires-Dist: onednn ==2025.0.1 ; extra == 'xpu-2-6'
123
123
  Requires-Dist: dpcpp-cpp-rt ==2025.0.2 ; extra == 'xpu-2-6'
@@ -133,9 +133,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arc'
133
133
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arc'
134
134
  Requires-Dist: tabulate ; extra == 'xpu-arc'
135
135
  Requires-Dist: setuptools ; extra == 'xpu-arc'
136
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250210 ; extra == 'xpu-arc'
137
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250210 ; extra == 'xpu-arc'
138
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250210 ; extra == 'xpu-arc'
136
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250211 ; extra == 'xpu-arc'
137
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250211 ; extra == 'xpu-arc'
138
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250211 ; extra == 'xpu-arc'
139
139
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arc'
140
140
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
141
141
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
@@ -156,9 +156,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arl'
156
156
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arl'
157
157
  Requires-Dist: tabulate ; extra == 'xpu-arl'
158
158
  Requires-Dist: setuptools ; extra == 'xpu-arl'
159
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250210 ; extra == 'xpu-arl'
160
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250210 ; extra == 'xpu-arl'
161
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250210 ; extra == 'xpu-arl'
159
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250211 ; extra == 'xpu-arl'
160
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250211 ; extra == 'xpu-arl'
161
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250211 ; extra == 'xpu-arl'
162
162
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arl'
163
163
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
164
164
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
@@ -179,9 +179,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-lnl'
179
179
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-lnl'
180
180
  Requires-Dist: tabulate ; extra == 'xpu-lnl'
181
181
  Requires-Dist: setuptools ; extra == 'xpu-lnl'
182
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250210 ; extra == 'xpu-lnl'
183
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250210 ; extra == 'xpu-lnl'
184
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250210 ; extra == 'xpu-lnl'
182
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250211 ; extra == 'xpu-lnl'
183
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250211 ; extra == 'xpu-lnl'
184
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250211 ; extra == 'xpu-lnl'
185
185
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-lnl'
186
186
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
187
187
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
@@ -41,35 +41,35 @@ ipex_llm/langchain/llms/transformerspipelinellm.py,sha256=vm522YPPwWxxAPVvQBtxRf
41
41
  ipex_llm/langchain/vllm/__init__.py,sha256=T-EbRT6GJ_8RCu-iLmSzcftOimXSPQf2d5X72AUAy2Y,874
42
42
  ipex_llm/langchain/vllm/vllm.py,sha256=6dxc-ZISZQrJilEa_HA827l75Dv9rcHpY_G6FdJ8BVs,7793
43
43
  ipex_llm/libs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
- ipex_llm/libs/bloom-api.dll,sha256=lqfplzgoUUcMRerQS4Dnj9_EPY3AqYLKfOYED27YIAs,36352
45
- ipex_llm/libs/bloom.dll,sha256=kevOYhURxmjZ4uK7JxHchlYg8NOTbOo_iaKIokKpIKo,507904
46
- ipex_llm/libs/gptneox-api.dll,sha256=DdmNMxtkgh8sRsGFTYjSHm_W_BgDAIiqS3ooWEtMMgs,24576
47
- ipex_llm/libs/gptneox.dll,sha256=ce9pad_x--9MNHLVZx76amHcD-FLdHUUX_3J4XoPzl4,568320
48
- ipex_llm/libs/libbloom_avx.dll,sha256=z-a8kKkkKUMf9aBIeJlEM2y_sRMPKEf3ZXZZICl5J6Q,536576
49
- ipex_llm/libs/libbloom_vnni.dll,sha256=F6S_Yvx_ZBibwz-ggGKX_qX7g-Rxf7Auj3lF7MdFBmU,508416
50
- ipex_llm/libs/libgptneox_avx.dll,sha256=78wwK0DXFVL6LmUWXKYdpCDkDTOFMXfce6R1iL-SZO0,596992
51
- ipex_llm/libs/libgptneox_vnni.dll,sha256=tQD2cQPx9dtZsTJ1Ud1OtYOWq136x8mY7VzMfs8VVH4,568832
52
- ipex_llm/libs/libllama_avx.dll,sha256=ZwfgXj4gjx8zNwI-jdyMOXqY2ZCnDVWqiYr8XCnQ8KY,591360
53
- ipex_llm/libs/libllama_vnni.dll,sha256=GzUixqZsWDEAQ6_wQdoQfg7uetKNhNokdge934WUxZ4,563200
54
- ipex_llm/libs/libstarcoder_avx.dll,sha256=mlnT4q1xb5CQzkqwvNQE1mvjAib6o6v9J4eyObYn5KE,627712
55
- ipex_llm/libs/libstarcoder_vnni.dll,sha256=8GctyMyR5X6ienHOJ6vAoSb9AOG6iIXaSchDs3rH95g,599552
56
- ipex_llm/libs/llama-api.dll,sha256=Kes9mqsYLyHZ1u09ztljvdlgkyS6cuqQN3zIiQ2eRRQ,25600
57
- ipex_llm/libs/llama.dll,sha256=lEioZzQgKIY8KJxvSkktyEnLcncLChlUPjuzkNigMIs,562688
58
- ipex_llm/libs/main-bloom.exe,sha256=OsQCjZrYp2bZvqNSx8SF-5Du9i8rzkVFAnyryNYfTW0,103424
59
- ipex_llm/libs/main-gptneox.exe,sha256=28dbFg81AFpqUxOs0fUNKa-D0gtasqZcElWqOW1AczY,98816
60
- ipex_llm/libs/main-llama.exe,sha256=B3SyXbPj0bmtCa2jMIpixXe1cbNYSYwTDosFx4c9BDA,99840
61
- ipex_llm/libs/main-starcoder.exe,sha256=UBv9JjyhqVRi4vFHIxz7ZT5am0NF_wCrordhxKu2slo,157696
62
- ipex_llm/libs/pipeline.dll,sha256=MBRq9mjVP1ixvdlikvUaawdkv3DyYAEWN4-zTtXj42M,73216
63
- ipex_llm/libs/quantize-bloom.exe,sha256=WyhdSu43U22MUsMaPAHHrxNRuWyha7kiK_qVo562NhQ,126464
64
- ipex_llm/libs/quantize-bloom_vnni.exe,sha256=LaQyFrkPOS87-1DAuzFkgVBJSoxulwQqcSWcb5O3IWY,128000
65
- ipex_llm/libs/quantize-gptneox.exe,sha256=IhJcljCZ5buuyPNHXesadudvXGA1jg45YsBTqPcaEnE,104448
66
- ipex_llm/libs/quantize-gptneox_vnni.exe,sha256=Jdo_A4hOOdKK_9Rle4FUDD_grbYoNJGBMz0EP8Pp3Qo,104960
67
- ipex_llm/libs/quantize-llama.exe,sha256=aNUQ_mkgFQPi4lBFpDzMg3RjIQWgypZ3NjnIrr3GkqE,110080
68
- ipex_llm/libs/quantize-llama_vnni.exe,sha256=hnCSMssU4NRXK0IXuCJWfhqegiJvnrH8e9TUX50fXzo,110592
69
- ipex_llm/libs/quantize-starcoder.exe,sha256=QhqhYRKafiOpgc48YBTzF5MxvREguASQ6_wXjIvNiZo,127488
70
- ipex_llm/libs/quantize-starcoder_vnni.exe,sha256=PB2mturnl4F6OppCrb0cY3vHS7LmrEP9EWtWamczUpg,128512
71
- ipex_llm/libs/starcoder-api.dll,sha256=UKfEaI5pADFdvWkWT2D-V6SG60yy2uHjQ2PPJvjxkxo,21504
72
- ipex_llm/libs/starcoder.dll,sha256=f34bCkWEt5CdvLIbVYfQydoH_qnodFZ8oJIrCbHLdOA,599040
44
+ ipex_llm/libs/bloom-api.dll,sha256=isRVYs9jZHXj_OATH3LASq7rAtiuZF1EhRon0kLa1fQ,36352
45
+ ipex_llm/libs/bloom.dll,sha256=55-F9cCHSlfDSrARFN8Mg_SM-wC7qSGvNaD24cR_R-4,507904
46
+ ipex_llm/libs/gptneox-api.dll,sha256=4VKDx3KffmcU8T638sMe6nIG4p3gfSG6AVE9OwRnXXU,24576
47
+ ipex_llm/libs/gptneox.dll,sha256=dGkabZ_ANnynUkBVsALka40oUXiex0nTVhALqrXyiG0,568320
48
+ ipex_llm/libs/libbloom_avx.dll,sha256=RiKXeDK2UqahcWL3s6WOfQdYNT7luAl0rI2jGi6jHV4,536576
49
+ ipex_llm/libs/libbloom_vnni.dll,sha256=deQqdDxqaUJWekAQ_CJMLnZhDbDn1WqlWCZ3QGfPFY4,508416
50
+ ipex_llm/libs/libgptneox_avx.dll,sha256=C1R1hD1XsK-xnTBeI7NJFtilDtZn-Mu16cHqPGyo4W4,596992
51
+ ipex_llm/libs/libgptneox_vnni.dll,sha256=S5ErqE9n8PEZumuxXgesQcfhSRnfdcVBCpPJXAF_7qM,568832
52
+ ipex_llm/libs/libllama_avx.dll,sha256=8XuQpQ9g8EPccaBhime786x4l-KlQGJAhpDKi33z1L0,591360
53
+ ipex_llm/libs/libllama_vnni.dll,sha256=NYsBYek3QBLAZjRAIEFiY4OUM78lByDzt8-c7vyyARw,563200
54
+ ipex_llm/libs/libstarcoder_avx.dll,sha256=4sxz29nT-YHKtIt2XubEhasFloDkyQgPnZsw78YKRcs,627712
55
+ ipex_llm/libs/libstarcoder_vnni.dll,sha256=fCm2zNDmCEE8vT2dnDFo0o7Dg1t-LYIfVZqoJlJF_24,599552
56
+ ipex_llm/libs/llama-api.dll,sha256=7QeY4YePf7aF6yYcRQdCfm_NNgdMhnc5mL3LBoTJACg,25600
57
+ ipex_llm/libs/llama.dll,sha256=TMVwGScsZ4SiaEqQ4jWrwUdZGxxeM5-rBHubjMNVsOs,562688
58
+ ipex_llm/libs/main-bloom.exe,sha256=Ci0vgb1q4ArlQJ4PvDoZrT5koeKGAkpmcHgFOEBKrnk,103424
59
+ ipex_llm/libs/main-gptneox.exe,sha256=3xWuAqEfCxSlHEK6cgUtOI1gFqOKxI5FlTTWuZf9Jlw,98816
60
+ ipex_llm/libs/main-llama.exe,sha256=55ryHK75UQJjxdfZlm4GQGEHe7LfyxBkDhLR_l_bh10,99840
61
+ ipex_llm/libs/main-starcoder.exe,sha256=zpqmu07KnGgR0QW69dSZYHuT_sm5DfAV8xeRspMpm_0,157696
62
+ ipex_llm/libs/pipeline.dll,sha256=ssy7Oi2s4atVipwbA97C4IrOzlcfXyzPY3LSAQV5jGs,73216
63
+ ipex_llm/libs/quantize-bloom.exe,sha256=-bKBNkqsVKv3v2ykATIp8hu3Ih4tvBAKUmAhKG0K9iQ,126464
64
+ ipex_llm/libs/quantize-bloom_vnni.exe,sha256=eoiP-B9w4C4Z6NQH6mV8WD1e7IvrOFIqcZ-PU8kTqdA,128000
65
+ ipex_llm/libs/quantize-gptneox.exe,sha256=srPfQVhfeU9wRwEATzmxMRb0HxTeKzxSJ-_MlsUjs4g,104448
66
+ ipex_llm/libs/quantize-gptneox_vnni.exe,sha256=POmpcftpGvGnmieDpGzSEWG_ihFZRdILdu5tp7ovmc0,104960
67
+ ipex_llm/libs/quantize-llama.exe,sha256=R1arXrmiSZUkJR62tOg6lAgrwPjqulvzJFW6fXFROxk,110080
68
+ ipex_llm/libs/quantize-llama_vnni.exe,sha256=MKiyUKvjO29hMnFqjI2odtWRtcj12DdtwYuCme2DAlg,110592
69
+ ipex_llm/libs/quantize-starcoder.exe,sha256=0KGcTuDuygIbRWkKpVgCTts3Oz4iJJ0qVgU0S4zmTHg,127488
70
+ ipex_llm/libs/quantize-starcoder_vnni.exe,sha256=19EvwpYsucRzqardslcUcABpgTRliz63iGLaUC0bGE0,128512
71
+ ipex_llm/libs/starcoder-api.dll,sha256=dl_63rrUlJ65_iitS008gxs57LyDIRB69DDkrNdgIvU,21504
72
+ ipex_llm/libs/starcoder.dll,sha256=Y8X0huLZBfzjCCJ1ddjzkPRxzKCvLoK5h48JFX705E4,599040
73
73
  ipex_llm/llamaindex/__init__.py,sha256=T-EbRT6GJ_8RCu-iLmSzcftOimXSPQf2d5X72AUAy2Y,874
74
74
  ipex_llm/llamaindex/llms/__init__.py,sha256=KP1lEdGqDuxPoxL1ZSH25Pm2kKMPJBWUTLR0ckSLMIU,1139
75
75
  ipex_llm/llamaindex/llms/bigdlllm.py,sha256=FQBzq1KOjfc6uofTXAha3O7TqpJkNfOFepXQmOVlbnI,26314
@@ -87,14 +87,14 @@ ipex_llm/serving/fastchat/tgi_api_protocol.py,sha256=brT3k3-V0NJrU4fRqUwWjC0O3iO
87
87
  ipex_llm/serving/fastchat/tgi_api_server.py,sha256=agNTAEiZPSuj3dEdIdYKwkoY0cXOUDX06DiM9VP2knQ,24418
88
88
  ipex_llm/serving/fastchat/vllm_worker.py,sha256=ZLz2Q9GxJO6r_LOiP6epgCRjBGk-K4EB1SNEWSJp5DA,11091
89
89
  ipex_llm/transformers/__init__.py,sha256=pJHs6GZXHIObVE4BUCuej-6BKBZZg9pYWKPrkhWSfB4,1192
90
- ipex_llm/transformers/convert.py,sha256=Ss4q1bsMgGMU2hauZJxUsEA2noPByR-fALrJGPN1sEk,99520
90
+ ipex_llm/transformers/convert.py,sha256=42qHApc3hoL38ldQXTv9BkDVQ0Zb-xGJYA2DWYFzwMg,100795
91
91
  ipex_llm/transformers/convert_ipex.py,sha256=_nSnUTQy-yfkKaqGdqnBdWztZf3NGmnbZ0TKaDrF4X4,14617
92
92
  ipex_llm/transformers/embedding.py,sha256=bdgk59DvD4ZZyxRzewXOR7g56nThgO6uhIwk8QL7f-s,9299
93
93
  ipex_llm/transformers/kv.py,sha256=k4TU18LlA-Sbq9WNNQnfuzu3RSFBwFhmaV3BcGN5bAo,19191
94
94
  ipex_llm/transformers/lisa.py,sha256=F5WxbtXQ7RdKulj83h_2DnEIgKiKGZf7zvOmg6QBl2s,3289
95
95
  ipex_llm/transformers/loader.py,sha256=AwjV5RpI2t2bedlv7ZhLm8cfd-QJZm5hny-XyjIvdnk,6876
96
96
  ipex_llm/transformers/lookup.py,sha256=b6OlZ9OV10R9qeWw8mVryVpDxszkjwLkldvi7GPMJY8,19614
97
- ipex_llm/transformers/low_bit_linear.py,sha256=3EtbiCAq5HU_r2pGJ9beSDK4NPTN8Jj-aHMqm1jqX18,39177
97
+ ipex_llm/transformers/low_bit_linear.py,sha256=1S8H684odAx5ZVDx_qNMv4FFrkJekZduao8datZYiqw,39201
98
98
  ipex_llm/transformers/model.py,sha256=FyHrEQhkHxG3FbGkhTjVOP2rgFMjc3AXcjDwvvB0HqU,40798
99
99
  ipex_llm/transformers/modelling_bigdl.py,sha256=7JpNVMuyq_OmtNUaMFMXdxPWZp2q0QHC02QeA-VTPOw,6709
100
100
  ipex_llm/transformers/npu_model.py,sha256=zgXOiLIJ-3p-1Kejgv4jUFK8OiBZbezMZrRyn0_6_8c,40306
@@ -138,6 +138,7 @@ ipex_llm/transformers/gguf/models/model_implement/yuan2/yuan_hf_model.py,sha256=
138
138
  ipex_llm/transformers/models/__init__.py,sha256=tp2DcVkKg1-QvdYk7DY7rZvQWCDQ4ZjU8NAQ7Fclrpg,584
139
139
  ipex_llm/transformers/models/aquila.py,sha256=VZb5Drpo_fTxwcExZ397LygnsNPX2sVbie9_JeFudZI,5252
140
140
  ipex_llm/transformers/models/baichuan.py,sha256=8b43mBRZJEf_xLNoodhA4r9x1anqwC3Wt8awWel-aUo,18306
141
+ ipex_llm/transformers/models/baichuan_m1.py,sha256=l6BD9jbA8TQ5Q0fcngHNRw73SxqvC126ErENs7Zh-do,9513
141
142
  ipex_llm/transformers/models/bert.py,sha256=0Mm9jkvkzBxtc_z_GE1TcZoPz-HOg2Z2973ZEWgSwJk,5601
142
143
  ipex_llm/transformers/models/bloom.py,sha256=PxfzyYT-nFn3K5rZhTQjmcEjUUzAhUFzxIN4kzRlCuc,8103
143
144
  ipex_llm/transformers/models/chatglm.py,sha256=UHai1t2AUtGmF765_eHF8LUMVQzp_oCBx8TJB21WrHk,12597
@@ -248,11 +249,11 @@ ipex_llm/vllm/xpu/engine/__init__.py,sha256=pY_CpyuZd72fr6s32ejeKHKFW0K4vUU2rzZj
248
249
  ipex_llm/vllm/xpu/engine/engine.py,sha256=k4-D27WS_Gk3mA--w3HWAjPjb4Aiu043MVPi0ZoAUBc,5984
249
250
  ipex_llm/vllm/xpu/entrypoints/openai/api_server.py,sha256=GshTZFB8e4PWvqckfbmTOU6b0oLkNn7A-vzLuG9--j8,21544
250
251
  ipex_llm/vllm/xpu/entrypoints/openai/cli_args.py,sha256=2rENA2ucynMaIjiZBEh2ez1o5vR32GaP514t39CD7KM,8676
251
- ipex_llm-2.2.0b20250210.data/scripts/ipex-llm-init.bat,sha256=HPtCYuDYwEatq7dAwOvdfVcHYCpAVdbj75K1qh0vQek,2578
252
- ipex_llm-2.2.0b20250210.data/scripts/llm-chat.ps1,sha256=6qrs-hGVAV8IKh7Jx8nq_XrnZcjd7qGU5wndArM7Yag,2769
253
- ipex_llm-2.2.0b20250210.data/scripts/llm-cli.ps1,sha256=3qBtTLs_EjYDnM8YyCpJhzLnGCKTEGssu9UNqfkjVXs,3009
254
- ipex_llm-2.2.0b20250210.dist-info/METADATA,sha256=4qPoDhuk8GOrYMBA3s4y5uNItLQm0QLLbP_B_0kYaWM,12369
255
- ipex_llm-2.2.0b20250210.dist-info/WHEEL,sha256=6iYPr8vTHsyDK75jr9X0V3I9wPSVmtwr_8fdATBciGk,98
256
- ipex_llm-2.2.0b20250210.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
257
- ipex_llm-2.2.0b20250210.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
258
- ipex_llm-2.2.0b20250210.dist-info/RECORD,,
252
+ ipex_llm-2.2.0b20250211.data/scripts/ipex-llm-init.bat,sha256=HPtCYuDYwEatq7dAwOvdfVcHYCpAVdbj75K1qh0vQek,2578
253
+ ipex_llm-2.2.0b20250211.data/scripts/llm-chat.ps1,sha256=6qrs-hGVAV8IKh7Jx8nq_XrnZcjd7qGU5wndArM7Yag,2769
254
+ ipex_llm-2.2.0b20250211.data/scripts/llm-cli.ps1,sha256=3qBtTLs_EjYDnM8YyCpJhzLnGCKTEGssu9UNqfkjVXs,3009
255
+ ipex_llm-2.2.0b20250211.dist-info/METADATA,sha256=bXwvxJIBVIayYIeP1lVUyFJXiMqzVppGcvwttejTvOk,12369
256
+ ipex_llm-2.2.0b20250211.dist-info/WHEEL,sha256=6iYPr8vTHsyDK75jr9X0V3I9wPSVmtwr_8fdATBciGk,98
257
+ ipex_llm-2.2.0b20250211.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
258
+ ipex_llm-2.2.0b20250211.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
259
+ ipex_llm-2.2.0b20250211.dist-info/RECORD,,