ipex-llm 2.2.0b20250106__py3-none-manylinux2010_x86_64.whl → 2.2.0b20250106.post1__py3-none-manylinux2010_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. ipex_llm/transformers/convert.py +19 -158
  2. ipex_llm/transformers/loader.py +1 -1
  3. ipex_llm/transformers/lookup.py +2 -2
  4. ipex_llm/transformers/low_bit_linear.py +15 -29
  5. ipex_llm/transformers/model.py +0 -7
  6. ipex_llm/transformers/models/chatglm2.py +1 -192
  7. ipex_llm/transformers/models/minicpmv.py +2 -2
  8. ipex_llm/transformers/models/sd.py +2 -2
  9. ipex_llm/transformers/models/utils.py +16 -104
  10. ipex_llm/transformers/npu_pipeline_model/convert_pipeline.py +5 -8
  11. ipex_llm/transformers/speculative.py +2 -14
  12. ipex_llm/transformers/utils.py +7 -20
  13. {ipex_llm-2.2.0b20250106.dist-info → ipex_llm-2.2.0b20250106.post1.dist-info}/METADATA +40 -19
  14. {ipex_llm-2.2.0b20250106.dist-info → ipex_llm-2.2.0b20250106.post1.dist-info}/RECORD +20 -24
  15. ipex_llm/transformers/models/cohere.py +0 -589
  16. ipex_llm/transformers/models/falcon.py +0 -829
  17. ipex_llm/transformers/models/gptj.py +0 -441
  18. ipex_llm/transformers/models/mixtral.py +0 -576
  19. {ipex_llm-2.2.0b20250106.data → ipex_llm-2.2.0b20250106.post1.data}/scripts/ipex-llm-init +0 -0
  20. {ipex_llm-2.2.0b20250106.data → ipex_llm-2.2.0b20250106.post1.data}/scripts/llm-chat +0 -0
  21. {ipex_llm-2.2.0b20250106.data → ipex_llm-2.2.0b20250106.post1.data}/scripts/llm-cli +0 -0
  22. {ipex_llm-2.2.0b20250106.dist-info → ipex_llm-2.2.0b20250106.post1.dist-info}/WHEEL +0 -0
  23. {ipex_llm-2.2.0b20250106.dist-info → ipex_llm-2.2.0b20250106.post1.dist-info}/entry_points.txt +0 -0
  24. {ipex_llm-2.2.0b20250106.dist-info → ipex_llm-2.2.0b20250106.post1.dist-info}/top_level.txt +0 -0
@@ -19,7 +19,7 @@ import torch
19
19
  import warnings
20
20
  from ipex_llm.utils.common import invalidInputError
21
21
  from ipex_llm.ggml.quantize import ggml_tensor_qtype
22
- from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_type
22
+ from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_name
23
23
  from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\
24
24
  FP6, ASYM_INT4
25
25
 
@@ -85,16 +85,14 @@ def use_quantize_kv_cache(linear: torch.nn.Module, x: torch.Tensor, kv_group: in
85
85
  return os.environ["IPEX_LLM_QUANTIZE_KV_CACHE"] == "1"
86
86
  elif os.environ.get("IPEX_LLM_LOW_MEM", None) is not None:
87
87
  return os.environ["IPEX_LLM_LOW_MEM"] == "1"
88
+ elif linear.qtype in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
89
+ return False
88
90
  else:
89
- return x.device.type == 'xpu' and kv_cache_device_check(x, kv_group) \
90
- and hasattr(linear, "qtype") and \
91
- linear.qtype != ggml_tensor_qtype["fp16"] and linear.qtype != ggml_tensor_qtype["bf16"]
92
-
93
-
94
- def kv_cache_device_check(x: torch.Tensor, kv_group: int) -> bool:
95
- return (get_xpu_device_type(x) in ["mtl", "lnl"] and kv_group <= 1) or \
96
- ((get_xpu_device_type(x) == "arc" or get_xpu_device_type(x) == "flex") and
97
- 1 < x.size(0) and x.size(0) <= 8)
91
+ device_name = get_xpu_device_name(x.device)
92
+ return (
93
+ device_name in ["mtl", "lnl", "arl"] and kv_group == 1
94
+ or device_name in ["arc", "bmg"] and x.size(0) > 1
95
+ )
98
96
 
99
97
 
100
98
  def init_fp8_kv_cache(batch_size, num_heads, current_length, head_dim, device):
@@ -170,7 +168,7 @@ def should_use_fuse_rope(hidden_states, position_ids, training):
170
168
 
171
169
  def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
172
170
  if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
173
- "mixtral", "qwen2", "yuan", "stablelm", "qwen2_moe"]:
171
+ "qwen2", "yuan", "stablelm", "qwen2_moe"]:
174
172
  # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
175
173
  cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
176
174
  sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
@@ -185,7 +183,7 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
185
183
  q_embed = (q * cos) + (rotate_half(q) * sin)
186
184
  k_embed = (k * cos) + (rotate_half(k) * sin)
187
185
  return q_embed, k_embed
188
- elif model_family in ["gptj", "chatglm"]:
186
+ elif model_family in ["chatglm"]:
189
187
  q_embed = (q * cos) + (rotate_every_two(q) * sin)
190
188
  k_embed = (k * cos) + (rotate_every_two(k) * sin)
191
189
  return q_embed, k_embed
@@ -194,19 +192,6 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
194
192
  f"{model_family} is not supported.")
195
193
 
196
194
 
197
- def apply_ipex_rotate_every_two(q, k, cos, sin):
198
- # ipex's apply_rotary_embedding_two_qk can change the origin storage,
199
- # so q/k will get the result directly.
200
- from ipex_llm.transformers.utils import get_ipex_version
201
- if get_ipex_version() >= "2.1.10+xpu":
202
- torch.ops.torch_ipex.apply_rotary_embedding_two_qk(
203
- q, k, sin, cos, q, k
204
- )
205
- else:
206
- torch.ops.torch_ipex.apply_rotary_embedding(q, sin, cos, q)
207
- torch.ops.torch_ipex.apply_rotary_embedding(k, sin, cos, k)
208
-
209
-
210
195
  def is_enough_kv_cache_room_4_36(past_key_value, idx, seq_len=1):
211
196
  # to determinate if is enough kv cache room in transformers==4.36
212
197
  # seq_len for current seq len
@@ -226,57 +211,6 @@ def is_enough_kv_cache_room_4_31(past_key_value, seq_len=1):
226
211
  (past_key_value[0].size(2) + seq_len) * past_key_value[0].size(3)
227
212
 
228
213
 
229
- def use_flash_attention(query, key, attention_mask=None):
230
- # here we support query's shape is always [batch_size, head_num, q_len, head_dim],
231
- # key's shape is always [batch_size, head_num, k_len, head_dim]
232
- invalidInputError(query.dim() == 4,
233
- "Here query input of use_flash_attention should be [batch_size, "
234
- "head_num, q_len, head_dim]")
235
- invalidInputError(key.dim() == 4,
236
- "Here key input of use_flash_attention should be [batch_size, "
237
- "head_num, k_len, head_dim]")
238
- bsz, _, q_len, _ = query.size()
239
- k_len = key.size()[2]
240
- # check whether ipex flash attention can be used
241
- if q_len != k_len:
242
- # now only use flash attention for first token
243
- # as it seems have no performance benifit for rest token now
244
- return False
245
- if query.device.type != "xpu":
246
- # ipex flash attention only support for xpu
247
- return False
248
- ipex_version = get_ipex_version()
249
- if ipex_version <= "2.0.110+xpu":
250
- # ipex flash attention is supported from ipex 2.1
251
- return False
252
- if not torch.xpu.has_xetla():
253
- # ipex flash attention is only supported for xetla
254
- # may update this later
255
- return False
256
- elif get_xpu_device_type(query) != "pvc":
257
- return False
258
- if query.dtype not in [torch.float32, torch.float16]:
259
- # only use flash attention for fp32/fp16 input
260
- return False
261
- if bsz > 1:
262
- # as flash attention doesn't support attn_mask in ipex 2.1,
263
- # so it will cause output error for padded batch input
264
- if attention_mask is None:
265
- return True
266
- else:
267
- # TODO: below logic may change for different model
268
- # attention mask shape : [bsz, 1, q_len, k_len]
269
- if attention_mask[0].squeeze()[0, 0].item() != 0:
270
- # first batch contains padding
271
- # otherwise we suppose it should be a upper triangular matrix
272
- # at the same time, the diagonal is also 0
273
- return False
274
- elif not attention_mask.equal(attention_mask[0].repeat(bsz, 1, 1, 1)):
275
- # check whether mask of every batch is the same
276
- return False
277
- return True
278
-
279
-
280
214
  def use_sdp(q_len, kv_len, head_dim, query_states):
281
215
  return (
282
216
  query_states.device.type == "xpu"
@@ -315,38 +249,16 @@ def mlp_fusion_check(x, qtype, training):
315
249
  if training or x.requires_grad:
316
250
  return False
317
251
  if qtype == FP6:
318
- device = get_xpu_device_type(x)
319
- if device in ["mtl", "lnl"]:
252
+ device = get_xpu_device_name(x.device)
253
+ if device in ["mtl", "lnl", "arl"]:
320
254
  return False
321
255
  return True
322
256
 
323
257
 
324
- def use_decoding_fast_path(proj,
325
- use_fuse_rope,
326
- enough_kv_room,
327
- bs,
328
- qtype_check=decoding_fast_path_qtype_check):
329
- if proj is None:
330
- return False
331
- device = get_xpu_device_type(proj.weight)
332
- if not qtype_check(proj):
333
- return False
334
- if not use_fuse_rope:
335
- return False
336
- if not enough_kv_room:
337
- return False
338
- if bs != 1:
339
- return False
340
-
341
- if device in ["uhd"]:
342
- return False
343
- return True
344
-
345
-
346
258
  def use_xmx(x: torch.Tensor, qtype: int):
347
- device = get_xpu_device_type(x)
259
+ device = get_xpu_device_name(x.device)
348
260
  return (
349
- device in ["arc", "flex", "pvc"]
261
+ device in ["arc", "pvc"]
350
262
  and qtype in [SYM_INT4, SYM_INT8, FP8E4, FP8E5]
351
263
  and (
352
264
  (device == "pvc" and 1 < x.size(0) <= 16)
@@ -370,7 +282,7 @@ def fp16_fusion_check(proj, x, training):
370
282
  return False
371
283
  if x.requires_grad:
372
284
  return False
373
- device_type = get_xpu_device_type(x)
285
+ device_type = get_xpu_device_name(x.device)
374
286
  if device_type != "pvc":
375
287
  return False
376
288
  return True
@@ -439,7 +351,7 @@ def should_use_compresskv(x: torch.Tensor, prompt_len: int):
439
351
  else:
440
352
  if use_compress_kv is None:
441
353
  return (
442
- get_xpu_device_type(x) in ["mtl", "lnl"]
354
+ get_xpu_device_name(x.device) in ["mtl", "lnl", "arl"]
443
355
  and prompt_len >= 1800
444
356
  and prompt_len <= 4500
445
357
  )
@@ -473,10 +473,6 @@ def convert_llm_for_deploy(model: torch.nn.Module,
473
473
  "n_splits_linear": n_splits_linear,
474
474
  "n_splits_down_proj": n_splits_down_proj,
475
475
  "lm_head_low_bit": lm_head_low_bit}
476
- model.config.update(update_dict)
477
- model.config.save_pretrained(save_directory)
478
- if model.can_generate():
479
- model.generation_config.save_pretrained(save_directory)
480
476
 
481
477
  from .qwen import convert_qwen_layer, convert_fused_qwen_layer
482
478
  from .qwen import convert_lm_head_and_embedding
@@ -537,8 +533,6 @@ def convert_llm_for_deploy(model: torch.nn.Module,
537
533
  "n_splits_linear": n_splits_linear,
538
534
  "n_splits_down_proj": n_splits_down_proj,
539
535
  "lm_head_low_bit": lm_head_low_bit}
540
- model.config.update(update_dict)
541
- model.config.save_pretrained(save_directory)
542
536
 
543
537
  from .llama import convert_llama_layer, convert_fused_llama_layer
544
538
  from .llama import convert_lm_head_and_embedding
@@ -577,8 +571,6 @@ def convert_llm_for_deploy(model: torch.nn.Module,
577
571
  "n_splits_linear": n_splits_linear,
578
572
  "n_splits_down_proj": n_splits_down_proj,
579
573
  "lm_head_low_bit": lm_head_low_bit}
580
- model.config.update(update_dict)
581
- model.config.save_pretrained(save_directory)
582
574
 
583
575
  from .minicpm import convert_minicpm_layer, convert_fused_minicpm_layer
584
576
  from .minicpm import convert_lm_head_and_embedding
@@ -595,3 +587,8 @@ def convert_llm_for_deploy(model: torch.nn.Module,
595
587
  save_directory, weight_dir,
596
588
  convert_model=True,
597
589
  max_prompt_len=max_prompt_len)
590
+
591
+ model.config.update(update_dict)
592
+ model.config.save_pretrained(save_directory)
593
+ if model.can_generate():
594
+ model.generation_config.save_pretrained(save_directory)
@@ -432,8 +432,7 @@ def _check_and_extend_kv_cache(past_key_values, max_step_draft, kv_alloc_block_l
432
432
  from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
433
433
  extend_kv_cache
434
434
  enough_kv_room = True
435
- if model_type not in ["chatglm", "qwen", "baichuan", "llama", "mistral",
436
- "gptj", "opt"]:
435
+ if model_type not in ["chatglm", "qwen", "baichuan", "llama", "mistral", "opt"]:
437
436
  return past_key_values, False
438
437
  cache_k = past_key_values[0][0]
439
438
  if model_type == "chatglm":
@@ -527,7 +526,7 @@ def _crop_past_key_values(self, past_key_values, new_cache_size, _enable_ipex=Fa
527
526
  v[:-(new_cache_size), :, :, :])
528
527
  for k, v in past_key_values
529
528
  ]
530
- elif self.config.model_type in ["baichuan", "gptj"]:
529
+ elif self.config.model_type in ["baichuan"]:
531
530
  past_key_values = [
532
531
  (k[:, :, :-(new_cache_size), :],
533
532
  v[:, :, :-(new_cache_size), :])
@@ -796,13 +795,6 @@ def _non_cpu_ipex_verify(self, verify_input_ids, past_key_values, cur_attention_
796
795
  device=verify_input_ids.device)
797
796
  position_ids = position_ids.unsqueeze(0).repeat(1, 1) + past_key_value_len
798
797
  forward_args["position_ids"] = position_ids
799
- elif self.config.model_type == "gptj":
800
- past_length = past_key_values[0][0].size(2)
801
- input_len = verify_input_ids.shape[1]
802
- position_ids = torch.arange(past_length, input_len + past_length,
803
- dtype=torch.long, device=verify_input_ids.device)
804
- position_ids = position_ids.unsqueeze(0).view(-1, input_len)
805
- forward_args["position_ids"] = position_ids
806
798
 
807
799
  return self(**forward_args)
808
800
 
@@ -971,10 +963,6 @@ def speculative_generate(self,
971
963
  past_key_value_len = past_key_values[0][0].shape[0]
972
964
  position_ids = torch.Tensor([[past_key_value_len + step_draft]]).long()
973
965
  forward_args["position_ids"] = position_ids
974
- elif self.config.model_type == "gptj":
975
- past_length = draft_past_key_values[0][0].size(2)
976
- position_ids = torch.Tensor([[past_length]]).long().to(self.device)
977
- forward_args["position_ids"] = position_ids
978
966
 
979
967
  if _enable_ipex:
980
968
  if any(keyword in self.config.model_type
@@ -168,27 +168,14 @@ def get_ipex_version():
168
168
  return _ipex_version
169
169
 
170
170
 
171
- def get_xpu_device_type(x):
172
- if x.device.type != "xpu":
173
- return x.device.type
174
- name = torch.xpu.get_device_name(x.device.index)
175
- if name.startswith("Intel(R) Arc(TM) A"):
176
- return "arc"
177
- elif name.startswith("Intel(R) Graphics [0xe20b]"):
178
- return "bmg"
179
- elif name.startswith("Intel(R) Arc(TM)"):
180
- if 'V' in name:
181
- return "lnl"
182
- else:
183
- return "mtl"
184
- elif name.startswith("Intel(R) Data Center GPU Flex"):
185
- return "flex"
186
- elif name.startswith("Intel(R) Data Center GPU Max"):
187
- return "pvc"
188
- elif name.startswith("Intel(R) UHD"):
189
- return "uhd"
171
+ def get_xpu_device_name(device: torch.device):
172
+ if device.type != "xpu":
173
+ return device.type
190
174
  else:
191
- return "others"
175
+ # possiable device name:
176
+ # ["arc", "pvc", "mtl", "lnl", "bmg", "arl", "legacy", "unknown"]
177
+ import xe_linear
178
+ return xe_linear.get_xpu_device_name(device)
192
179
 
193
180
 
194
181
  def load_imatrix_data(imatrix_file):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ipex-llm
3
- Version: 2.2.0b20250106
3
+ Version: 2.2.0b20250106.post1
4
4
  Summary: Large Language Model Develop Toolkit
5
5
  Home-page: https://github.com/intel-analytics/ipex-llm
6
6
  Author: BigDL Authors
@@ -27,15 +27,17 @@ Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine
27
27
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'all'
28
28
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'all'
29
29
  Provides-Extra: cpp
30
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250106 ; extra == 'cpp'
30
+ Requires-Dist: bigdl-core-cpp ==2.6.0b20250106.post1 ; extra == 'cpp'
31
31
  Requires-Dist: setuptools ; extra == 'cpp'
32
32
  Provides-Extra: cpp-arl
33
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250106 ; extra == 'cpp-arl'
33
+ Requires-Dist: bigdl-core-cpp ==2.6.0b20250106.post1 ; extra == 'cpp-arl'
34
34
  Requires-Dist: setuptools ; extra == 'cpp-arl'
35
35
  Requires-Dist: onednn-devel ==2024.1.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
36
+ Requires-Dist: onednn ==2024.1.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
36
37
  Requires-Dist: dpcpp-cpp-rt ==2024.2.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
37
38
  Requires-Dist: mkl-dpcpp ==2024.2.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
38
39
  Requires-Dist: onednn-devel ==2024.2.1 ; (platform_system == "Windows") and extra == 'cpp'
40
+ Requires-Dist: onednn ==2024.2.1 ; (platform_system == "Windows") and extra == 'cpp'
39
41
  Requires-Dist: dpcpp-cpp-rt ==2024.2.1 ; (platform_system == "Windows") and extra == 'cpp'
40
42
  Requires-Dist: mkl-dpcpp ==2024.2.1 ; (platform_system == "Windows") and extra == 'cpp'
41
43
  Provides-Extra: llama-index
@@ -65,7 +67,7 @@ Requires-Dist: transformers ==4.40.0 ; extra == 'npu'
65
67
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'npu'
66
68
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'npu'
67
69
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'npu'
68
- Requires-Dist: bigdl-core-npu ==2.6.0b20250106 ; (platform_system == "Windows") and extra == 'npu'
70
+ Requires-Dist: bigdl-core-npu ==2.6.0b20250106.post1 ; (platform_system == "Windows") and extra == 'npu'
69
71
  Provides-Extra: serving
70
72
  Requires-Dist: py-cpuinfo ; extra == 'serving'
71
73
  Requires-Dist: fschat[model_worker,webui] ==0.2.36 ; extra == 'serving'
@@ -85,9 +87,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu'
85
87
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu'
86
88
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu'
87
89
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu'
88
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250106 ; extra == 'xpu'
89
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250106 ; extra == 'xpu'
90
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250106 ; extra == 'xpu'
90
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250106.post1 ; extra == 'xpu'
91
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250106.post1 ; extra == 'xpu'
92
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250106.post1 ; extra == 'xpu'
91
93
  Provides-Extra: xpu-2-1
92
94
  Requires-Dist: py-cpuinfo ; extra == 'xpu-2-1'
93
95
  Requires-Dist: protobuf ; extra == 'xpu-2-1'
@@ -102,12 +104,28 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu-2-1'
102
104
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu-2-1'
103
105
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu-2-1'
104
106
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu-2-1'
105
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250106 ; extra == 'xpu-2-1'
106
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250106 ; extra == 'xpu-2-1'
107
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250106 ; extra == 'xpu-2-1'
107
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250106.post1 ; extra == 'xpu-2-1'
108
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250106.post1 ; extra == 'xpu-2-1'
109
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250106.post1 ; extra == 'xpu-2-1'
108
110
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-1'
109
111
  Requires-Dist: dpcpp-cpp-rt ==2024.0.2 ; (platform_system == "Windows") and extra == 'xpu-2-1'
110
112
  Requires-Dist: mkl-dpcpp ==2024.0.0 ; (platform_system == "Windows") and extra == 'xpu-2-1'
113
+ Provides-Extra: xpu-2-6
114
+ Requires-Dist: py-cpuinfo ; extra == 'xpu-2-6'
115
+ Requires-Dist: protobuf ; extra == 'xpu-2-6'
116
+ Requires-Dist: mpmath ==1.3.0 ; extra == 'xpu-2-6'
117
+ Requires-Dist: numpy ==1.26.4 ; extra == 'xpu-2-6'
118
+ Requires-Dist: transformers ==4.37.0 ; extra == 'xpu-2-6'
119
+ Requires-Dist: sentencepiece ; extra == 'xpu-2-6'
120
+ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-2-6'
121
+ Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-2-6'
122
+ Requires-Dist: tabulate ; extra == 'xpu-2-6'
123
+ Requires-Dist: setuptools ; extra == 'xpu-2-6'
124
+ Requires-Dist: torch ==2.6.0+xpu ; extra == 'xpu-2-6'
125
+ Requires-Dist: torchvision ==0.21.0+xpu ; extra == 'xpu-2-6'
126
+ Requires-Dist: torchaudio ==2.6.0+xpu ; extra == 'xpu-2-6'
127
+ Requires-Dist: bigdl-core-xe-all ==2.6.0b20250106.post1 ; extra == 'xpu-2-6'
128
+ Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-6'
111
129
  Provides-Extra: xpu-arc
112
130
  Requires-Dist: py-cpuinfo ; extra == 'xpu-arc'
113
131
  Requires-Dist: protobuf ; extra == 'xpu-arc'
@@ -119,9 +137,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arc'
119
137
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arc'
120
138
  Requires-Dist: tabulate ; extra == 'xpu-arc'
121
139
  Requires-Dist: setuptools ; extra == 'xpu-arc'
122
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106 ; extra == 'xpu-arc'
123
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106 ; extra == 'xpu-arc'
124
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106 ; extra == 'xpu-arc'
140
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arc'
141
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arc'
142
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arc'
125
143
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arc'
126
144
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
127
145
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
@@ -130,6 +148,7 @@ Requires-Dist: torch ==2.3.1.post0+cxx11.abi ; (platform_system == "Windows") an
130
148
  Requires-Dist: torchvision ==0.18.1.post0+cxx11.abi ; (platform_system == "Windows") and extra == 'xpu-arc'
131
149
  Requires-Dist: intel-extension-for-pytorch ==2.3.110.post0+xpu ; (platform_system == "Windows") and extra == 'xpu-arc'
132
150
  Requires-Dist: onednn-devel ==2024.1.1 ; (platform_system == "Windows") and extra == 'xpu-arc'
151
+ Requires-Dist: onednn ==2024.1.1 ; (platform_system == "Windows") and extra == 'xpu-arc'
133
152
  Provides-Extra: xpu-arl
134
153
  Requires-Dist: py-cpuinfo ; extra == 'xpu-arl'
135
154
  Requires-Dist: protobuf ; extra == 'xpu-arl'
@@ -141,9 +160,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arl'
141
160
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arl'
142
161
  Requires-Dist: tabulate ; extra == 'xpu-arl'
143
162
  Requires-Dist: setuptools ; extra == 'xpu-arl'
144
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106 ; extra == 'xpu-arl'
145
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106 ; extra == 'xpu-arl'
146
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106 ; extra == 'xpu-arl'
163
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arl'
164
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arl'
165
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arl'
147
166
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arl'
148
167
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
149
168
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
@@ -152,6 +171,7 @@ Requires-Dist: torch ==2.3.1.post0+cxx11.abi ; (platform_system == "Windows") an
152
171
  Requires-Dist: torchvision ==0.18.1.post0+cxx11.abi ; (platform_system == "Windows") and extra == 'xpu-arl'
153
172
  Requires-Dist: intel-extension-for-pytorch ==2.3.110.post0+xpu ; (platform_system == "Windows") and extra == 'xpu-arl'
154
173
  Requires-Dist: onednn-devel ==2024.1.1 ; (platform_system == "Windows") and extra == 'xpu-arl'
174
+ Requires-Dist: onednn ==2024.1.1 ; (platform_system == "Windows") and extra == 'xpu-arl'
155
175
  Provides-Extra: xpu-lnl
156
176
  Requires-Dist: py-cpuinfo ; extra == 'xpu-lnl'
157
177
  Requires-Dist: protobuf ; extra == 'xpu-lnl'
@@ -163,9 +183,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-lnl'
163
183
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-lnl'
164
184
  Requires-Dist: tabulate ; extra == 'xpu-lnl'
165
185
  Requires-Dist: setuptools ; extra == 'xpu-lnl'
166
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106 ; extra == 'xpu-lnl'
167
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106 ; extra == 'xpu-lnl'
168
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106 ; extra == 'xpu-lnl'
186
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106.post1 ; extra == 'xpu-lnl'
187
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106.post1 ; extra == 'xpu-lnl'
188
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106.post1 ; extra == 'xpu-lnl'
169
189
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-lnl'
170
190
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
171
191
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
@@ -174,6 +194,7 @@ Requires-Dist: torch ==2.3.1.post0+cxx11.abi ; (platform_system == "Windows") an
174
194
  Requires-Dist: torchvision ==0.18.1.post0+cxx11.abi ; (platform_system == "Windows") and extra == 'xpu-lnl'
175
195
  Requires-Dist: intel-extension-for-pytorch ==2.3.110.post0+xpu ; (platform_system == "Windows") and extra == 'xpu-lnl'
176
196
  Requires-Dist: onednn-devel ==2024.1.1 ; (platform_system == "Windows") and extra == 'xpu-lnl'
197
+ Requires-Dist: onednn ==2024.1.1 ; (platform_system == "Windows") and extra == 'xpu-lnl'
177
198
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu'
178
199
  Requires-Dist: dpcpp-cpp-rt ==2024.0.2 ; (platform_system == "Windows") and extra == 'xpu'
179
200
  Requires-Dist: mkl-dpcpp ==2024.0.0 ; (platform_system == "Windows") and extra == 'xpu'
@@ -94,25 +94,25 @@ ipex_llm/serving/fastchat/tgi_api_protocol.py,sha256=brT3k3-V0NJrU4fRqUwWjC0O3iO
94
94
  ipex_llm/serving/fastchat/tgi_api_server.py,sha256=agNTAEiZPSuj3dEdIdYKwkoY0cXOUDX06DiM9VP2knQ,24418
95
95
  ipex_llm/serving/fastchat/vllm_worker.py,sha256=ZLz2Q9GxJO6r_LOiP6epgCRjBGk-K4EB1SNEWSJp5DA,11091
96
96
  ipex_llm/transformers/__init__.py,sha256=l4KkMkLe-pRC7b_kj6LCfeifgE-Uo33_Av_FwN9HnFA,1074
97
- ipex_llm/transformers/convert.py,sha256=2kcaxal7x1ltv_d-qE1r0FXlYNEwlQ2LwAMXLuz-X9Y,106252
97
+ ipex_llm/transformers/convert.py,sha256=TxWdTTOSvh-j5jqokQJVWykta4U4LHupE1QJ-9udzwc,98733
98
98
  ipex_llm/transformers/convert_ipex.py,sha256=iKXo0n8fVFTOA2fNYYrByMFK0dovL-kLd2sVDk88AlQ,14334
99
99
  ipex_llm/transformers/embedding.py,sha256=bdgk59DvD4ZZyxRzewXOR7g56nThgO6uhIwk8QL7f-s,9299
100
100
  ipex_llm/transformers/kv.py,sha256=k4TU18LlA-Sbq9WNNQnfuzu3RSFBwFhmaV3BcGN5bAo,19191
101
101
  ipex_llm/transformers/lisa.py,sha256=F5WxbtXQ7RdKulj83h_2DnEIgKiKGZf7zvOmg6QBl2s,3289
102
- ipex_llm/transformers/loader.py,sha256=cOgX93xOC-4dt01GTJ5wyd7PjZ8S43r4mctkR2YxVuw,6893
103
- ipex_llm/transformers/lookup.py,sha256=c4ETIha6ZLbWvhcclSKRDdi5Ipuet4mfUnOkBa0E8kk,19607
104
- ipex_llm/transformers/low_bit_linear.py,sha256=dyyYyCqw0GK8hzaUGanrg-uIhU1HTLEEbvbxXMlm-80,41668
105
- ipex_llm/transformers/model.py,sha256=KcRjkauGg48BYrUBoUZaVMpg7Piuz5JrfIpVZd3EIjs,41105
102
+ ipex_llm/transformers/loader.py,sha256=AwjV5RpI2t2bedlv7ZhLm8cfd-QJZm5hny-XyjIvdnk,6876
103
+ ipex_llm/transformers/lookup.py,sha256=b6OlZ9OV10R9qeWw8mVryVpDxszkjwLkldvi7GPMJY8,19614
104
+ ipex_llm/transformers/low_bit_linear.py,sha256=lPIvDuRoS0zusiJ6vw_fOTJgK5ylh4CuD3U-qs8ih4Y,40869
105
+ ipex_llm/transformers/model.py,sha256=fj7LBjrWtWwDJJYXnWiXsLGS4ayqqHfnh0p51dSDssE,40908
106
106
  ipex_llm/transformers/modelling_bigdl.py,sha256=7JpNVMuyq_OmtNUaMFMXdxPWZp2q0QHC02QeA-VTPOw,6709
107
107
  ipex_llm/transformers/npu_model.py,sha256=YW02GeVz-9ZGqxAeSz0AOvciS-17bo9eK5ZOBrICwSQ,39508
108
108
  ipex_llm/transformers/patches.py,sha256=halPWm__ORh2fRFSIFPiCNg3LQBfrRkTPtmtRpBJCZQ,1286
109
109
  ipex_llm/transformers/pipeline_parallel.py,sha256=uNZpOXljNmdoEYnP8U-VFiN4dRZb2piQbIf2bG9LQnE,49051
110
110
  ipex_llm/transformers/qlora.py,sha256=jtPGsvWFjbTUGzDBCdfftnCis_0nJQNRpACSwXUbbGU,14943
111
111
  ipex_llm/transformers/relora.py,sha256=-dYzUV0P-IhO2jFdnzN9-v_sFzJpRj3ZwN9eCJzOoCw,16567
112
- ipex_llm/transformers/speculative.py,sha256=Zf1nQb5GXpJQrUHBTL-H4RUBfdv3lGhfehzudHimhYk,64109
112
+ ipex_llm/transformers/speculative.py,sha256=0XNLgc9dGswJHVPrXo4iM7pPxkWwfFfJMECcivJSnIc,63368
113
113
  ipex_llm/transformers/streamer.py,sha256=RrVlLblzCOtABRUpaMXAyaMnCGgLUtAi_YesLumRbww,4842
114
114
  ipex_llm/transformers/training_patch.py,sha256=oxMkUtqyvqJiprw6dE3skkYfD1HOmUlH9N0hBkbn0G0,10799
115
- ipex_llm/transformers/utils.py,sha256=IRzmoRwgCwnOaiDroSyqc2pvlj-ipNvcW8RubvVT_rY,17374
115
+ ipex_llm/transformers/utils.py,sha256=7syzq4jnEo-mWmS9E2VZ2GcFrjojWI8E7Hcx0tloifg,16996
116
116
  ipex_llm/transformers/xpu_customize_fwd.py,sha256=wFpIhs5F6tkNs8gBOrLxWdhLzO3EDHovVkERPIAoAvg,7611
117
117
  ipex_llm/transformers/xpu_ops.py,sha256=H46-69pMRQhekbAEoDfNacCInLWycMHDqrgMGLvFYfI,4362
118
118
  ipex_llm/transformers/awq/__init__.py,sha256=Du5gu3-eeAkeDO_dEMBTzrDBA66DSN3uL3-rn8WGXQw,875
@@ -148,28 +148,24 @@ ipex_llm/transformers/models/baichuan.py,sha256=oJCAEENSG8oQhJ-QPN2SiapARjAGdOM6
148
148
  ipex_llm/transformers/models/bert.py,sha256=bJNic2pt1kph0kBwdK5MRGyWupFfx2Ts0V3D1L-5kWo,6085
149
149
  ipex_llm/transformers/models/bloom.py,sha256=PxfzyYT-nFn3K5rZhTQjmcEjUUzAhUFzxIN4kzRlCuc,8103
150
150
  ipex_llm/transformers/models/chatglm.py,sha256=UHai1t2AUtGmF765_eHF8LUMVQzp_oCBx8TJB21WrHk,12597
151
- ipex_llm/transformers/models/chatglm2.py,sha256=kfJThuKYb3unAB1XCzfop1iDW1gOkyFOjSr-lEjUdS0,24781
151
+ ipex_llm/transformers/models/chatglm2.py,sha256=SGCABJdYQLW0zDarEoWrEQLuWlbq9iQhYU8ZeR1-ptQ,15957
152
152
  ipex_llm/transformers/models/chatglm4.py,sha256=AAhAFFDDas5DBQPfh2Mwl7a2v7taKf6xphoeeNNFaBI,16593
153
153
  ipex_llm/transformers/models/chatglm4v.py,sha256=YRfuf9g1E0MQ_7wbHAOMvadFnO-j3LqI_k1SaRkDs0M,14055
154
- ipex_llm/transformers/models/cohere.py,sha256=RCUBfhI_eNuZ1NyQC6vm28eYqPmgZn6pHSvQMwFyT2A,25884
155
154
  ipex_llm/transformers/models/common.py,sha256=4obQMGF02FCiXrHnFle9Fsx7C33b1FDt37qJJ4YgxRc,11578
156
155
  ipex_llm/transformers/models/decilm.py,sha256=P-PBuDPf07GvKggLwJx_wPwIn6esN3rX8ai2JxRuZmE,5246
157
- ipex_llm/transformers/models/falcon.py,sha256=f5BzMbv4E-R5Pete8zBscbgiueXGIaWGs-5RbcMlUo4,33549
158
156
  ipex_llm/transformers/models/gemma.py,sha256=_E3Yw8Y45xyNVeLqyVKcpr8kjuICtETeL82cJ-bWJuU,9424
159
157
  ipex_llm/transformers/models/gemma2.py,sha256=2WZuv-FLzJyTJFaYxOuzJt47QE64M0lHnzAiO5T6ozI,8049
160
158
  ipex_llm/transformers/models/glm.py,sha256=gHYgfn20jPRL-ElXy-rUqMh6_LQcc5x7DEXSZuRA4E0,7094
161
159
  ipex_llm/transformers/models/gpt2.py,sha256=YSaNgK1uLCFDuIFqnKO0Mi-AsOZsYav-7pNf_NpKGdM,3445
162
160
  ipex_llm/transformers/models/gptbigcode.py,sha256=cP1_qGWoa43R2WacAMblShjku4QupcCZiLaPPAoOUs4,9101
163
- ipex_llm/transformers/models/gptj.py,sha256=TTIx461X2nOcIkrAcZhEf7d7mjJ3yvEC9KLVc1-hrpc,17973
164
161
  ipex_llm/transformers/models/gptneox.py,sha256=loRh1x_5S6BCeOr_s5xr-N_1SQHL3Y5IiUBAEyoMUqQ,6172
165
162
  ipex_llm/transformers/models/internlm.py,sha256=ZbIUMDwNRcrCeduXfbA_uq1AUEWawEt6CJRvQl3LkAg,17832
166
163
  ipex_llm/transformers/models/internvl.py,sha256=Vx0vENIEQLX2M6P398mw5TOhpks0U8xf8rtRQvy94go,8154
167
164
  ipex_llm/transformers/models/llama.py,sha256=ozwtdQ0MbanJEtW4LBFGxqs_QAq82EonhL2dL6tGyw0,8567
168
165
  ipex_llm/transformers/models/minicpm.py,sha256=ib2rJTN7Tf7znBCtVrtXsF-_Uuk2aA7KVg02xzatLiI,10103
169
166
  ipex_llm/transformers/models/minicpm3.py,sha256=FhNS6mi2rg7dSdF_QQGrao3g9EC6XLn1MTKd-kd0wF0,9191
170
- ipex_llm/transformers/models/minicpmv.py,sha256=igfugwyP3Nu3DcLhYXpe9W9Sk3q2YSrzjj7ukAwuJkg,9829
167
+ ipex_llm/transformers/models/minicpmv.py,sha256=ZV4s48WNIyRoEkvENnlmopnx3ojZANBer0LI6bRtxrY,9826
171
168
  ipex_llm/transformers/models/mistral.py,sha256=rE1GWQxXvF6aG-buPHDR13zeynDZEDIubPF4PiVhZbM,7451
172
- ipex_llm/transformers/models/mixtral.py,sha256=zShaxabIoQaL3cV0Rptf7VCN4QuJsV4KBhanff1TASY,26601
173
169
  ipex_llm/transformers/models/mllama.py,sha256=ogpLmmN_OwcFUyjYB-oDC-l3uw8urFvUEc5edkjWHAk,10939
174
170
  ipex_llm/transformers/models/mpt.py,sha256=z02NwHogJZVh-Mk4sYoIzR90SFIKhoNN_-ifsD907TQ,9540
175
171
  ipex_llm/transformers/models/phi.py,sha256=E6qz4EEuHIVGvaPo-wtLC5lz3iyMqTbAE_cRlcjQRKI,6670
@@ -182,10 +178,10 @@ ipex_llm/transformers/models/qwen2_vl.py,sha256=jIm4yZSd751BkRqgj3wR1QBkDIh-TMCL
182
178
  ipex_llm/transformers/models/qwen_vl.py,sha256=j7Nzzz2Qvynu9yrCXmoEfERjw43hXof5TbXIs7Ms-oY,17105
183
179
  ipex_llm/transformers/models/rwkv4.py,sha256=H4KMtxN0JA2ZTXnonHpsUUJ5xULemo-D1Jzl0ri_UY8,6123
184
180
  ipex_llm/transformers/models/rwkv5.py,sha256=OkRNj1pCAZg1z2Fw-I0DEnxLEdZyPeRSQ6msrkxLOCs,10710
185
- ipex_llm/transformers/models/sd.py,sha256=7qkti_5jf3KmB-W4hDVeYGJvipuwGrxPox_4scGmnIc,5991
181
+ ipex_llm/transformers/models/sd.py,sha256=VvHV5u-0k2MgHu3NL9113hPj7DgfxqctuKzEEeNfRDU,5981
186
182
  ipex_llm/transformers/models/stablelm.py,sha256=RGQCYuQhYqtZ1j3RZkYi0_QvCRnUgUIPYxfBcLnElzg,6885
187
183
  ipex_llm/transformers/models/starcoder2.py,sha256=4P3mhRYf2Kreb1ESjrQGfy1puLMmZXgV35zf-Tksvao,6462
188
- ipex_llm/transformers/models/utils.py,sha256=hpTT9X5zCi2CVlFRR-nApn_1Bsh1S8SHlFJwc-tKxf0,18985
184
+ ipex_llm/transformers/models/utils.py,sha256=85rGIzGZvWe3JjYpWcuc1nfzI_tn_zFcdZpWivxJkl0,15457
189
185
  ipex_llm/transformers/models/yuan.py,sha256=1jRPebwAK2ENbyYokOmb4LSVo-szucWiygz9zTv-scs,7656
190
186
  ipex_llm/transformers/npu_models/__init__.py,sha256=ulEUGLjaP48LCrVeury3UxLjXxKzRi0UpSG4bYu-7f8,585
191
187
  ipex_llm/transformers/npu_models/baichuan.py,sha256=fJtd7fBrttySghRUgfZTAdxLjsSNC-XL08HISsXigLE,4685
@@ -218,7 +214,7 @@ ipex_llm/transformers/npu_models/xlm_mp.py,sha256=sj8OVun8xJprM7ZJp0XzWa55rqlSIz
218
214
  ipex_llm/transformers/npu_pipeline_model/__init__.py,sha256=b2IXvVqQ5cItki021h8s3ymW12RPu8QNPprq4Mn3bDM,586
219
215
  ipex_llm/transformers/npu_pipeline_model/baichuan.py,sha256=ICxRzFQ4OIANDkkVi2_4xOeQXmfFXYMx3H52KuE1xR4,6208
220
216
  ipex_llm/transformers/npu_pipeline_model/common.py,sha256=QxJoJESpv0BpwO_FBeAT2wKA56wNFfen8iI37PrMKuA,7838
221
- ipex_llm/transformers/npu_pipeline_model/convert_pipeline.py,sha256=953Gua2tFKLICpbmCBm-Lxnur85Ce7jNMeRTNT4DKZE,28715
217
+ ipex_llm/transformers/npu_pipeline_model/convert_pipeline.py,sha256=wrRgmNT13RVtQRp5gFRBxNEPJHxFMLeGqb8a58YodPQ,28512
222
218
  ipex_llm/transformers/npu_pipeline_model/llama.py,sha256=MnvHRytLt3oy5jIPUBe8AeEJ6PtPWLbhQ5a9WqjZ1TQ,19905
223
219
  ipex_llm/transformers/npu_pipeline_model/minicpm.py,sha256=MDMesYlVbECKdK0xxkt1LwHgpkJOO7ZwBExYAwMGQa0,20637
224
220
  ipex_llm/transformers/npu_pipeline_model/pipeline_cpp.py,sha256=JNmodAMg_NQvDILug3E_fGXEh6cd3wsj4bvAzcd-vaU,2749
@@ -254,11 +250,11 @@ ipex_llm/vllm/xpu/engine/__init__.py,sha256=pY_CpyuZd72fr6s32ejeKHKFW0K4vUU2rzZj
254
250
  ipex_llm/vllm/xpu/engine/engine.py,sha256=k4-D27WS_Gk3mA--w3HWAjPjb4Aiu043MVPi0ZoAUBc,5984
255
251
  ipex_llm/vllm/xpu/entrypoints/openai/api_server.py,sha256=GshTZFB8e4PWvqckfbmTOU6b0oLkNn7A-vzLuG9--j8,21544
256
252
  ipex_llm/vllm/xpu/entrypoints/openai/cli_args.py,sha256=2rENA2ucynMaIjiZBEh2ez1o5vR32GaP514t39CD7KM,8676
257
- ipex_llm-2.2.0b20250106.data/scripts/ipex-llm-init,sha256=fLQsT2dRL6H5bThb4GuIWotAuqoLsIxFwA-0c2qmaO8,6672
258
- ipex_llm-2.2.0b20250106.data/scripts/llm-chat,sha256=TdUnUmNapzuoe1c8IzrdVOQwWEg8IqsMSBRlOD3daZM,2249
259
- ipex_llm-2.2.0b20250106.data/scripts/llm-cli,sha256=RXGPlLElHxcKzoUxljEMBIAXbzCDysXL-Nxw-xF-7LU,2457
260
- ipex_llm-2.2.0b20250106.dist-info/METADATA,sha256=RVDr0pwoPE6J0yPUZ9k7t6_jQn01wTwAXkU5ViqE-c8,11374
261
- ipex_llm-2.2.0b20250106.dist-info/WHEEL,sha256=PPJcBMAZibF_2GFE9NmOJGqiaSMPiNFbJd6QaJjdA6Y,109
262
- ipex_llm-2.2.0b20250106.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
263
- ipex_llm-2.2.0b20250106.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
264
- ipex_llm-2.2.0b20250106.dist-info/RECORD,,
253
+ ipex_llm-2.2.0b20250106.post1.data/scripts/ipex-llm-init,sha256=fLQsT2dRL6H5bThb4GuIWotAuqoLsIxFwA-0c2qmaO8,6672
254
+ ipex_llm-2.2.0b20250106.post1.data/scripts/llm-chat,sha256=TdUnUmNapzuoe1c8IzrdVOQwWEg8IqsMSBRlOD3daZM,2249
255
+ ipex_llm-2.2.0b20250106.post1.data/scripts/llm-cli,sha256=RXGPlLElHxcKzoUxljEMBIAXbzCDysXL-Nxw-xF-7LU,2457
256
+ ipex_llm-2.2.0b20250106.post1.dist-info/METADATA,sha256=I0vPU5mDtPZR3wpY87fYHdn6r14U0T50NWGP7EsF5s8,12825
257
+ ipex_llm-2.2.0b20250106.post1.dist-info/WHEEL,sha256=PPJcBMAZibF_2GFE9NmOJGqiaSMPiNFbJd6QaJjdA6Y,109
258
+ ipex_llm-2.2.0b20250106.post1.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
259
+ ipex_llm-2.2.0b20250106.post1.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
260
+ ipex_llm-2.2.0b20250106.post1.dist-info/RECORD,,