ipex-llm 2.2.0b20250106.post1__py3-none-manylinux2010_x86_64.whl → 2.2.0b20250108__py3-none-manylinux2010_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -847,18 +847,9 @@ def replace_with_low_bit_linear_for_module(model, qtype, module_name=None,
847
847
  mp_group=mp_group,
848
848
  )
849
849
  device = module.weight.data.device
850
- from ipex_llm.transformers.utils import get_ipex_version
851
- if get_ipex_version() < "2.1.10+xpu":
852
- new_linear._parameters['weight'] = nn.Parameter(module.weight)
853
- else:
854
- # only from 2.1, ipex provides matmul_bias_out
855
- # so we need to transpose weight
856
- new_weight = module.weight.transpose(0, 1).contiguous()
857
- new_linear._parameters['weight'] = nn.Parameter(new_weight)
858
- new_linear.weight_type = 2
850
+ new_linear._parameters['weight'] = nn.Parameter(module.weight)
859
851
  if module.bias is not None:
860
- new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
861
- .to(device)
852
+ new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to(device)
862
853
  elif qtype == ggml_tensor_qtype["bf16"]:
863
854
  module.to(torch.bfloat16)
864
855
  new_linear = BF16Linear(
@@ -1420,6 +1411,7 @@ def _optimize_post(model):
1420
1411
  convert_forward(model, module.GlmRMSNorm, rms_norm_forward)
1421
1412
  convert_forward(model, module.GlmMLP, mlp_silu_forward)
1422
1413
  convert_forward(model, module.GlmAttention, glm_attention_forward)
1414
+ convert_forward(model, module.GlmSdpaAttention, glm_attention_forward)
1423
1415
  glm_model_forward = glm_model_forward_wrapper(module.GlmModel.forward)
1424
1416
  convert_forward(model, module.GlmModel, glm_model_forward)
1425
1417
 
@@ -1428,10 +1420,12 @@ def _optimize_post(model):
1428
1420
  vision_module_name = model.model.vision.__class__.__module__
1429
1421
  vision_module = importlib.import_module(vision_module_name)
1430
1422
  from transformers.models.siglip.modeling_siglip import SiglipAttention
1423
+ from transformers.models.siglip.modeling_siglip import SiglipSdpaAttention
1431
1424
  from ipex_llm.transformers.models.chatglm4v import vision_model_forward
1432
1425
  from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
1433
1426
  convert_forward(model, vision_module.VisionModel, vision_model_forward)
1434
1427
  convert_forward(model, SiglipAttention, siglip_attention_forward)
1428
+ convert_forward(model, SiglipSdpaAttention, siglip_attention_forward)
1435
1429
 
1436
1430
  elif "mpt" in model.config.model_type:
1437
1431
  if model.config.architectures is not None:
@@ -1667,8 +1661,10 @@ def _optimize_post(model):
1667
1661
  convert_forward(model, module.Qwen2MLP, qwen2_mlp_forward)
1668
1662
  model.visual.get_dtype = MethodType(qwen2_vision_get_dtype, model.visual)
1669
1663
  convert_forward(model, module.VisionAttention, qwen2_vision_attention_forward)
1664
+ convert_forward(model, module.VisionSdpaAttention, qwen2_vision_attention_forward)
1670
1665
  convert_forward(model, module.Qwen2VLModel, qwen2_vl_model_forward)
1671
1666
  convert_forward(model, module.Qwen2VLAttention, qwen2_vl_attention_forward)
1667
+ convert_forward(model, module.Qwen2VLSdpaAttention, qwen2_vl_attention_forward)
1672
1668
  elif model.config.model_type == "aquila":
1673
1669
  modeling_module_name = model.__class__.__module__
1674
1670
  module = importlib.import_module(modeling_module_name)
@@ -1814,6 +1810,7 @@ def _optimize_post(model):
1814
1810
  from ipex_llm.transformers.models.starcoder2 import attention_forward
1815
1811
  from ipex_llm.transformers.models.starcoder2 import model_forward
1816
1812
  convert_forward(model, module.Starcoder2Attention, attention_forward)
1813
+ convert_forward(model, module.Starcoder2SdpaAttention, attention_forward)
1817
1814
  convert_forward(model, module.Starcoder2Model, model_forward)
1818
1815
  elif model.config.model_type == "phi":
1819
1816
  # for phi-2
@@ -1829,6 +1826,7 @@ def _optimize_post(model):
1829
1826
  module = importlib.import_module(modeling_module_name)
1830
1827
  from ipex_llm.transformers.models.phi3 import attention_forward
1831
1828
  convert_forward(model, module.Phi3Attention, attention_forward)
1829
+ convert_forward(model, module.Phi3SdpaAttention, attention_forward)
1832
1830
  from ipex_llm.transformers.models.phi3 import mlp_forward
1833
1831
  convert_forward(model, module.Phi3MLP, mlp_forward)
1834
1832
  from ipex_llm.transformers.models.common import rms_norm_forward
@@ -1872,6 +1870,8 @@ def _optimize_post(model):
1872
1870
  module.StableLmAttention,
1873
1871
  stablelm_attention_forward
1874
1872
  )
1873
+ if hasattr(module, "StableLmSdpaAttention"):
1874
+ convert_forward(model, module.StableLmSdpaAttention, stablelm_attention_forward)
1875
1875
  convert_forward(model,
1876
1876
  module.StableLmMLP,
1877
1877
  mlp_silu_forward)
@@ -1886,6 +1886,7 @@ def _optimize_post(model):
1886
1886
  from ipex_llm.transformers.models.minicpm import minicpm_model_forward_wrapper
1887
1887
  from ipex_llm.transformers.models.minicpm import minicpm_decoder_layer_forward
1888
1888
  convert_forward(model, module.MiniCPMAttention, minicpm_attention_forward)
1889
+ convert_forward(model, module.MiniCPMSdpaAttention, minicpm_attention_forward)
1889
1890
  convert_forward(model, module.MiniCPMMLP, mlp_silu_forward)
1890
1891
  convert_forward(model, module.MiniCPMRMSNorm, rms_norm_forward)
1891
1892
  convert_forward(model, module.MiniCPMDecoderLayer, minicpm_decoder_layer_forward)
@@ -1901,6 +1902,7 @@ def _optimize_post(model):
1901
1902
  convert_forward(model, module.MiniCPMRMSNorm, rms_norm_forward)
1902
1903
  convert_forward(model, module.MiniCPMMLP, mlp_silu_forward)
1903
1904
  convert_forward(model, module.MiniCPMAttention, minicpm3_attention_forward)
1905
+ convert_forward(model, module.MiniCPMSdpaAttention, minicpm3_attention_forward)
1904
1906
  minicpm3_model_forward = minicpm3_model_forward_wrapper(module.MiniCPM3Model.forward)
1905
1907
  convert_forward(model, module.MiniCPM3Model, minicpm3_model_forward)
1906
1908
  elif model.config.model_type == "minicpmv":
@@ -51,8 +51,7 @@ from torch import Tensor, device, dtype, nn
51
51
  from operator import mul
52
52
  from functools import reduce
53
53
  from ipex_llm.transformers.xpu_customize_fwd import custom_fwd, custom_bwd
54
- from ipex_llm.transformers.utils import get_autocast_dtype, get_xpu_device_name, \
55
- get_ipex_version
54
+ from ipex_llm.transformers.utils import get_autocast_dtype, get_xpu_device_name
56
55
  from ipex_llm.transformers.convert import is_deepspeed_available, get_use_vllm
57
56
 
58
57
  T = TypeVar("T", bound="torch.nn.Module")
@@ -301,6 +301,7 @@ def patch_embedding_forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L,
301
301
 
302
302
  def merge_qkv(module: torch.nn.Module):
303
303
  merge_qkv_base(module, "SiglipAttention")
304
+ merge_qkv_base(module, "SiglipSdpaAttention")
304
305
 
305
306
 
306
307
  def vision_model_forward(self: torch.nn.Module, image: torch.Tensor):
@@ -37,6 +37,7 @@ import torch
37
37
 
38
38
  from typing import Optional, Tuple
39
39
  from transformers.cache_utils import Cache
40
+ from transformers.models.glm.modeling_glm import GlmAttention
40
41
  from transformers.models.glm.modeling_glm import apply_rotary_pos_emb
41
42
  from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
42
43
  from ipex_llm.transformers.models.common import merge_qkv_base
@@ -46,8 +47,9 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache
46
47
 
47
48
 
48
49
  def merge_qkv(module: torch.nn.Module):
49
- merge_qkv_base(module, "GlmAttention")
50
+ merge_qkv_base(module, GlmAttention)
50
51
  merge_qkv_base(module, "SiglipAttention")
52
+ merge_qkv_base(module, "SiglipSdpaAttention")
51
53
 
52
54
 
53
55
  def split_mlp(module: torch.nn.Module):
@@ -116,7 +116,7 @@ def llama_model_forward(
116
116
 
117
117
 
118
118
  def merge_qkv(module: torch.nn.Module):
119
- return merge_qkv_base(module, LlamaAttention)
119
+ merge_qkv_base(module, LlamaAttention)
120
120
 
121
121
 
122
122
  def llama_attention_forward(
@@ -51,7 +51,8 @@ from transformers.cache_utils import Cache
51
51
 
52
52
 
53
53
  def merge_qkv(module: torch.nn.Module):
54
- return merge_qkv_base(module, "MiniCPMAttention")
54
+ merge_qkv_base(module, "MiniCPMAttention")
55
+ merge_qkv_base(module, "MiniCPMSdpaAttention")
55
56
 
56
57
 
57
58
  def apply_residual_scale(module: torch.nn.Module):
@@ -36,6 +36,7 @@ from transformers.generation.logits_process import RepetitionPenaltyLogitsProces
36
36
  # MiniCPM-V-2_5 and MiniCPM-V-2_6
37
37
  def merge_qkv(module: torch.nn.Module):
38
38
  merge_qkv_base(module, "SiglipAttention")
39
+ merge_qkv_base(module, "SiglipSdpaAttention")
39
40
  merge_qkv_base(module, "Idefics2VisionAttention")
40
41
 
41
42
 
@@ -19,7 +19,7 @@ import torch
19
19
  import warnings
20
20
  from ipex_llm.utils.common import invalidInputError
21
21
  from ipex_llm.ggml.quantize import ggml_tensor_qtype
22
- from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_name
22
+ from ipex_llm.transformers.utils import get_xpu_device_name
23
23
  from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\
24
24
  FP6, ASYM_INT4
25
25
 
@@ -154,20 +154,6 @@ def get_autocast_dtype(x):
154
154
  f"Device {x.device} is not supported.")
155
155
 
156
156
 
157
- _ipex_version = None
158
-
159
-
160
- def get_ipex_version():
161
-
162
- global _ipex_version
163
- if _ipex_version is not None:
164
- return _ipex_version
165
-
166
- import intel_extension_for_pytorch as ipex
167
- _ipex_version = ipex.__version__
168
- return _ipex_version
169
-
170
-
171
157
  def get_xpu_device_name(device: torch.device):
172
158
  if device.type != "xpu":
173
159
  return device.type
@@ -20,9 +20,9 @@ import xe_batch
20
20
  import xe_addons
21
21
 
22
22
 
23
- @torch.library.register_fake("ipex_llm::forward_new")
24
- def _(x, weight, qtype, input_size):
25
- return torch.empty_like(x)
23
+ # @torch.library.register_fake("ipex_llm::forward_new")
24
+ # def _(x, weight, qtype, input_size):
25
+ # return ???
26
26
 
27
27
 
28
28
  # @torch.library.register_fake("ipex_llm::dequant")
@@ -32,32 +32,38 @@ def _(x, weight, qtype, input_size):
32
32
 
33
33
  @torch.library.register_fake("ipex_llm::mlp_forward_xpu")
34
34
  def _(x, weight1, weight2, batch_size, state_size, output_size, act_type, qtype):
35
- return torch.empty_like(x)
35
+ return torch.empty([batch_size, output_size],
36
+ dtype=x.dtype, device=x.device)
36
37
 
37
38
 
38
- # @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v4")
39
- # def _(time_decay, time_first, key, value, num_state, den_state, max_state)
40
- # return ???
39
+ @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v4")
40
+ def _(time_decay, time_first, key, value, num_state, den_state, max_state):
41
+ return torch.empty_like(key)
41
42
 
42
43
 
43
- # @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v5")
44
- # def _(time_decay, time_first, receptance, key, value, state)
45
- # return ???
44
+ @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v5")
45
+ def _(time_decay, time_first, receptance, key, value, state):
46
+ bsz, n_heads, seq_len, head_dim = key.shape
47
+ return torch.empty([bsz, seq_len, n_heads, head_dim],
48
+ dtype=key.dtype, device=key.device)
46
49
 
47
50
 
48
- # @torch.library.register_fake("ipex_llm::rwkv_time_shift")
49
- # def _(hidden, shifted, mix):
50
- # return ???
51
+ @torch.library.register_fake("ipex_llm::rwkv_time_shift")
52
+ def _(hidden, shifted, mix):
53
+ bsz, seq_len, hidden_size = hidden.shape
54
+ return torch.empty([mix.size(0), bsz, seq_len, hidden_size],
55
+ dtype=hidden.dtype, device=hidden.device)
51
56
 
52
57
 
53
- # @torch.library.register_fake("ipex_llm::dequantize_rows")
54
- # def _(x, weight, qtype, state_size, output_size):
55
- # return ???
58
+ @torch.library.register_fake("ipex_llm::dequantize_rows")
59
+ def _(x, weight, qtype, state_size, output_size):
60
+ return torch.empty([x.size(0), x.size(1), state_size],
61
+ dtype=torch.float, device=weight.device)
56
62
 
57
63
 
58
- @torch.library.register_fake("ipex_llm::batch_forward")
59
- def _(x, weight, qtype):
60
- return torch.empty_like(x)
64
+ # @torch.library.register_fake("ipex_llm::batch_forward")
65
+ # def _(x, weight, qtype):
66
+ # return ???
61
67
 
62
68
 
63
69
  @torch.library.register_fake("ipex_llm::sdp")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ipex-llm
3
- Version: 2.2.0b20250106.post1
3
+ Version: 2.2.0b20250108
4
4
  Summary: Large Language Model Develop Toolkit
5
5
  Home-page: https://github.com/intel-analytics/ipex-llm
6
6
  Author: BigDL Authors
@@ -27,10 +27,10 @@ Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine
27
27
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'all'
28
28
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'all'
29
29
  Provides-Extra: cpp
30
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250106.post1 ; extra == 'cpp'
30
+ Requires-Dist: bigdl-core-cpp ==2.6.0b20250108 ; extra == 'cpp'
31
31
  Requires-Dist: setuptools ; extra == 'cpp'
32
32
  Provides-Extra: cpp-arl
33
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250106.post1 ; extra == 'cpp-arl'
33
+ Requires-Dist: bigdl-core-cpp ==2.6.0b20250108 ; extra == 'cpp-arl'
34
34
  Requires-Dist: setuptools ; extra == 'cpp-arl'
35
35
  Requires-Dist: onednn-devel ==2024.1.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
36
36
  Requires-Dist: onednn ==2024.1.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
@@ -67,7 +67,7 @@ Requires-Dist: transformers ==4.40.0 ; extra == 'npu'
67
67
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'npu'
68
68
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'npu'
69
69
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'npu'
70
- Requires-Dist: bigdl-core-npu ==2.6.0b20250106.post1 ; (platform_system == "Windows") and extra == 'npu'
70
+ Requires-Dist: bigdl-core-npu ==2.6.0b20250108 ; (platform_system == "Windows") and extra == 'npu'
71
71
  Provides-Extra: serving
72
72
  Requires-Dist: py-cpuinfo ; extra == 'serving'
73
73
  Requires-Dist: fschat[model_worker,webui] ==0.2.36 ; extra == 'serving'
@@ -87,9 +87,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu'
87
87
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu'
88
88
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu'
89
89
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu'
90
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250106.post1 ; extra == 'xpu'
91
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250106.post1 ; extra == 'xpu'
92
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250106.post1 ; extra == 'xpu'
90
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250108 ; extra == 'xpu'
91
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250108 ; extra == 'xpu'
92
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250108 ; extra == 'xpu'
93
93
  Provides-Extra: xpu-2-1
94
94
  Requires-Dist: py-cpuinfo ; extra == 'xpu-2-1'
95
95
  Requires-Dist: protobuf ; extra == 'xpu-2-1'
@@ -104,9 +104,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu-2-1'
104
104
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu-2-1'
105
105
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu-2-1'
106
106
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu-2-1'
107
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250106.post1 ; extra == 'xpu-2-1'
108
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250106.post1 ; extra == 'xpu-2-1'
109
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250106.post1 ; extra == 'xpu-2-1'
107
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250108 ; extra == 'xpu-2-1'
108
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250108 ; extra == 'xpu-2-1'
109
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250108 ; extra == 'xpu-2-1'
110
110
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-1'
111
111
  Requires-Dist: dpcpp-cpp-rt ==2024.0.2 ; (platform_system == "Windows") and extra == 'xpu-2-1'
112
112
  Requires-Dist: mkl-dpcpp ==2024.0.0 ; (platform_system == "Windows") and extra == 'xpu-2-1'
@@ -124,7 +124,7 @@ Requires-Dist: setuptools ; extra == 'xpu-2-6'
124
124
  Requires-Dist: torch ==2.6.0+xpu ; extra == 'xpu-2-6'
125
125
  Requires-Dist: torchvision ==0.21.0+xpu ; extra == 'xpu-2-6'
126
126
  Requires-Dist: torchaudio ==2.6.0+xpu ; extra == 'xpu-2-6'
127
- Requires-Dist: bigdl-core-xe-all ==2.6.0b20250106.post1 ; extra == 'xpu-2-6'
127
+ Requires-Dist: bigdl-core-xe-all ==2.6.0b20250108 ; extra == 'xpu-2-6'
128
128
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-6'
129
129
  Provides-Extra: xpu-arc
130
130
  Requires-Dist: py-cpuinfo ; extra == 'xpu-arc'
@@ -137,9 +137,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arc'
137
137
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arc'
138
138
  Requires-Dist: tabulate ; extra == 'xpu-arc'
139
139
  Requires-Dist: setuptools ; extra == 'xpu-arc'
140
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arc'
141
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arc'
142
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arc'
140
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250108 ; extra == 'xpu-arc'
141
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250108 ; extra == 'xpu-arc'
142
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250108 ; extra == 'xpu-arc'
143
143
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arc'
144
144
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
145
145
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
@@ -160,9 +160,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arl'
160
160
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arl'
161
161
  Requires-Dist: tabulate ; extra == 'xpu-arl'
162
162
  Requires-Dist: setuptools ; extra == 'xpu-arl'
163
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arl'
164
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arl'
165
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106.post1 ; extra == 'xpu-arl'
163
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250108 ; extra == 'xpu-arl'
164
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250108 ; extra == 'xpu-arl'
165
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250108 ; extra == 'xpu-arl'
166
166
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arl'
167
167
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
168
168
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
@@ -183,9 +183,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-lnl'
183
183
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-lnl'
184
184
  Requires-Dist: tabulate ; extra == 'xpu-lnl'
185
185
  Requires-Dist: setuptools ; extra == 'xpu-lnl'
186
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250106.post1 ; extra == 'xpu-lnl'
187
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250106.post1 ; extra == 'xpu-lnl'
188
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250106.post1 ; extra == 'xpu-lnl'
186
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250108 ; extra == 'xpu-lnl'
187
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250108 ; extra == 'xpu-lnl'
188
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250108 ; extra == 'xpu-lnl'
189
189
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-lnl'
190
190
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
191
191
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
@@ -94,14 +94,14 @@ ipex_llm/serving/fastchat/tgi_api_protocol.py,sha256=brT3k3-V0NJrU4fRqUwWjC0O3iO
94
94
  ipex_llm/serving/fastchat/tgi_api_server.py,sha256=agNTAEiZPSuj3dEdIdYKwkoY0cXOUDX06DiM9VP2knQ,24418
95
95
  ipex_llm/serving/fastchat/vllm_worker.py,sha256=ZLz2Q9GxJO6r_LOiP6epgCRjBGk-K4EB1SNEWSJp5DA,11091
96
96
  ipex_llm/transformers/__init__.py,sha256=l4KkMkLe-pRC7b_kj6LCfeifgE-Uo33_Av_FwN9HnFA,1074
97
- ipex_llm/transformers/convert.py,sha256=TxWdTTOSvh-j5jqokQJVWykta4U4LHupE1QJ-9udzwc,98733
97
+ ipex_llm/transformers/convert.py,sha256=APf2uHMgEeiAhsKm9dPgPWlyO0ADq2yHtZgovv9oczU,99101
98
98
  ipex_llm/transformers/convert_ipex.py,sha256=iKXo0n8fVFTOA2fNYYrByMFK0dovL-kLd2sVDk88AlQ,14334
99
99
  ipex_llm/transformers/embedding.py,sha256=bdgk59DvD4ZZyxRzewXOR7g56nThgO6uhIwk8QL7f-s,9299
100
100
  ipex_llm/transformers/kv.py,sha256=k4TU18LlA-Sbq9WNNQnfuzu3RSFBwFhmaV3BcGN5bAo,19191
101
101
  ipex_llm/transformers/lisa.py,sha256=F5WxbtXQ7RdKulj83h_2DnEIgKiKGZf7zvOmg6QBl2s,3289
102
102
  ipex_llm/transformers/loader.py,sha256=AwjV5RpI2t2bedlv7ZhLm8cfd-QJZm5hny-XyjIvdnk,6876
103
103
  ipex_llm/transformers/lookup.py,sha256=b6OlZ9OV10R9qeWw8mVryVpDxszkjwLkldvi7GPMJY8,19614
104
- ipex_llm/transformers/low_bit_linear.py,sha256=lPIvDuRoS0zusiJ6vw_fOTJgK5ylh4CuD3U-qs8ih4Y,40869
104
+ ipex_llm/transformers/low_bit_linear.py,sha256=Obdd08D9dvuroS_6XWo4DXO_DrNRsbAqjz-mQAHmfxY,40845
105
105
  ipex_llm/transformers/model.py,sha256=fj7LBjrWtWwDJJYXnWiXsLGS4ayqqHfnh0p51dSDssE,40908
106
106
  ipex_llm/transformers/modelling_bigdl.py,sha256=7JpNVMuyq_OmtNUaMFMXdxPWZp2q0QHC02QeA-VTPOw,6709
107
107
  ipex_llm/transformers/npu_model.py,sha256=YW02GeVz-9ZGqxAeSz0AOvciS-17bo9eK5ZOBrICwSQ,39508
@@ -112,9 +112,9 @@ ipex_llm/transformers/relora.py,sha256=-dYzUV0P-IhO2jFdnzN9-v_sFzJpRj3ZwN9eCJzOo
112
112
  ipex_llm/transformers/speculative.py,sha256=0XNLgc9dGswJHVPrXo4iM7pPxkWwfFfJMECcivJSnIc,63368
113
113
  ipex_llm/transformers/streamer.py,sha256=RrVlLblzCOtABRUpaMXAyaMnCGgLUtAi_YesLumRbww,4842
114
114
  ipex_llm/transformers/training_patch.py,sha256=oxMkUtqyvqJiprw6dE3skkYfD1HOmUlH9N0hBkbn0G0,10799
115
- ipex_llm/transformers/utils.py,sha256=7syzq4jnEo-mWmS9E2VZ2GcFrjojWI8E7Hcx0tloifg,16996
115
+ ipex_llm/transformers/utils.py,sha256=9IRSqfDokf8QFW9T47R--i3RL1E-_O31HO7IJf7H6pg,16748
116
116
  ipex_llm/transformers/xpu_customize_fwd.py,sha256=wFpIhs5F6tkNs8gBOrLxWdhLzO3EDHovVkERPIAoAvg,7611
117
- ipex_llm/transformers/xpu_ops.py,sha256=H46-69pMRQhekbAEoDfNacCInLWycMHDqrgMGLvFYfI,4362
117
+ ipex_llm/transformers/xpu_ops.py,sha256=vw4cUwvqUqDr45d-WMIkCpM2oiHfjN-VjF0bjMSF4kY,4830
118
118
  ipex_llm/transformers/awq/__init__.py,sha256=Du5gu3-eeAkeDO_dEMBTzrDBA66DSN3uL3-rn8WGXQw,875
119
119
  ipex_llm/transformers/awq/act.py,sha256=YwomJzOOKwkKtzGrm4L4kwBstBLO1Z8SK4CKi8PSYVQ,2172
120
120
  ipex_llm/transformers/awq/awq.py,sha256=cGyRQJWwAEJtOtdSbsBoQ33KX_Ie0pv5OJHC0ACEELE,8861
@@ -150,21 +150,21 @@ ipex_llm/transformers/models/bloom.py,sha256=PxfzyYT-nFn3K5rZhTQjmcEjUUzAhUFzxIN
150
150
  ipex_llm/transformers/models/chatglm.py,sha256=UHai1t2AUtGmF765_eHF8LUMVQzp_oCBx8TJB21WrHk,12597
151
151
  ipex_llm/transformers/models/chatglm2.py,sha256=SGCABJdYQLW0zDarEoWrEQLuWlbq9iQhYU8ZeR1-ptQ,15957
152
152
  ipex_llm/transformers/models/chatglm4.py,sha256=AAhAFFDDas5DBQPfh2Mwl7a2v7taKf6xphoeeNNFaBI,16593
153
- ipex_llm/transformers/models/chatglm4v.py,sha256=YRfuf9g1E0MQ_7wbHAOMvadFnO-j3LqI_k1SaRkDs0M,14055
153
+ ipex_llm/transformers/models/chatglm4v.py,sha256=tyjDDyF6FEgLAT24EG3i4-auxZvkwmeLIy0Hds4K5Yo,14105
154
154
  ipex_llm/transformers/models/common.py,sha256=4obQMGF02FCiXrHnFle9Fsx7C33b1FDt37qJJ4YgxRc,11578
155
155
  ipex_llm/transformers/models/decilm.py,sha256=P-PBuDPf07GvKggLwJx_wPwIn6esN3rX8ai2JxRuZmE,5246
156
156
  ipex_llm/transformers/models/gemma.py,sha256=_E3Yw8Y45xyNVeLqyVKcpr8kjuICtETeL82cJ-bWJuU,9424
157
157
  ipex_llm/transformers/models/gemma2.py,sha256=2WZuv-FLzJyTJFaYxOuzJt47QE64M0lHnzAiO5T6ozI,8049
158
- ipex_llm/transformers/models/glm.py,sha256=gHYgfn20jPRL-ElXy-rUqMh6_LQcc5x7DEXSZuRA4E0,7094
158
+ ipex_llm/transformers/models/glm.py,sha256=PE43uks9lojndBBHFVXK1VWisHhbY-kuCmhq0CwmD4s,7204
159
159
  ipex_llm/transformers/models/gpt2.py,sha256=YSaNgK1uLCFDuIFqnKO0Mi-AsOZsYav-7pNf_NpKGdM,3445
160
160
  ipex_llm/transformers/models/gptbigcode.py,sha256=cP1_qGWoa43R2WacAMblShjku4QupcCZiLaPPAoOUs4,9101
161
161
  ipex_llm/transformers/models/gptneox.py,sha256=loRh1x_5S6BCeOr_s5xr-N_1SQHL3Y5IiUBAEyoMUqQ,6172
162
162
  ipex_llm/transformers/models/internlm.py,sha256=ZbIUMDwNRcrCeduXfbA_uq1AUEWawEt6CJRvQl3LkAg,17832
163
163
  ipex_llm/transformers/models/internvl.py,sha256=Vx0vENIEQLX2M6P398mw5TOhpks0U8xf8rtRQvy94go,8154
164
- ipex_llm/transformers/models/llama.py,sha256=ozwtdQ0MbanJEtW4LBFGxqs_QAq82EonhL2dL6tGyw0,8567
165
- ipex_llm/transformers/models/minicpm.py,sha256=ib2rJTN7Tf7znBCtVrtXsF-_Uuk2aA7KVg02xzatLiI,10103
164
+ ipex_llm/transformers/models/llama.py,sha256=n1JG1uElMB8t3Hpae94S6YTO_5q2N5BUAhb7mncvA6E,8560
165
+ ipex_llm/transformers/models/minicpm.py,sha256=_eYBYafQxnuqKo9ENNkua73KU5goU2z-dkaLlF5uHnA,10147
166
166
  ipex_llm/transformers/models/minicpm3.py,sha256=FhNS6mi2rg7dSdF_QQGrao3g9EC6XLn1MTKd-kd0wF0,9191
167
- ipex_llm/transformers/models/minicpmv.py,sha256=ZV4s48WNIyRoEkvENnlmopnx3ojZANBer0LI6bRtxrY,9826
167
+ ipex_llm/transformers/models/minicpmv.py,sha256=PP05b5iTnrMpiseCn8iJcxKJDnfq7WqXp9Mrch0kKZ0,9876
168
168
  ipex_llm/transformers/models/mistral.py,sha256=rE1GWQxXvF6aG-buPHDR13zeynDZEDIubPF4PiVhZbM,7451
169
169
  ipex_llm/transformers/models/mllama.py,sha256=ogpLmmN_OwcFUyjYB-oDC-l3uw8urFvUEc5edkjWHAk,10939
170
170
  ipex_llm/transformers/models/mpt.py,sha256=z02NwHogJZVh-Mk4sYoIzR90SFIKhoNN_-ifsD907TQ,9540
@@ -181,7 +181,7 @@ ipex_llm/transformers/models/rwkv5.py,sha256=OkRNj1pCAZg1z2Fw-I0DEnxLEdZyPeRSQ6m
181
181
  ipex_llm/transformers/models/sd.py,sha256=VvHV5u-0k2MgHu3NL9113hPj7DgfxqctuKzEEeNfRDU,5981
182
182
  ipex_llm/transformers/models/stablelm.py,sha256=RGQCYuQhYqtZ1j3RZkYi0_QvCRnUgUIPYxfBcLnElzg,6885
183
183
  ipex_llm/transformers/models/starcoder2.py,sha256=4P3mhRYf2Kreb1ESjrQGfy1puLMmZXgV35zf-Tksvao,6462
184
- ipex_llm/transformers/models/utils.py,sha256=85rGIzGZvWe3JjYpWcuc1nfzI_tn_zFcdZpWivxJkl0,15457
184
+ ipex_llm/transformers/models/utils.py,sha256=isBCMMQP3j_opmda9XzD_dPk1ejvEXTztggbu1yIMSc,15439
185
185
  ipex_llm/transformers/models/yuan.py,sha256=1jRPebwAK2ENbyYokOmb4LSVo-szucWiygz9zTv-scs,7656
186
186
  ipex_llm/transformers/npu_models/__init__.py,sha256=ulEUGLjaP48LCrVeury3UxLjXxKzRi0UpSG4bYu-7f8,585
187
187
  ipex_llm/transformers/npu_models/baichuan.py,sha256=fJtd7fBrttySghRUgfZTAdxLjsSNC-XL08HISsXigLE,4685
@@ -250,11 +250,11 @@ ipex_llm/vllm/xpu/engine/__init__.py,sha256=pY_CpyuZd72fr6s32ejeKHKFW0K4vUU2rzZj
250
250
  ipex_llm/vllm/xpu/engine/engine.py,sha256=k4-D27WS_Gk3mA--w3HWAjPjb4Aiu043MVPi0ZoAUBc,5984
251
251
  ipex_llm/vllm/xpu/entrypoints/openai/api_server.py,sha256=GshTZFB8e4PWvqckfbmTOU6b0oLkNn7A-vzLuG9--j8,21544
252
252
  ipex_llm/vllm/xpu/entrypoints/openai/cli_args.py,sha256=2rENA2ucynMaIjiZBEh2ez1o5vR32GaP514t39CD7KM,8676
253
- ipex_llm-2.2.0b20250106.post1.data/scripts/ipex-llm-init,sha256=fLQsT2dRL6H5bThb4GuIWotAuqoLsIxFwA-0c2qmaO8,6672
254
- ipex_llm-2.2.0b20250106.post1.data/scripts/llm-chat,sha256=TdUnUmNapzuoe1c8IzrdVOQwWEg8IqsMSBRlOD3daZM,2249
255
- ipex_llm-2.2.0b20250106.post1.data/scripts/llm-cli,sha256=RXGPlLElHxcKzoUxljEMBIAXbzCDysXL-Nxw-xF-7LU,2457
256
- ipex_llm-2.2.0b20250106.post1.dist-info/METADATA,sha256=I0vPU5mDtPZR3wpY87fYHdn6r14U0T50NWGP7EsF5s8,12825
257
- ipex_llm-2.2.0b20250106.post1.dist-info/WHEEL,sha256=PPJcBMAZibF_2GFE9NmOJGqiaSMPiNFbJd6QaJjdA6Y,109
258
- ipex_llm-2.2.0b20250106.post1.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
259
- ipex_llm-2.2.0b20250106.post1.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
260
- ipex_llm-2.2.0b20250106.post1.dist-info/RECORD,,
253
+ ipex_llm-2.2.0b20250108.data/scripts/ipex-llm-init,sha256=fLQsT2dRL6H5bThb4GuIWotAuqoLsIxFwA-0c2qmaO8,6672
254
+ ipex_llm-2.2.0b20250108.data/scripts/llm-chat,sha256=TdUnUmNapzuoe1c8IzrdVOQwWEg8IqsMSBRlOD3daZM,2249
255
+ ipex_llm-2.2.0b20250108.data/scripts/llm-cli,sha256=RXGPlLElHxcKzoUxljEMBIAXbzCDysXL-Nxw-xF-7LU,2457
256
+ ipex_llm-2.2.0b20250108.dist-info/METADATA,sha256=NJp_uuPOJe8b5UQ8ASJbfzen2BGoc2DEM1ZInzr0X9E,12705
257
+ ipex_llm-2.2.0b20250108.dist-info/WHEEL,sha256=PPJcBMAZibF_2GFE9NmOJGqiaSMPiNFbJd6QaJjdA6Y,109
258
+ ipex_llm-2.2.0b20250108.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
259
+ ipex_llm-2.2.0b20250108.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
260
+ ipex_llm-2.2.0b20250108.dist-info/RECORD,,