ion-CSP 2.1.5__py3-none-any.whl → 2.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ion_CSP/gen_opt.py CHANGED
@@ -7,7 +7,7 @@ import subprocess
7
7
  import importlib.resources
8
8
  from typing import List
9
9
  from ase.io import read
10
- from dpdispatcher import Machine
10
+ from dpdispatcher import Machine, Resources
11
11
  from pyxtal import pyxtal
12
12
  from pyxtal.msg import Comp_CompatibilityError, Symm_CompatibilityError
13
13
  from ion_CSP.log_and_time import redirect_dpdisp_logging
@@ -17,11 +17,13 @@ class CrystalGenerator:
17
17
  def __init__(self, work_dir: str, ion_numbers: List[int], species: List[str]):
18
18
  """
19
19
  Initialize the class based on the provided ionic crystal composition structure files and corresponding composition numbers.
20
+
21
+ :params
22
+ work_dir: The working directory where the ionic crystal structure files are located.
23
+ ion_numbers: A list of integers representing the number of each ion in the ionic crystal.
24
+ species: A list of strings representing the species of ions in the ionic crystal.
20
25
  """
21
26
  redirect_dpdisp_logging(os.path.join(work_dir, "dpdispatcher.log"))
22
- # self.script_dir = os.path.dirname(__file__)
23
- # self.mlp_opt_file = os.path.join(self.script_dir, "mlp_opt.py")
24
- # self.model_file = os.path.join(self.script_dir, "../../model/model.pt")
25
27
  self.mlp_opt_file = importlib.resources.files("ion_CSP").joinpath("mlp_opt.py")
26
28
  self.model_file = importlib.resources.files("ion_CSP.model").joinpath("model.pt")
27
29
  # 获取当前脚本的路径以及同路径下离子晶体组分的结构文件, 并将这一路径作为工作路径来避免可能的错误
@@ -55,6 +57,10 @@ class CrystalGenerator:
55
57
  """
56
58
  Private method:
57
59
  Extract numbers from file names, convert them to integers, sort them by sequence, and return a list containing both indexes and file names
60
+
61
+ :params
62
+ directory: The directory where the files are located.
63
+ prefix_name: The prefix of the file names to be processed, e.g., 'POSCAR_'.
58
64
  """
59
65
  # 获取dir文件夹中所有以prefix_name开头的文件,在此实例中为POSCAR_
60
66
  files = [f for f in os.listdir(directory) if f.startswith(prefix_name)]
@@ -72,6 +78,9 @@ class CrystalGenerator:
72
78
  ):
73
79
  """
74
80
  Based on the provided ion species and corresponding numbers, use pyxtal to randomly generate ion crystal structures based on crystal space groups.
81
+ :params
82
+ num_per_group: The number of POSCAR files to be generated for each space group, default is 100.
83
+ space_groups_limit: The maximum number of space groups to be searched, default is 230, which is the total number of space groups.
75
84
  """
76
85
  # 如果目录不存在,则创建POSCAR_Files文件夹
77
86
  os.makedirs(self.POSCAR_dir, exist_ok=True)
@@ -135,7 +144,14 @@ class CrystalGenerator:
135
144
  )
136
145
 
137
146
  def _single_phonopy_processing(self, filename):
138
- # 按顺序处理POSCAR文件,首先复制一份无数字后缀的POSCAR文件
147
+ """
148
+ Private method:
149
+ Process a single POSCAR file using phonopy to generate symmetric primitive cells and conventional cells.
150
+
151
+ :params
152
+ filename: The name of the POSCAR file to be processed.
153
+ """
154
+ # 按顺序处理POSCAR文件,首先复制一份无数字后缀的POSCAR文件
139
155
  shutil.copy(f"{self.POSCAR_dir}/{filename}", f"{self.POSCAR_dir}/POSCAR")
140
156
  try:
141
157
  subprocess.run(["nohup", "phonopy", "--symmetry", "POSCAR"], check=True)
@@ -153,7 +169,7 @@ class CrystalGenerator:
153
169
  # 检查生成的POSCAR中的原子数,如果不匹配则删除该POSCAR并在日志中记录
154
170
  if cell_atoms != self.cell_atoms:
155
171
  error_message = f"Atom number mismatch ({cell_atoms} vs {self.cell_atoms})"
156
- logging.error(f"{filename} - {error_message}")
172
+ print(f"{filename} - {error_message}")
157
173
 
158
174
  # 新增:回溯空间群归属
159
175
  poscar_index = int(filename.split('_')[1]) # 提取POSCAR编号
@@ -179,7 +195,15 @@ class CrystalGenerator:
179
195
  os.remove(f"{self.primitive_cell_dir}/{filename}")
180
196
 
181
197
  def _find_space_group(self, poscar_index: int) -> int:
182
- """根据POSCAR编号查找对应的空间群"""
198
+ """
199
+ Private method:
200
+ Find the space group for a given POSCAR index based on the group_counts.
201
+
202
+ :params
203
+ poscar_index: The index of the POSCAR file to find the space group for.
204
+
205
+ :return: The space group number corresponding to the POSCAR index.
206
+ """
183
207
  cumulative = 0
184
208
  for idx, count in enumerate(self.group_counts, start=1):
185
209
  if cumulative <= poscar_index < cumulative + count:
@@ -219,6 +243,11 @@ class CrystalGenerator:
219
243
  def dpdisp_mlp_tasks(self, machine: str, resources: str, nodes: int = 1):
220
244
  """
221
245
  Based on the dpdispatcher module, prepare and submit files for optimization on remote server or local machine.
246
+
247
+ params:
248
+ machine: The machine configuration file for dpdispatcher, can be in JSON or YAML format.
249
+ resources: The resources configuration file for dpdispatcher, can be in JSON or YAML format.
250
+ nodes: The number of nodes to be used for optimization, default is 1.
222
251
  """
223
252
  # 调整工作目录,减少错误发生
224
253
  os.chdir(self.primitive_cell_dir)
@@ -233,26 +262,31 @@ class CrystalGenerator:
233
262
  machine = Machine.load_from_yaml(machine)
234
263
  else:
235
264
  raise KeyError("Not supported machine file type")
265
+ if resources.endswith(".json"):
266
+ resources = Resources.load_from_json(resources)
267
+ elif resources.endswith(".yaml"):
268
+ resources = Resources.load_from_yaml(resources)
269
+ else:
270
+ raise KeyError("Not supported resources file type")
236
271
  # 由于dpdispatcher对于远程服务器以及本地运行的forward_common_files的默认存放位置不同,因此需要预先进行判断,从而不改动优化脚本
237
272
  machine_inform = machine.serialize()
273
+ resources_inform = resources.serialize()
238
274
  if machine_inform["context_type"] == "SSHContext":
239
275
  # 如果调用远程服务器,则创建二级目录
240
276
  parent = "data/"
241
277
  elif machine_inform["context_type"] == "LocalContext":
242
278
  # 如果在本地运行作业,则只在后续创建一级目录
243
279
  parent = ""
244
- # 如果是本地运行,则根据显存占用率阈值,等待可用的GPU
245
- selected_gpu = wait_for_gpu(memory_percent_threshold=40, wait_time=600)
246
- os.environ["CUDA_VISIBLE_DEVICES"] = str(selected_gpu)
280
+ if (
281
+ machine_inform["batch_type"] == "Shell"
282
+ and resources_inform["gpu_per_node"] != 0
283
+ ):
284
+ # 如果是本地运行,则根据显存占用率阈值,等待可用的GPU
285
+ selected_gpu = _wait_for_gpu(memory_percent_threshold=40, wait_time=600)
286
+ os.environ["CUDA_VISIBLE_DEVICES"] = str(selected_gpu)
247
287
 
248
- from dpdispatcher import Resources, Task, Submission
288
+ from dpdispatcher import Task, Submission
249
289
 
250
- if resources.endswith(".json"):
251
- resources = Resources.load_from_json(resources)
252
- elif resources.endswith(".yaml"):
253
- resources = Resources.load_from_yaml(resources)
254
- else:
255
- raise KeyError("Not supported resources file type")
256
290
  # 依次读取primitive_cell文件夹中的所有POSCAR文件和对应的序号
257
291
  primitive_cell_file_index_pairs = self._sequentially_read_files(
258
292
  self.primitive_cell_dir, prefix_name="POSCAR_"
@@ -337,8 +371,14 @@ class CrystalGenerator:
337
371
  logging.info("Batch optimization completed!!!")
338
372
 
339
373
 
340
- def get_available_gpus(memory_percent_threshold=40):
341
- """获取可用的 GPU 节点,内存负载低于指定阈值且没有其他用户的任务在运行"""
374
+ def _get_available_gpus(memory_percent_threshold=40):
375
+ """
376
+ Private method:
377
+ Get available GPUs with memory usage below the specified threshold.
378
+
379
+ params:
380
+ memory_percent_threshold (int): The threshold for GPU memory usage percentage.
381
+ """
342
382
  try:
343
383
  # 获取 nvidia-smi 的输出
344
384
  output = subprocess.check_output(
@@ -368,10 +408,16 @@ def get_available_gpus(memory_percent_threshold=40):
368
408
  return []
369
409
 
370
410
 
371
- def wait_for_gpu(memory_percent_threshold=40, wait_time=300):
372
- """等待直到有可用的 GPU"""
411
+ def _wait_for_gpu(memory_percent_threshold=40, wait_time=300):
412
+ """
413
+ Private method:
414
+ Wait until a GPU is available with memory usage below the specified threshold.
415
+ params:
416
+ memory_percent_threshold (int): The threshold for GPU memory usage percentage.
417
+ wait_time (int): The time to wait before checking again, in seconds.
418
+ """
373
419
  while True:
374
- available_gpus = get_available_gpus(memory_percent_threshold)
420
+ available_gpus = _get_available_gpus(memory_percent_threshold)
375
421
  logging.info(f"Available GPU: {available_gpus}")
376
422
  if available_gpus:
377
423
  selected_gpu = available_gpus[0]
@@ -7,6 +7,17 @@ from ase.neighborlist import NeighborList, natural_cutoffs
7
7
 
8
8
 
9
9
  def identify_molecules(atoms) -> Tuple[List[Dict[str, int]], bool]:
10
+ """
11
+ Identify independent molecules in a given set of atoms.
12
+ This function uses a depth-first search (DFS) approach to find connected components in the atomic structure,
13
+ treating each connected component as a separate molecule.
14
+ params:
15
+ atoms: ASE Atoms object containing the atomic structure.
16
+ returns:
17
+ A tuple containing:
18
+ - A list of dictionaries, each representing a molecule with element counts.
19
+ - A boolean flag indicating whether the identified molecules match the initial set of molecules.
20
+ """
10
21
  visited = set() # 用于记录已经访问过的原子索引
11
22
  identified_molecules = [] # 用于存储识别到的独立分子
12
23
  # 基于共价半径为每个原子生成径向截止
@@ -63,6 +74,10 @@ def identify_molecules(atoms) -> Tuple[List[Dict[str, int]], bool]:
63
74
  def molecules_information(molecules: List[Dict[str, int]], molecules_flag: bool, initial_information: List[Dict[str, int]]):
64
75
  """
65
76
  Set the output format of the molecule. Output simplified element information in the specified order of C, N, O, H, which may include other elements.
77
+ params:
78
+ molecules: A list of dictionaries representing identified molecules with element counts.
79
+ molecules_flag: A boolean flag indicating whether the identified molecules match the initial set of molecules.
80
+ initial_information: A list of dictionaries representing the initial set of molecules with element counts.
66
81
  """
67
82
  # 定义固定顺序的元素
68
83
  fixed_order = ['C', 'N', 'O', 'H']
ion_CSP/log_and_time.py CHANGED
@@ -11,7 +11,14 @@ from dpdispatcher.dlog import dlog
11
11
 
12
12
 
13
13
  def log_and_time(func):
14
- """Decorator for recording log information and script runtime"""
14
+ """
15
+ Decorator for recording log information and script runtime
16
+
17
+ :params
18
+ func: The function to be decorated
19
+
20
+ :return: The decorated function with logging and timing capabilities
21
+ """
15
22
  @functools.wraps(func)
16
23
  def wrapper(work_dir, *args, **kwargs):
17
24
  # 使用inspect获取真实脚本文件名
@@ -54,20 +61,49 @@ def log_and_time(func):
54
61
 
55
62
 
56
63
  def merge_config(default_config, user_config, key):
64
+ """
65
+ Merge default configuration with user-provided configuration for a specific key.
66
+
67
+ :params
68
+ default_config: The default configuration dictionary.
69
+ user_config: The user-provided configuration dictionary.
70
+ key: The key for which the configuration should be merged.
71
+
72
+ :return: A merged configuration dictionary for the specified key.
73
+ """
74
+ if key not in default_config:
75
+ raise KeyError(f"Key '{key}' not found in default configuration.")
76
+ if key not in user_config:
77
+ raise KeyError(f"Key '{key}' not found in user configuration.")
78
+ if not isinstance(default_config[key], dict) or not isinstance(user_config.get(key, {}), dict):
79
+ raise TypeError(f"Both default and user configurations for '{key}' must be dictionaries.")
80
+ # 合并两个参数配置,优先使用用户参数配置
57
81
  return {**default_config[key], **user_config.get(key, {})}
58
82
 
59
83
 
60
84
  class StatusLogger:
85
+ """
86
+ A singleton class to log the status of a workflow, including RUNNING, SUCCESS, FAILURE, and KILLED.
87
+ It initializes a logger that writes to a log file and a YAML file to record the status of the workflow.
88
+ The logger captures the process ID and handles termination signals (SIGINT, SIGTERM).
89
+ """
90
+ _name = "WorkflowLogger"
61
91
  _instance = None
62
92
 
63
93
  def __new__(cls, *args, **kwargs):
94
+ """Ensure that only one instance of StatusLogger is created (Singleton Pattern)"""
64
95
  if not cls._instance:
65
96
  cls._instance = super(StatusLogger, cls).__new__(cls)
66
97
  cls._instance.__init__(*args, **kwargs)
67
98
  return cls._instance
68
99
 
69
100
  def __init__(self, work_dir, task_name):
70
- """Initialize workflow status logger and generate the .log and .yaml file to record the status"""
101
+ """
102
+ Initialize workflow status logger and generate the .log and .yaml file to record the status
103
+
104
+ :params
105
+ work_dir: The working directory where the log and yaml files will be created
106
+ task_name: The name of the task to be logged"""
71
107
  # 使用单例模式,避免重复的日志记录,缺点是再重新给定task_name之后会覆盖原来的实例,只能顺序调用
72
108
  self.task_name = task_name
73
109
  log_file = os.path.join(work_dir, "workflow_status.log")
@@ -97,12 +133,17 @@ class StatusLogger:
97
133
  self._init_yaml()
98
134
 
99
135
  def set_running(self):
136
+ """
137
+ Set the current task status to RUNNING and log the event.
138
+ This method increments the run count and updates the YAML file.
139
+ """
100
140
  self.current_status = "RUNNING"
101
141
  self.logger.info(f"{self.task_name} Status: {self.current_status}")
102
142
  self.run_count += 1
103
143
  self._update_yaml()
104
144
 
105
145
  def set_success(self):
146
+ """Set the current task status to SUCCESS and log the event"""
106
147
  self.current_status = "SUCCESS"
107
148
  self.logger.info(f"{self.task_name} Status: {self.current_status}\n")
108
149
  self._update_yaml()
@@ -112,12 +153,16 @@ class StatusLogger:
112
153
  return self.current_status == "SUCCESS"
113
154
 
114
155
  def set_failure(self):
156
+ """Set the current task status to FAILURE and log the event"""
115
157
  self.current_status = "FAILURE"
116
158
  self.logger.error(f"{self.task_name} Status: {self.current_status}\n")
117
159
  self._update_yaml()
118
160
 
119
161
  def _signal_handler(self, signum, _):
120
- """Handle termination signals and log the event"""
162
+ """
163
+ Handle termination signals and log the event
164
+ :params
165
+ signum: The signal number received (e.g., SIGINT, SIGTERM)"""
121
166
  if signum == 2:
122
167
  self.logger.warning(
123
168
  f"Process {os.getpid()} has been interrupted by 'Ctrl + C'\n"
@@ -134,6 +179,7 @@ class StatusLogger:
134
179
  sys.exit(0)
135
180
 
136
181
  def _set_killed(self):
182
+ """Set the current task status to KILLED and log the event"""
137
183
  self.current_status = "KILLED"
138
184
  self.logger.warning(f"{self.task_name} Status: {self.current_status}\n")
139
185
  self._update_yaml()
@@ -193,11 +239,12 @@ def redirect_dpdisp_logging(custom_log_path):
193
239
 
194
240
 
195
241
  def get_work_dir_and_config():
196
- """获取工作目录并加载配置文件
197
- Returns:
198
- tuple: (工作目录路径, 合并后的配置字典)
199
- Raises:
200
- SystemExit: 当输入无效时退出程序
242
+ """
243
+ Get the working directory and user configuration from command line arguments or interactive input.
244
+ If the working directory is not specified, it prompts the user to input it interactively.
245
+ It also reads the configuration from a 'config.yaml' file in the specified directory.
246
+
247
+ :return: A tuple containing the working directory and the user configuration dictionary.
201
248
  """
202
249
  parser = argparse.ArgumentParser(
203
250
  description="The full workflow of ionic crystal design for a certain ion combination, including generation, mlp optimization, screening, vasp optimization and analysis."
ion_CSP/mlp_opt.py CHANGED
@@ -14,13 +14,22 @@ base_dir = os.path.dirname(__file__)
14
14
  relative_path = './model.pt'
15
15
  file_path = os.path.join(base_dir, relative_path)
16
16
  calc = DP(file_path)
17
- '''
17
+ """
18
18
  structure optimization with DP model and ASE
19
19
  PSTRESS and fmax should exist in input.dat
20
- '''
20
+ """
21
21
 
22
22
  def get_element_num(elements):
23
- '''Using the Atoms.symples to Know Element&Num'''
23
+ """
24
+ Using the Atoms.symples to Know Element and Number
25
+
26
+ :params
27
+ elements: list of elements in the structure
28
+
29
+ :returns
30
+ element: list of unique elements in the structure
31
+ ele: dictionary with elements as keys and their counts as values
32
+ """
24
33
  element = []
25
34
  ele = {}
26
35
  element.append(elements[0])
@@ -32,7 +41,15 @@ def get_element_num(elements):
32
41
  return element, ele
33
42
 
34
43
  def write_CONTCAR(element, ele, lat, pos, index):
35
- '''Write CONTCAR'''
44
+ """
45
+ Write CONTCAR file in VASP format
46
+
47
+ :params
48
+ element: list of elements in the structure
49
+ ele: dictionary of element counts
50
+ lat: lattice vectors
51
+ pos: atomic positions in direct coordinates
52
+ index: index for the output file"""
36
53
  f = open(f'{base_dir}/CONTCAR_'+str(index),'w')
37
54
  f.write('ASE-DPKit-Optimization\n')
38
55
  f.write('1.0\n')
@@ -51,7 +68,21 @@ def write_CONTCAR(element, ele, lat, pos, index):
51
68
  f.write('%15.10f %15.10f %15.10f\n' % tuple(dpos[i]))
52
69
 
53
70
  def write_OUTCAR(element, ele, masses, volume, lat, pos, ene, force, stress, pstress, index):
54
- '''Write OUTCAR'''
71
+ """
72
+ Write OUTCAR file in VASP format
73
+ :params
74
+ element: list of elements in the structure
75
+ ele: dictionary of element counts
76
+ masses: total mass of the atoms
77
+ volume: volume of the unit cell
78
+ lat: lattice vectors
79
+ pos: atomic positions in direct coordinates
80
+ ene: total energy of the system
81
+ force: forces on the atoms
82
+ stress: stress tensor components
83
+ pstress: external pressure
84
+ index: index for the output file
85
+ """
55
86
  f = open(f'{base_dir}/OUTCAR_'+str(index),'w')
56
87
  for x in element:
57
88
  f.write('VRHFIN =' + str(x) + '\n')
@@ -88,6 +119,13 @@ def write_OUTCAR(element, ele, masses, volume, lat, pos, ene, force, stress, pst
88
119
  f.write('enthalpy TOTEN = %20.6f %20.6f\n' % (enthalpy, enthalpy/na))
89
120
 
90
121
  def get_indexes():
122
+ """
123
+ Get the indexes of POSCAR files in the current directory.
124
+ This function scans the current directory for files starting with 'POSCAR_' and extracts their numeric indexes.
125
+
126
+ :returns
127
+ A sorted list of indexes extracted from the POSCAR files.
128
+ """
91
129
  base_dir = os.path.dirname(__file__)
92
130
  POSCAR_files = [f for f in os.listdir(base_dir) if f.startswith('POSCAR_')]
93
131
  indexes = []
@@ -100,7 +138,11 @@ def get_indexes():
100
138
  return indexes
101
139
 
102
140
  def run_opt(index: int):
103
- '''Using the ASE&DP to Optimize Configures'''
141
+ """
142
+ Using the ASE&DP to Optimize Configures
143
+ :params
144
+ index: index of the POSCAR file to be optimized
145
+ """
104
146
  if os.path.isfile(f'{base_dir}/OUTCAR'):
105
147
  os.system(f'mv {base_dir}/OUTCAR {base_dir}/OUTCAR-last')
106
148
  fmax, pstress = 0.03, 0
@@ -143,6 +185,10 @@ def run_opt(index: int):
143
185
 
144
186
 
145
187
  def main():
188
+ """
189
+ Main function to run the optimization in parallel.
190
+ It initializes a multiprocessing pool and maps the run_opt function to the indexes of POSCAR files.
191
+ """
146
192
  ctx=multiprocessing.get_context("spawn")
147
193
  pool=ctx.Pool(8)
148
194
  indexes = get_indexes()
@@ -9,6 +9,13 @@ from ion_CSP.identify_molecules import identify_molecules, molecules_information
9
9
  class ReadMlpDensity:
10
10
 
11
11
  def __init__(self, work_dir:str):
12
+ """
13
+ This class is designed to read and process MLP optimized files, specifically CONTCAR files, to calculate and sort their densities.
14
+ The class also provides functionality to process these files using phonopy for symmetry analysis and primitive cell generation.
15
+
16
+ :params
17
+ work_dir: The working directory where the MLP optimized files are located.
18
+ """
12
19
  # 获取脚本的当前目录
13
20
  self.base_dir = work_dir
14
21
  os.chdir(self.base_dir)
@@ -39,7 +46,10 @@ class ReadMlpDensity:
39
46
  """
40
47
  Obtain the atomic mass and unit cell volume from the optimized CONTCAR file, and obtain the ion crystal density. Finally, take n CONTCAR files with the highest density and save them separately for viewing.
41
48
 
42
- :param n_screen: 取前n个最大密度的文件
49
+ :params
50
+ n_screen: The number of CONTCAR files with the highest density to be saved.
51
+ molecules_screen: If True, only consider ionic crystals with original ions.
52
+ detail_log: If True, print detailed information about the molecules identified in the CONTCAR files.
43
53
  """
44
54
  os.chdir(self.base_dir)
45
55
  # 获取所有以'CONTCAR_'开头的文件,并按数字顺序处理
@@ -135,6 +145,10 @@ class ReadMlpDensity:
135
145
  def phonopy_processing_max_density(self, specific_directory :str = None):
136
146
  """
137
147
  Use phonopy to check and generate symmetric primitive cells, reducing the complexity of subsequent optimization calculations, and preventing pyxtal.from_random from generating double proportioned supercells.
148
+
149
+ :params
150
+ specific_directory: If specified, phonopy will process the files in this directory instead of the max_density directory.
151
+ If not specified, it will process the files in the max_density directory.
138
152
  """
139
153
  if specific_directory:
140
154
  self.phonopy_dir = os.path.join(self.base_dir, specific_directory)
@@ -1,4 +1,3 @@
1
- import os
2
1
  import logging
3
2
  from ion_CSP.convert_SMILES import SmilesProcessing
4
3
  from ion_CSP.empirical_estimate import EmpiricalEstimation
@@ -31,11 +30,10 @@ DEFAULT_CONFIG = {
31
30
  @log_and_time
32
31
  def main(work_dir, config):
33
32
  logging.info(f"Using config: {config}")
34
- empirical_estimate_dir = os.path.join(work_dir, "1_2_Gaussian_optimized")
35
33
  tasks = {
36
34
  "0_convertion": lambda: convertion_task(work_dir, config),
37
- "0_estimation": lambda: estimation_task(empirical_estimate_dir, config),
38
- "0_update_combo": lambda: combination_task(empirical_estimate_dir, config),
35
+ "0_estimation": lambda: estimation_task(work_dir, config),
36
+ "0_update_combo": lambda: combination_task(work_dir, config),
39
37
  }
40
38
  for task_name, task_func in tasks.items():
41
39
  task_logger = StatusLogger(work_dir=work_dir, task_name=task_name)
@@ -52,7 +50,7 @@ def main(work_dir, config):
52
50
  task_logger = StatusLogger(work_dir=work_dir, task_name="0_update_combo")
53
51
  try:
54
52
  task_logger.set_running()
55
- combination_task(empirical_estimate_dir, config)
53
+ combination_task(work_dir, config)
56
54
  task_logger.set_success()
57
55
  except Exception:
58
56
  task_logger.set_failure()
@@ -94,14 +92,6 @@ def estimation_task(work_dir, config):
94
92
  estimation.multiwfn_process_fchk_to_json()
95
93
  # 由于后续晶体生成不支持 .log 文件,需要将 Gaussian 优化得到的 .log 文件最后一帧转为 .gjf 结构文件
96
94
  estimation.gaussian_log_to_optimized_gjf()
97
- # 如果依据密度排序,则需要经验公式根据配比生成离子晶体组合,读取 .json 文件并将静电势分析得到的各离子性质代入经验公式
98
- if config["empirical_estimate"]["sort_by"] == "density":
99
- # 最终将预测的离子晶体密度以及对应的组分输出到 .csv 文件并根据密度从大到小排序
100
- estimation.empirical_estimate()
101
- # 如果依据氮含量排序,则调用另一套根据 .gjf 文件中化学分布信息
102
- elif config["empirical_estimate"]["sort_by"] == "nitrogen":
103
- # 最终将预测的离子晶体氮含量以及对应的组分输出到 .csv 文件并根据氮含量从大到小排序
104
- estimation.nitrogen_content_estimate()
105
95
 
106
96
  def combination_task(work_dir, config):
107
97
  # 在工作目录下准备 Gaussian 优化处理后具有 .gjf、.fchk 和 .log 文件的文件夹, 并提供对应的离子配比
@@ -111,6 +101,14 @@ def combination_task(work_dir, config):
111
101
  ratios=config["empirical_estimate"]["ratios"],
112
102
  sort_by=config["empirical_estimate"]["sort_by"],
113
103
  )
104
+ # 如果依据密度排序,则需要经验公式根据配比生成离子晶体组合,读取 .json 文件并将静电势分析得到的各离子性质代入经验公式
105
+ if config["empirical_estimate"]["sort_by"] == "density":
106
+ # 最终将预测的离子晶体密度以及对应的组分输出到 .csv 文件并根据密度从大到小排序
107
+ combination.empirical_estimate()
108
+ # 如果依据氮含量排序,则调用另一套根据 .gjf 文件中化学分布信息
109
+ elif config["empirical_estimate"]["sort_by"] == "nitrogen":
110
+ # 最终将预测的离子晶体氮含量以及对应的组分输出到 .csv 文件并根据氮含量从大到小排序
111
+ combination.nitrogen_content_estimate()
114
112
  # 基于排序依据 sort_by 对应的 .csv 文件创建 combo_n 文件夹,并复制相应的 .gjf 结构文件。
115
113
  if config["empirical_estimate"]["make_combo_dir"]:
116
114
  combination.make_combo_dir(
ion_CSP/task_manager.py CHANGED
@@ -31,7 +31,7 @@ class TaskManager:
31
31
  try:
32
32
  return importlib.metadata.version("ion_CSP")
33
33
  except importlib.metadata.PackageNotFoundError:
34
- logging.error("Version detection failed")
34
+ logging.error("Package not found")
35
35
  return "unknown"
36
36
  except Exception as e:
37
37
  logging.error(f"Version detection failed: {e}")
@@ -225,7 +225,7 @@ class TaskManager:
225
225
  pid_file = work_dir / "pid.txt"
226
226
 
227
227
  # 动态加载模块
228
- module_name = f"run.main_{module}"
228
+ module_name = f"ion_CSP.run.main_{module}"
229
229
  spec = importlib.util.find_spec(module_name)
230
230
  if not spec:
231
231
  raise ImportError(f"Module {module_name} not found")
@@ -484,4 +484,3 @@ class SSHBatchJob:
484
484
  def close_connection(self):
485
485
  self.sftp.close()
486
486
  self.client.close()
487
-