invrs-opt 0.6.0__py3-none-any.whl → 0.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- invrs_opt/__init__.py +12 -5
- invrs_opt/experimental/client.py +1 -1
- invrs_opt/{base.py → optimizers/base.py} +9 -3
- invrs_opt/{lbfgsb → optimizers}/lbfgsb.py +293 -152
- invrs_opt/optimizers/wrapped_optax.py +300 -0
- invrs_opt/parameterization/base.py +148 -0
- invrs_opt/parameterization/filter_project.py +92 -0
- invrs_opt/parameterization/gaussian_levelset.py +643 -0
- invrs_opt/parameterization/pixel.py +45 -0
- invrs_opt/{transform.py → parameterization/transforms.py} +76 -11
- invrs_opt-0.7.1.dist-info/LICENSE +504 -0
- invrs_opt-0.7.1.dist-info/METADATA +559 -0
- invrs_opt-0.7.1.dist-info/RECORD +20 -0
- {invrs_opt-0.6.0.dist-info → invrs_opt-0.7.1.dist-info}/WHEEL +1 -1
- invrs_opt/wrapped_optax/wrapped_optax.py +0 -150
- invrs_opt-0.6.0.dist-info/LICENSE +0 -21
- invrs_opt-0.6.0.dist-info/METADATA +0 -76
- invrs_opt-0.6.0.dist-info/RECORD +0 -16
- /invrs_opt/{lbfgsb → optimizers}/__init__.py +0 -0
- /invrs_opt/{wrapped_optax → parameterization}/__init__.py +0 -0
- {invrs_opt-0.6.0.dist-info → invrs_opt-0.7.1.dist-info}/top_level.txt +0 -0
@@ -1,150 +0,0 @@
|
|
1
|
-
import dataclasses
|
2
|
-
from typing import Any, Callable, Tuple
|
3
|
-
|
4
|
-
import jax
|
5
|
-
import jax.numpy as jnp
|
6
|
-
import optax # type: ignore[import-untyped]
|
7
|
-
from jax import tree_util
|
8
|
-
from totypes import types
|
9
|
-
|
10
|
-
from invrs_opt import base, transform
|
11
|
-
|
12
|
-
PyTree = Any
|
13
|
-
WrappedOptaxState = Tuple[PyTree, PyTree, PyTree]
|
14
|
-
|
15
|
-
|
16
|
-
def wrapped_optax(opt: optax.GradientTransformation) -> base.Optimizer:
|
17
|
-
"""Return a wrapped optax optimizer."""
|
18
|
-
return transformed_wrapped_optax(
|
19
|
-
opt=opt,
|
20
|
-
transform_fn=lambda x: x,
|
21
|
-
initialize_latent_fn=lambda x: x,
|
22
|
-
)
|
23
|
-
|
24
|
-
|
25
|
-
def density_wrapped_optax(
|
26
|
-
opt: optax.GradientTransformation,
|
27
|
-
beta: float,
|
28
|
-
) -> base.Optimizer:
|
29
|
-
"""Return a wrapped optax optimizer with transforms for density arrays."""
|
30
|
-
|
31
|
-
def transform_fn(tree: PyTree) -> PyTree:
|
32
|
-
return tree_util.tree_map(
|
33
|
-
lambda x: transform_density(x) if _is_density(x) else x,
|
34
|
-
tree,
|
35
|
-
is_leaf=_is_density,
|
36
|
-
)
|
37
|
-
|
38
|
-
def initialize_latent_fn(tree: PyTree) -> PyTree:
|
39
|
-
return tree_util.tree_map(
|
40
|
-
lambda x: initialize_latent_density(x) if _is_density(x) else x,
|
41
|
-
tree,
|
42
|
-
is_leaf=_is_density,
|
43
|
-
)
|
44
|
-
|
45
|
-
def transform_density(density: types.Density2DArray) -> types.Density2DArray:
|
46
|
-
transformed = types.symmetrize_density(density)
|
47
|
-
transformed = transform.density_gaussian_filter_and_tanh(transformed, beta=beta)
|
48
|
-
# Scale to ensure that the full valid range of the density array is reachable.
|
49
|
-
mid_value = (density.lower_bound + density.upper_bound) / 2
|
50
|
-
transformed = tree_util.tree_map(
|
51
|
-
lambda array: mid_value + (array - mid_value) / jnp.tanh(beta), transformed
|
52
|
-
)
|
53
|
-
return transform.apply_fixed_pixels(transformed)
|
54
|
-
|
55
|
-
def initialize_latent_density(
|
56
|
-
density: types.Density2DArray,
|
57
|
-
) -> types.Density2DArray:
|
58
|
-
array = transform.normalized_array_from_density(density)
|
59
|
-
array = jnp.clip(array, -1, 1)
|
60
|
-
array *= jnp.tanh(beta)
|
61
|
-
latent_array = jnp.arctanh(array) / beta
|
62
|
-
latent_array = transform.rescale_array_for_density(latent_array, density)
|
63
|
-
return dataclasses.replace(density, array=latent_array)
|
64
|
-
|
65
|
-
return transformed_wrapped_optax(
|
66
|
-
opt=opt,
|
67
|
-
transform_fn=transform_fn,
|
68
|
-
initialize_latent_fn=initialize_latent_fn,
|
69
|
-
)
|
70
|
-
|
71
|
-
|
72
|
-
def transformed_wrapped_optax(
|
73
|
-
opt: optax.GradientTransformation,
|
74
|
-
transform_fn: Callable[[PyTree], PyTree],
|
75
|
-
initialize_latent_fn: Callable[[PyTree], PyTree],
|
76
|
-
) -> base.Optimizer:
|
77
|
-
"""Return a wrapped optax optimizer for transformed latent parameters.
|
78
|
-
|
79
|
-
Args:
|
80
|
-
opt: The optax `GradientTransformation` to be wrapped.
|
81
|
-
transform_fn: Function which transforms the internal latent parameters to
|
82
|
-
the parameters returned by the optimizer.
|
83
|
-
initialize_latent_fn: Function which computes the initial latent parameters
|
84
|
-
given the initial parameters.
|
85
|
-
|
86
|
-
Returns:
|
87
|
-
The `base.Optimizer`.
|
88
|
-
"""
|
89
|
-
|
90
|
-
def init_fn(params: PyTree) -> WrappedOptaxState:
|
91
|
-
"""Initializes the optimization state."""
|
92
|
-
latent_params = initialize_latent_fn(_clip(params))
|
93
|
-
params = transform_fn(latent_params)
|
94
|
-
return params, latent_params, opt.init(latent_params)
|
95
|
-
|
96
|
-
def params_fn(state: WrappedOptaxState) -> PyTree:
|
97
|
-
"""Returns the parameters for the given `state`."""
|
98
|
-
params, _, _ = state
|
99
|
-
return params
|
100
|
-
|
101
|
-
def update_fn(
|
102
|
-
*,
|
103
|
-
grad: PyTree,
|
104
|
-
value: float,
|
105
|
-
params: PyTree,
|
106
|
-
state: WrappedOptaxState,
|
107
|
-
) -> WrappedOptaxState:
|
108
|
-
"""Updates the state."""
|
109
|
-
del value
|
110
|
-
|
111
|
-
_, latent_params, opt_state = state
|
112
|
-
_, vjp_fn = jax.vjp(transform_fn, latent_params)
|
113
|
-
(latent_grad,) = vjp_fn(grad)
|
114
|
-
|
115
|
-
updates, opt_state = opt.update(latent_grad, opt_state)
|
116
|
-
latent_params = optax.apply_updates(params=latent_params, updates=updates)
|
117
|
-
latent_params = _clip(latent_params)
|
118
|
-
params = transform_fn(latent_params)
|
119
|
-
return params, latent_params, opt_state
|
120
|
-
|
121
|
-
return base.Optimizer(
|
122
|
-
init=init_fn,
|
123
|
-
params=params_fn,
|
124
|
-
update=update_fn,
|
125
|
-
)
|
126
|
-
|
127
|
-
|
128
|
-
def _is_density(leaf: Any) -> Any:
|
129
|
-
"""Return `True` if `leaf` is a density array."""
|
130
|
-
return isinstance(leaf, types.Density2DArray)
|
131
|
-
|
132
|
-
|
133
|
-
def _is_custom_type(leaf: Any) -> bool:
|
134
|
-
"""Return `True` if `leaf` is a recognized custom type."""
|
135
|
-
return isinstance(leaf, (types.BoundedArray, types.Density2DArray))
|
136
|
-
|
137
|
-
|
138
|
-
def _clip(pytree: PyTree) -> PyTree:
|
139
|
-
"""Clips leaves on `pytree` to their bounds."""
|
140
|
-
|
141
|
-
def _clip_fn(leaf: Any) -> Any:
|
142
|
-
if not _is_custom_type(leaf):
|
143
|
-
return leaf
|
144
|
-
if leaf.lower_bound is None and leaf.upper_bound is None:
|
145
|
-
return leaf
|
146
|
-
return tree_util.tree_map(
|
147
|
-
lambda x: jnp.clip(x, leaf.lower_bound, leaf.upper_bound), leaf
|
148
|
-
)
|
149
|
-
|
150
|
-
return tree_util.tree_map(_clip_fn, pytree, is_leaf=_is_custom_type)
|
@@ -1,21 +0,0 @@
|
|
1
|
-
MIT License
|
2
|
-
|
3
|
-
Copyright (c) 2023 The INVRS-IO authors.
|
4
|
-
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
7
|
-
in the Software without restriction, including without limitation the rights
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
10
|
-
furnished to do so, subject to the following conditions:
|
11
|
-
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
13
|
-
copies or substantial portions of the Software.
|
14
|
-
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
-
SOFTWARE.
|
@@ -1,76 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: invrs_opt
|
3
|
-
Version: 0.6.0
|
4
|
-
Summary: Algorithms for inverse design
|
5
|
-
Author-email: "Martin F. Schubert" <mfschubert@gmail.com>
|
6
|
-
Maintainer-email: "Martin F. Schubert" <mfschubert@gmail.com>
|
7
|
-
License: MIT License
|
8
|
-
|
9
|
-
Copyright (c) 2023 The INVRS-IO authors.
|
10
|
-
|
11
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
12
|
-
of this software and associated documentation files (the "Software"), to deal
|
13
|
-
in the Software without restriction, including without limitation the rights
|
14
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
15
|
-
copies of the Software, and to permit persons to whom the Software is
|
16
|
-
furnished to do so, subject to the following conditions:
|
17
|
-
|
18
|
-
The above copyright notice and this permission notice shall be included in all
|
19
|
-
copies or substantial portions of the Software.
|
20
|
-
|
21
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
22
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
23
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
24
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
25
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
26
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
27
|
-
SOFTWARE.
|
28
|
-
|
29
|
-
Keywords: topology,optimization,jax,inverse design
|
30
|
-
Requires-Python: >=3.7
|
31
|
-
Description-Content-Type: text/markdown
|
32
|
-
License-File: LICENSE
|
33
|
-
Requires-Dist: jax
|
34
|
-
Requires-Dist: jaxlib
|
35
|
-
Requires-Dist: numpy
|
36
|
-
Requires-Dist: requests
|
37
|
-
Requires-Dist: optax
|
38
|
-
Requires-Dist: scipy
|
39
|
-
Requires-Dist: totypes
|
40
|
-
Requires-Dist: types-requests
|
41
|
-
Provides-Extra: dev
|
42
|
-
Requires-Dist: bump-my-version ; extra == 'dev'
|
43
|
-
Requires-Dist: darglint ; extra == 'dev'
|
44
|
-
Requires-Dist: mypy ; extra == 'dev'
|
45
|
-
Requires-Dist: pre-commit ; extra == 'dev'
|
46
|
-
Provides-Extra: tests
|
47
|
-
Requires-Dist: parameterized ; extra == 'tests'
|
48
|
-
Requires-Dist: pytest ; extra == 'tests'
|
49
|
-
Requires-Dist: pytest-cov ; extra == 'tests'
|
50
|
-
Requires-Dist: pytest-subtests ; extra == 'tests'
|
51
|
-
|
52
|
-
# invrs-opt - Optimization algorithms for inverse design
|
53
|
-
`v0.6.0`
|
54
|
-
|
55
|
-
## Overview
|
56
|
-
|
57
|
-
The `invrs-opt` package defines an optimizer API intended for topology optimization, inverse design, or AI-guided design. It (currently) implements the L-BFGS-B optimization algorithm along with some variants. The API is intended to be general so that new algorithms can be accommodated, and is inspired by the functional optimizer approach used in jax. Example usage is as follows:
|
58
|
-
|
59
|
-
```python
|
60
|
-
initial_params = ...
|
61
|
-
|
62
|
-
optimizer = invrs_opt.lbfgsb()
|
63
|
-
state = optimizer.init(initial_params)
|
64
|
-
|
65
|
-
for _ in range(steps):
|
66
|
-
params = optimizer.params(state)
|
67
|
-
value, grad = jax.value_and_grad(loss_fn)(params)
|
68
|
-
state = optimizer.update(grad=grad, value=value, params=params, state=state)
|
69
|
-
```
|
70
|
-
|
71
|
-
Optimizers in `invrs-opt` are compatible with custom types defined in the [totypes](https://github.com/invrs-io/totypes) package. The basic `lbfgsb` optimizer enforces bounds for custom types, while the `density_lbfgsb` optimizer implements a filter-and-threshold operation for `DensityArray2D` types to ensure that solutions have the correct length scale.
|
72
|
-
|
73
|
-
## Install
|
74
|
-
```
|
75
|
-
pip install invrs_opt
|
76
|
-
```
|
invrs_opt-0.6.0.dist-info/RECORD
DELETED
@@ -1,16 +0,0 @@
|
|
1
|
-
invrs_opt/__init__.py,sha256=35pvMpeqvJgU4DizUO5hTzeE9j93prbB9RMtcaoFYwg,496
|
2
|
-
invrs_opt/base.py,sha256=FdQyPTlWGo03YztI3K2_QBN6Q-v0PeXv6XCyXu_uh_4,1160
|
3
|
-
invrs_opt/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
|
-
invrs_opt/transform.py,sha256=a_Saj9Wq4lvqCJBrg5L2Z9DZ2NVs1xqrHLqha90a9Ws,5971
|
5
|
-
invrs_opt/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
6
|
-
invrs_opt/experimental/client.py,sha256=MqC_TguT9IGrG7WW54vwz6QQMylKkbCjHxFPIG9vQMA,4841
|
7
|
-
invrs_opt/experimental/labels.py,sha256=dQDAMPyFMV6mXnMy295z8Ap205DRdVzysXny_Be8FmY,562
|
8
|
-
invrs_opt/lbfgsb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
-
invrs_opt/lbfgsb/lbfgsb.py,sha256=pfrqCaOMco-eHUQe2q03hbla9D2TYqmMB-07jK4-5Ik,27792
|
10
|
-
invrs_opt/wrapped_optax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
|
-
invrs_opt/wrapped_optax/wrapped_optax.py,sha256=-ke0MNCb2EB0ntlj5IHIHrvybOVF4m24DM6JI4_Ktcc,4974
|
12
|
-
invrs_opt-0.6.0.dist-info/LICENSE,sha256=ty6jHPvpyjHy6dbhnu6aDSY05bbl2jQTjnq9u1sBCfM,1078
|
13
|
-
invrs_opt-0.6.0.dist-info/METADATA,sha256=V4hpzjEovC2CU0IgUBMAgKzPfgqGvLlutQ9X5-FOuIk,3347
|
14
|
-
invrs_opt-0.6.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
15
|
-
invrs_opt-0.6.0.dist-info/top_level.txt,sha256=hOziS2uJ_NgwaW9yhtOfeuYnm1X7vobPBcp_6eVWKfM,10
|
16
|
-
invrs_opt-0.6.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|