invrs-opt 0.5.2__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -62,6 +62,20 @@ def density_gaussian_filter_and_tanh(
62
62
  return transformed_density
63
63
 
64
64
 
65
+ def _gaussian_kernel(fwhm: float, fwhm_size_multiple: float) -> jnp.ndarray:
66
+ """Returns a Gaussian kernel with the specified full-width at half-maximum."""
67
+ with jax.ensure_compile_time_eval():
68
+ kernel_size = max(1, int(jnp.ceil(fwhm * fwhm_size_multiple)))
69
+ # Ensure the kernel size is odd, so that there is always a central pixel which will
70
+ # contain the peak value of the Gaussian.
71
+ kernel_size += (kernel_size + 1) % 2
72
+ d = jnp.arange(0.5, kernel_size) - kernel_size / 2
73
+ x = d[:, jnp.newaxis]
74
+ y = d[jnp.newaxis, :]
75
+ sigma = fwhm / (2 * jnp.sqrt(2 * jnp.log(2)))
76
+ return jnp.exp(-(x**2 + y**2) / (2 * sigma**2))
77
+
78
+
65
79
  def normalized_array_from_density(density: types.Density2DArray) -> jnp.ndarray:
66
80
  """Returns an array with values scaled to the range `(-1, 1)`."""
67
81
  value_mid = (density.upper_bound + density.lower_bound) / 2
@@ -154,15 +168,66 @@ def _pad_mode_for_density(density: types.Density2DArray) -> Union[str, Tuple[str
154
168
  )
155
169
 
156
170
 
157
- def _gaussian_kernel(fwhm: float, fwhm_size_multiple: float) -> jnp.ndarray:
158
- """Returns a Gaussian kernel with the specified full-width at half-maximum."""
171
+ def resample(
172
+ x: jnp.ndarray,
173
+ shape: Tuple[int, ...],
174
+ method: jax.image.ResizeMethod = jax.image.ResizeMethod.LINEAR,
175
+ ) -> jnp.ndarray:
176
+ """Resamples `x` to have the specified `shape`.
177
+
178
+ The algorithm first upsamples `x` so that the pixels in the output image are
179
+ comprised of an integer number of pixels in the upsampled `x`, and then
180
+ performs box downsampling.
181
+
182
+ Args:
183
+ x: The array to be resampled.
184
+ shape: The shape of the output array.
185
+ method: The method used to resize `x` prior to box downsampling.
186
+
187
+ Returns:
188
+ The resampled array.
189
+ """
190
+ if x.ndim != len(shape):
191
+ raise ValueError(
192
+ f"`shape` must have length matching number of dimensions in `x`, "
193
+ f"but got {shape} when `x` had shape {x.shape}."
194
+ )
195
+
159
196
  with jax.ensure_compile_time_eval():
160
- kernel_size = max(1, int(jnp.ceil(fwhm * fwhm_size_multiple)))
161
- # Ensure the kernel size is odd, so that there is always a central pixel which will
162
- # contain the peak value of the Gaussian.
163
- kernel_size += (kernel_size + 1) % 2
164
- d = jnp.arange(0.5, kernel_size) - kernel_size / 2
165
- x = d[:, jnp.newaxis]
166
- y = d[jnp.newaxis, :]
167
- sigma = fwhm / (2 * jnp.sqrt(2 * jnp.log(2)))
168
- return jnp.exp(-(x**2 + y**2) / (2 * sigma**2))
197
+ factor = [int(jnp.ceil(dx / d)) for dx, d in zip(x.shape, shape)]
198
+ upsampled_shape = tuple([d * f for d, f in zip(shape, factor)])
199
+
200
+ x_upsampled = jax.image.resize(
201
+ image=x,
202
+ shape=upsampled_shape,
203
+ method=method,
204
+ )
205
+
206
+ return box_downsample(x_upsampled, shape)
207
+
208
+
209
+ def box_downsample(x: jnp.ndarray, shape: Tuple[int, ...]) -> jnp.ndarray:
210
+ """Downsamples `x` to a coarser resolution array using box downsampling.
211
+
212
+ Box downsampling forms nonoverlapping windows and simply averages the
213
+ pixels within each window. For example, downsampling `(0, 1, 2, 3, 4, 5)`
214
+ with a factor of `2` yields `(0.5, 2.5, 4.5)`.
215
+
216
+ Args:
217
+ x: The array to be downsampled.
218
+ shape: The shape of the output array; each axis dimension must evenly
219
+ divide the corresponding axis dimension in `x`.
220
+
221
+ Returns:
222
+ The output array with shape `shape`.
223
+ """
224
+ if x.ndim != len(shape) or any([(d % s) != 0 for d, s in zip(x.shape, shape)]):
225
+ raise ValueError(
226
+ f"Each axis of `shape` must evenly divide the corresponding axis "
227
+ f"dimension in `x`, but got shape {shape} when `x` has shape "
228
+ f"{x.shape}."
229
+ )
230
+ shape = sum([(s, d // s) for d, s in zip(x.shape, shape)], ())
231
+ axes = list(range(1, 2 * x.ndim, 2))
232
+ x = x.reshape(shape)
233
+ return jnp.mean(x, axis=axes)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: invrs_opt
3
- Version: 0.5.2
3
+ Version: 0.7.0
4
4
  Summary: Algorithms for inverse design
5
5
  Author-email: "Martin F. Schubert" <mfschubert@gmail.com>
6
6
  Maintainer-email: "Martin F. Schubert" <mfschubert@gmail.com>
@@ -34,22 +34,23 @@ Requires-Dist: jax
34
34
  Requires-Dist: jaxlib
35
35
  Requires-Dist: numpy
36
36
  Requires-Dist: requests
37
+ Requires-Dist: optax
37
38
  Requires-Dist: scipy
38
39
  Requires-Dist: totypes
39
40
  Requires-Dist: types-requests
40
41
  Provides-Extra: dev
41
- Requires-Dist: bump-my-version ; extra == 'dev'
42
- Requires-Dist: darglint ; extra == 'dev'
43
- Requires-Dist: mypy ; extra == 'dev'
44
- Requires-Dist: pre-commit ; extra == 'dev'
42
+ Requires-Dist: bump-my-version; extra == "dev"
43
+ Requires-Dist: darglint; extra == "dev"
44
+ Requires-Dist: mypy; extra == "dev"
45
+ Requires-Dist: pre-commit; extra == "dev"
45
46
  Provides-Extra: tests
46
- Requires-Dist: parameterized ; extra == 'tests'
47
- Requires-Dist: pytest ; extra == 'tests'
48
- Requires-Dist: pytest-cov ; extra == 'tests'
49
- Requires-Dist: pytest-subtests ; extra == 'tests'
47
+ Requires-Dist: parameterized; extra == "tests"
48
+ Requires-Dist: pytest; extra == "tests"
49
+ Requires-Dist: pytest-cov; extra == "tests"
50
+ Requires-Dist: pytest-subtests; extra == "tests"
50
51
 
51
52
  # invrs-opt - Optimization algorithms for inverse design
52
- `v0.5.2`
53
+ `v0.7.0`
53
54
 
54
55
  ## Overview
55
56
 
@@ -0,0 +1,20 @@
1
+ invrs_opt/__init__.py,sha256=cRGTL0pWiEmPY26dG0bfKaS_RV5I5N3FdFkKLM8Z-Wk,585
2
+ invrs_opt/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ invrs_opt/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
+ invrs_opt/experimental/client.py,sha256=t4XxnditYbM9DWZeyBPj0Sa2acvkikT0ybhUdmH2r-Y,4852
5
+ invrs_opt/experimental/labels.py,sha256=dQDAMPyFMV6mXnMy295z8Ap205DRdVzysXny_Be8FmY,562
6
+ invrs_opt/optimizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ invrs_opt/optimizers/base.py,sha256=ol9skiS4_itx6pmqTx49fqqRZGzHHSxjKPKguy6602s,1199
8
+ invrs_opt/optimizers/lbfgsb.py,sha256=d7i02NZZ3yYdJg7wkERDMPpdBD3GaRPhmQexGrZPz_Y,34597
9
+ invrs_opt/optimizers/wrapped_optax.py,sha256=L836gwzWbwxPNWh8Y7PSgFHV4PZluSklnbh3BR5djlc,11859
10
+ invrs_opt/parameterization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ invrs_opt/parameterization/base.py,sha256=QTnhOfMYbDchZOFzk9graryMd6rYHlyd7E2T1TtucB8,3570
12
+ invrs_opt/parameterization/filter_project.py,sha256=XCPqQ2ECv7DDTLRtVGJePfnjKYB2XndI6DssSr-4MZw,3239
13
+ invrs_opt/parameterization/gaussian_levelset.py,sha256=OYXPNC3GIGqCxea-u7rTXCOAEERLoict9kqnjYvGGto,24838
14
+ invrs_opt/parameterization/pixel.py,sha256=4qCYDUCcFPr8W94whX5YFllrXgyZbPBVIJBf8m_Dv4k,1173
15
+ invrs_opt/parameterization/transforms.py,sha256=8GzaIsUuuXvMCLiqAEEfxmi9qE9KqHzbuTj_m0GjH3w,8216
16
+ invrs_opt-0.7.0.dist-info/LICENSE,sha256=ty6jHPvpyjHy6dbhnu6aDSY05bbl2jQTjnq9u1sBCfM,1078
17
+ invrs_opt-0.7.0.dist-info/METADATA,sha256=EBEC3SgXD2hwdZ5s-z2dydbr5oSPSsgB34iMSdhaLeE,3339
18
+ invrs_opt-0.7.0.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
19
+ invrs_opt-0.7.0.dist-info/top_level.txt,sha256=hOziS2uJ_NgwaW9yhtOfeuYnm1X7vobPBcp_6eVWKfM,10
20
+ invrs_opt-0.7.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,14 +0,0 @@
1
- invrs_opt/__init__.py,sha256=TPyc9kznbXNbM67XmXpnFIGTmGFQmYzPojKRueSZelU,309
2
- invrs_opt/base.py,sha256=dSX9QkMPzI8ROxy2cFNmMwk_89eQbk0rw94CzvLPQoY,907
3
- invrs_opt/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- invrs_opt/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- invrs_opt/experimental/client.py,sha256=td5o_YqqbcSypDrWCVrHGSoF8UxEdOLtKU0z9Dth9lA,4842
6
- invrs_opt/experimental/labels.py,sha256=dQDAMPyFMV6mXnMy295z8Ap205DRdVzysXny_Be8FmY,562
7
- invrs_opt/lbfgsb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- invrs_opt/lbfgsb/lbfgsb.py,sha256=EKNTDTwEHcO_JeOIckMHVer5hxYcaNuqq9EZgnFnWJk,27820
9
- invrs_opt/lbfgsb/transform.py,sha256=a_Saj9Wq4lvqCJBrg5L2Z9DZ2NVs1xqrHLqha90a9Ws,5971
10
- invrs_opt-0.5.2.dist-info/LICENSE,sha256=ty6jHPvpyjHy6dbhnu6aDSY05bbl2jQTjnq9u1sBCfM,1078
11
- invrs_opt-0.5.2.dist-info/METADATA,sha256=SgIEqMR9ybcipS1NnHi-KSVTSZ3BzWKrv1ctw4jfqcE,3326
12
- invrs_opt-0.5.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
13
- invrs_opt-0.5.2.dist-info/top_level.txt,sha256=hOziS2uJ_NgwaW9yhtOfeuYnm1X7vobPBcp_6eVWKfM,10
14
- invrs_opt-0.5.2.dist-info/RECORD,,
File without changes