invrs-opt 0.4.0__py3-none-any.whl → 0.10.4__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- invrs_opt/__init__.py +14 -3
- invrs_opt/experimental/client.py +7 -4
- invrs_opt/{base.py → optimizers/base.py} +16 -1
- invrs_opt/optimizers/lbfgsb.py +939 -0
- invrs_opt/optimizers/wrapped_optax.py +347 -0
- invrs_opt/parameterization/__init__.py +0 -0
- invrs_opt/parameterization/base.py +208 -0
- invrs_opt/parameterization/filter_project.py +138 -0
- invrs_opt/parameterization/gaussian_levelset.py +671 -0
- invrs_opt/parameterization/pixel.py +75 -0
- invrs_opt/{lbfgsb/transform.py → parameterization/transforms.py} +76 -11
- invrs_opt-0.10.4.dist-info/LICENSE +504 -0
- invrs_opt-0.10.4.dist-info/METADATA +560 -0
- invrs_opt-0.10.4.dist-info/RECORD +20 -0
- {invrs_opt-0.4.0.dist-info → invrs_opt-0.10.4.dist-info}/WHEEL +1 -1
- invrs_opt/lbfgsb/lbfgsb.py +0 -672
- invrs_opt-0.4.0.dist-info/LICENSE +0 -21
- invrs_opt-0.4.0.dist-info/METADATA +0 -75
- invrs_opt-0.4.0.dist-info/RECORD +0 -14
- /invrs_opt/{lbfgsb → optimizers}/__init__.py +0 -0
- {invrs_opt-0.4.0.dist-info → invrs_opt-0.10.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,939 @@
|
|
1
|
+
"""Defines a jax-style wrapper for scipy's L-BFGS-B algorithm.
|
2
|
+
|
3
|
+
Copyright (c) 2023 The INVRS-IO authors.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import dataclasses
|
7
|
+
import functools
|
8
|
+
from packaging import version
|
9
|
+
from typing import Any, Dict, Optional, Sequence, Tuple, Union
|
10
|
+
|
11
|
+
import jax
|
12
|
+
import jax.numpy as jnp
|
13
|
+
import numpy as onp
|
14
|
+
import optax # type: ignore[import-untyped]
|
15
|
+
from jax import flatten_util, tree_util
|
16
|
+
from scipy.optimize._lbfgsb_py import ( # type: ignore[import-untyped]
|
17
|
+
_lbfgsb as scipy_lbfgsb,
|
18
|
+
)
|
19
|
+
from totypes import types
|
20
|
+
|
21
|
+
from invrs_opt.optimizers import base
|
22
|
+
from invrs_opt.parameterization import (
|
23
|
+
base as param_base,
|
24
|
+
filter_project,
|
25
|
+
gaussian_levelset,
|
26
|
+
pixel,
|
27
|
+
)
|
28
|
+
|
29
|
+
NDArray = onp.ndarray[Any, Any]
|
30
|
+
PyTree = Any
|
31
|
+
ElementwiseBound = Union[NDArray, Sequence[Optional[float]]]
|
32
|
+
NumpyLbfgsbDict = Dict[str, NDArray]
|
33
|
+
JaxLbfgsbDict = Dict[str, jnp.ndarray]
|
34
|
+
LbfgsbState = Tuple[int, PyTree, PyTree, JaxLbfgsbDict]
|
35
|
+
|
36
|
+
|
37
|
+
# Task message prefixes for the underlying L-BFGS-B implementation.
|
38
|
+
TASK_START = b"START"
|
39
|
+
TASK_FG = b"FG"
|
40
|
+
TASK_CONVERGED = b"CONVERGENCE"
|
41
|
+
|
42
|
+
UPDATE_IPRINT = -1
|
43
|
+
|
44
|
+
# Maximum value for the `maxcor` parameter in the L-BFGS-B scheme.
|
45
|
+
MAXCOR_MAX_VALUE = 100
|
46
|
+
DEFAULT_MAXCOR = 20
|
47
|
+
DEFAULT_LINE_SEARCH_MAX_STEPS = 100
|
48
|
+
DEFAULT_FTOL = 0.0
|
49
|
+
DEFAULT_GTOL = 0.0
|
50
|
+
|
51
|
+
# Maps bound scenarios to integers.
|
52
|
+
BOUNDS_MAP: Dict[Tuple[bool, bool], int] = {
|
53
|
+
(True, True): 0, # Both upper and lower bound are `None`.
|
54
|
+
(False, True): 1, # Only upper bound is `None`.
|
55
|
+
(False, False): 2, # Neither of the bounds are `None`.
|
56
|
+
(True, False): 3, # Only the lower bound is `None`.
|
57
|
+
}
|
58
|
+
|
59
|
+
FORTRAN_INT = scipy_lbfgsb.types.intvar.dtype
|
60
|
+
|
61
|
+
if version.Version(jax.__version__) > version.Version("0.4.31"):
|
62
|
+
callback_sequential = functools.partial(jax.pure_callback, vmap_method="sequential")
|
63
|
+
else:
|
64
|
+
callback_sequential = functools.partial(jax.pure_callback, vectorized=False)
|
65
|
+
|
66
|
+
|
67
|
+
def lbfgsb(
|
68
|
+
*,
|
69
|
+
maxcor: int = DEFAULT_MAXCOR,
|
70
|
+
line_search_max_steps: int = DEFAULT_LINE_SEARCH_MAX_STEPS,
|
71
|
+
ftol: float = DEFAULT_FTOL,
|
72
|
+
gtol: float = DEFAULT_GTOL,
|
73
|
+
) -> base.Optimizer:
|
74
|
+
"""Optimizer implementing the standard L-BFGS-B algorithm.
|
75
|
+
|
76
|
+
The standard L-BFGS-B algorithm uses the direct pixel parameterization for density
|
77
|
+
arrays, which simply enforces that values are between the declared upper and lower
|
78
|
+
bounds of the density.
|
79
|
+
|
80
|
+
When an optimization is determined to have converged (by `ftol` or `gtol` criteria)
|
81
|
+
the optimizer `params` function will simply return the optimal parameters. The
|
82
|
+
convergence can be queried by `is_converged(state)`.
|
83
|
+
|
84
|
+
Args:
|
85
|
+
maxcor: The maximum number of variable metric corrections used to define the
|
86
|
+
limited memory matrix, in the L-BFGS-B scheme.
|
87
|
+
line_search_max_steps: The maximum number of steps in the line search.
|
88
|
+
ftol: Convergence criteria based on function values. See scipy documentation
|
89
|
+
for details.
|
90
|
+
gtol: Convergence criteria based on gradient.
|
91
|
+
|
92
|
+
Returns:
|
93
|
+
The `Optimizer` implementing the L-BFGS-B optimizer.
|
94
|
+
"""
|
95
|
+
return parameterized_lbfgsb(
|
96
|
+
density_parameterization=None,
|
97
|
+
penalty=0.0,
|
98
|
+
maxcor=maxcor,
|
99
|
+
line_search_max_steps=line_search_max_steps,
|
100
|
+
ftol=ftol,
|
101
|
+
gtol=gtol,
|
102
|
+
)
|
103
|
+
|
104
|
+
|
105
|
+
def density_lbfgsb(
|
106
|
+
*,
|
107
|
+
beta: float,
|
108
|
+
maxcor: int = DEFAULT_MAXCOR,
|
109
|
+
line_search_max_steps: int = DEFAULT_LINE_SEARCH_MAX_STEPS,
|
110
|
+
ftol: float = DEFAULT_FTOL,
|
111
|
+
gtol: float = DEFAULT_GTOL,
|
112
|
+
) -> base.Optimizer:
|
113
|
+
"""Optimizer using L-BFGS-B algorithm with filter-project density parameterization.
|
114
|
+
|
115
|
+
In the filter-project density parameterization, the optimization variable
|
116
|
+
associated with a density array is a latent density array; the density is obtained
|
117
|
+
by convolving (i.e. "filtering") the latent density with a Gaussian kernel having
|
118
|
+
full-width at half-maximum equal to the length scale (the mean of declared minimum
|
119
|
+
width and minimum spacing). Then, a tanh nonlinearity is used as a smooth threshold
|
120
|
+
operation ("projection").
|
121
|
+
|
122
|
+
When an optimization is determined to have converged (by `ftol` or `gtol` criteria)
|
123
|
+
the optimizer `params` function will simply return the optimal parameters. The
|
124
|
+
convergence can be queried by `is_converged(state)`.
|
125
|
+
|
126
|
+
Args:
|
127
|
+
beta: Determines the sharpness of the thresholding operation.
|
128
|
+
maxcor: The maximum number of variable metric corrections used to define the
|
129
|
+
limited memory matrix, in the L-BFGS-B scheme.
|
130
|
+
line_search_max_steps: The maximum number of steps in the line search.
|
131
|
+
ftol: Convergence criteria based on function values. See scipy documentation
|
132
|
+
for details.
|
133
|
+
gtol: Convergence criteria based on gradient.
|
134
|
+
|
135
|
+
Returns:
|
136
|
+
The `Optimizer` implementing the L-BFGS-B optimizer.
|
137
|
+
"""
|
138
|
+
return parameterized_lbfgsb(
|
139
|
+
density_parameterization=filter_project.filter_project(beta=beta),
|
140
|
+
penalty=0.0,
|
141
|
+
maxcor=maxcor,
|
142
|
+
line_search_max_steps=line_search_max_steps,
|
143
|
+
ftol=ftol,
|
144
|
+
gtol=gtol,
|
145
|
+
)
|
146
|
+
|
147
|
+
|
148
|
+
def levelset_lbfgsb(
|
149
|
+
*,
|
150
|
+
penalty: float,
|
151
|
+
length_scale_spacing_factor: float = (
|
152
|
+
gaussian_levelset.DEFAULT_LENGTH_SCALE_SPACING_FACTOR
|
153
|
+
),
|
154
|
+
length_scale_fwhm_factor: float = (
|
155
|
+
gaussian_levelset.DEFAULT_LENGTH_SCALE_FWHM_FACTOR
|
156
|
+
),
|
157
|
+
length_scale_constraint_factor: float = (
|
158
|
+
gaussian_levelset.DEFAULT_LENGTH_SCALE_CONSTRAINT_FACTOR
|
159
|
+
),
|
160
|
+
smoothing_factor: int = gaussian_levelset.DEFAULT_SMOOTHING_FACTOR,
|
161
|
+
length_scale_constraint_beta: float = (
|
162
|
+
gaussian_levelset.DEFAULT_LENGTH_SCALE_CONSTRAINT_BETA
|
163
|
+
),
|
164
|
+
length_scale_constraint_weight: float = (
|
165
|
+
gaussian_levelset.DEFAULT_LENGTH_SCALE_CONSTRAINT_WEIGHT
|
166
|
+
),
|
167
|
+
curvature_constraint_weight: float = (
|
168
|
+
gaussian_levelset.DEFAULT_CURVATURE_CONSTRAINT_WEIGHT
|
169
|
+
),
|
170
|
+
fixed_pixel_constraint_weight: float = (
|
171
|
+
gaussian_levelset.DEFAULT_FIXED_PIXEL_CONSTRAINT_WEIGHT
|
172
|
+
),
|
173
|
+
init_optimizer: optax.GradientTransformation = (
|
174
|
+
gaussian_levelset.DEFAULT_INIT_OPTIMIZER
|
175
|
+
),
|
176
|
+
init_steps: int = gaussian_levelset.DEFAULT_INIT_STEPS,
|
177
|
+
maxcor: int = DEFAULT_MAXCOR,
|
178
|
+
line_search_max_steps: int = DEFAULT_LINE_SEARCH_MAX_STEPS,
|
179
|
+
ftol: float = DEFAULT_FTOL,
|
180
|
+
gtol: float = DEFAULT_GTOL,
|
181
|
+
) -> base.Optimizer:
|
182
|
+
"""Optimizer using L-BFGS-B algorithm with levelset density parameterization.
|
183
|
+
|
184
|
+
In the levelset parameterization, the optimization variable associated with a
|
185
|
+
density array is an array giving the amplitudes of Gaussian radial basis functions
|
186
|
+
that represent a levelset function over the domain of the density. In the levelset
|
187
|
+
parameterization, gradients are nonzero only at the edges of features, and in
|
188
|
+
general the topology of a solution does not change during the course of
|
189
|
+
optimization.
|
190
|
+
|
191
|
+
The spacing and full-width at half-maximum of the Gaussian basis functions gives
|
192
|
+
some amount of control over length scales. In addition, constraints associated with
|
193
|
+
length scale, radius of curvature, and deviation from fixed pixels are
|
194
|
+
automatically computed and penalized with a weight given by `penalty`. In general,
|
195
|
+
this helps ensure that features in an optimized density array violate the specified
|
196
|
+
constraints to a lesser degree. The constraints are based on "Analytical level set
|
197
|
+
fabrication constraints for inverse design," by D. Vercruysse et al. (2019).
|
198
|
+
|
199
|
+
When an optimization is determined to have converged (by `ftol` or `gtol` criteria)
|
200
|
+
the optimizer `params` function will simply return the optimal parameters. The
|
201
|
+
convergence can be queried by `is_converged(state)`.
|
202
|
+
|
203
|
+
Args:
|
204
|
+
penalty: The weight of the fabrication penalty, which combines length scale,
|
205
|
+
curvature, and fixed pixel constraints.
|
206
|
+
length_scale_spacing_factor: The number of levelset control points per unit of
|
207
|
+
minimum length scale (mean of density minimum width and minimum spacing).
|
208
|
+
length_scale_fwhm_factor: The ratio of Gaussian full-width at half-maximum to
|
209
|
+
the minimum length scale.
|
210
|
+
length_scale_constraint_factor: Multiplies the target length scale in the
|
211
|
+
levelset constraints. A value greater than 1 is pessimistic and drives the
|
212
|
+
solution to have a larger length scale (relative to smaller values).
|
213
|
+
smoothing_factor: For values greater than 1, the density is initially computed
|
214
|
+
at higher resolution and then downsampled, yielding smoother geometries.
|
215
|
+
length_scale_constraint_beta: Controls relaxation of the length scale
|
216
|
+
constraint near the zero level.
|
217
|
+
length_scale_constraint_weight: The weight of the length scale constraint in
|
218
|
+
the overall fabrication constraint peenalty.
|
219
|
+
curvature_constraint_weight: The weight of the curvature constraint.
|
220
|
+
fixed_pixel_constraint_weight: The weight of the fixed pixel constraint.
|
221
|
+
init_optimizer: The optimizer used in the initialization of the levelset
|
222
|
+
parameterization. At initialization, the latent parameters are optimized so
|
223
|
+
that the initial parameters match the binarized initial density.
|
224
|
+
init_steps: The number of optimization steps used in the initialization.
|
225
|
+
maxcor: The maximum number of variable metric corrections used to define the
|
226
|
+
limited memory matrix, in the L-BFGS-B scheme.
|
227
|
+
line_search_max_steps: The maximum number of steps in the line search.
|
228
|
+
ftol: Convergence criteria based on function values. See scipy documentation
|
229
|
+
for details.
|
230
|
+
gtol: Convergence criteria based on gradient.
|
231
|
+
|
232
|
+
Returns:
|
233
|
+
The `Optimizer` implementing the L-BFGS-B optimizer.
|
234
|
+
"""
|
235
|
+
return parameterized_lbfgsb(
|
236
|
+
density_parameterization=gaussian_levelset.gaussian_levelset(
|
237
|
+
length_scale_spacing_factor=length_scale_spacing_factor,
|
238
|
+
length_scale_fwhm_factor=length_scale_fwhm_factor,
|
239
|
+
length_scale_constraint_factor=length_scale_constraint_factor,
|
240
|
+
smoothing_factor=smoothing_factor,
|
241
|
+
length_scale_constraint_beta=length_scale_constraint_beta,
|
242
|
+
length_scale_constraint_weight=length_scale_constraint_weight,
|
243
|
+
curvature_constraint_weight=curvature_constraint_weight,
|
244
|
+
fixed_pixel_constraint_weight=fixed_pixel_constraint_weight,
|
245
|
+
init_optimizer=init_optimizer,
|
246
|
+
init_steps=init_steps,
|
247
|
+
),
|
248
|
+
penalty=penalty,
|
249
|
+
maxcor=maxcor,
|
250
|
+
line_search_max_steps=line_search_max_steps,
|
251
|
+
ftol=ftol,
|
252
|
+
gtol=gtol,
|
253
|
+
)
|
254
|
+
|
255
|
+
|
256
|
+
# -----------------------------------------------------------------------------
|
257
|
+
# Base parameterized L-BFGS-B optimizer.
|
258
|
+
# -----------------------------------------------------------------------------
|
259
|
+
|
260
|
+
|
261
|
+
def parameterized_lbfgsb(
|
262
|
+
density_parameterization: Optional[param_base.Density2DParameterization],
|
263
|
+
penalty: float,
|
264
|
+
maxcor: int = DEFAULT_MAXCOR,
|
265
|
+
line_search_max_steps: int = DEFAULT_LINE_SEARCH_MAX_STEPS,
|
266
|
+
ftol: float = DEFAULT_FTOL,
|
267
|
+
gtol: float = DEFAULT_GTOL,
|
268
|
+
) -> base.Optimizer:
|
269
|
+
"""Optimizer using L-BFGS-B optimizer with specified density parameterization.
|
270
|
+
|
271
|
+
This optimizer wraps scipy's implementation of the algorithm, and provides
|
272
|
+
a jax-style API to the scheme. The optimizer works with custom types such
|
273
|
+
as the `BoundedArray` to constrain the optimization variable.
|
274
|
+
|
275
|
+
Args:
|
276
|
+
density_parameterization: The parameterization to be used, or `None`. When no
|
277
|
+
parameterization is given, the direct pixel parameterization is used for
|
278
|
+
density arrays.
|
279
|
+
penalty: The weight of the scalar penalty formed from the constraints of the
|
280
|
+
parameterization.
|
281
|
+
maxcor: The maximum number of variable metric corrections used to define the
|
282
|
+
limited memory matrix, in the L-BFGS-B scheme.
|
283
|
+
line_search_max_steps: The maximum number of steps in the line search.
|
284
|
+
ftol: Convergence criteria based on function values. See scipy documentation
|
285
|
+
for details.
|
286
|
+
gtol: Convergence criteria based on gradient.
|
287
|
+
|
288
|
+
Returns:
|
289
|
+
The `base.Optimizer`.
|
290
|
+
"""
|
291
|
+
if not isinstance(maxcor, int) or maxcor < 1 or maxcor > MAXCOR_MAX_VALUE:
|
292
|
+
raise ValueError(
|
293
|
+
f"`maxcor` must be greater than 0 and less than "
|
294
|
+
f"{MAXCOR_MAX_VALUE}, but got {maxcor}"
|
295
|
+
)
|
296
|
+
|
297
|
+
if not isinstance(line_search_max_steps, int) or line_search_max_steps < 1:
|
298
|
+
raise ValueError(
|
299
|
+
f"`line_search_max_steps` must be greater than 0 but got "
|
300
|
+
f"{line_search_max_steps}"
|
301
|
+
)
|
302
|
+
|
303
|
+
if density_parameterization is None:
|
304
|
+
density_parameterization = pixel.pixel()
|
305
|
+
|
306
|
+
def init_fn(params: PyTree) -> LbfgsbState:
|
307
|
+
"""Initializes the optimization state."""
|
308
|
+
|
309
|
+
def _init_state_pure(latent_params: PyTree) -> Tuple[PyTree, NumpyLbfgsbDict]:
|
310
|
+
lower_bound = types.extract_lower_bound(latent_params)
|
311
|
+
upper_bound = types.extract_upper_bound(latent_params)
|
312
|
+
scipy_lbfgsb_state = ScipyLbfgsbState.init(
|
313
|
+
x0=_to_numpy(latent_params),
|
314
|
+
lower_bound=_bound_for_params(lower_bound, latent_params),
|
315
|
+
upper_bound=_bound_for_params(upper_bound, latent_params),
|
316
|
+
maxcor=maxcor,
|
317
|
+
line_search_max_steps=line_search_max_steps,
|
318
|
+
ftol=ftol,
|
319
|
+
gtol=gtol,
|
320
|
+
)
|
321
|
+
latent_params = _to_pytree(scipy_lbfgsb_state.x, latent_params)
|
322
|
+
return latent_params, scipy_lbfgsb_state.to_dict()
|
323
|
+
|
324
|
+
latent_params = _init_latents(params)
|
325
|
+
metadata, latents = param_base.partition_density_metadata(latent_params)
|
326
|
+
latents, jax_lbfgsb_state = callback_sequential(
|
327
|
+
_init_state_pure,
|
328
|
+
_example_state(latents, maxcor),
|
329
|
+
latents,
|
330
|
+
)
|
331
|
+
latent_params = param_base.combine_density_metadata(metadata, latents)
|
332
|
+
return (
|
333
|
+
0, # step
|
334
|
+
_params_from_latent_params(latent_params), # params
|
335
|
+
latent_params, # latent params
|
336
|
+
jax_lbfgsb_state, # opt state
|
337
|
+
)
|
338
|
+
|
339
|
+
def params_fn(state: LbfgsbState) -> PyTree:
|
340
|
+
"""Returns the parameters for the given `state`."""
|
341
|
+
_, params, _, _ = state
|
342
|
+
return params
|
343
|
+
|
344
|
+
def update_fn(
|
345
|
+
*,
|
346
|
+
grad: PyTree,
|
347
|
+
value: jnp.ndarray,
|
348
|
+
params: PyTree,
|
349
|
+
state: LbfgsbState,
|
350
|
+
) -> LbfgsbState:
|
351
|
+
"""Updates the state."""
|
352
|
+
del params
|
353
|
+
|
354
|
+
def _update_pure(
|
355
|
+
flat_latent_grad: PyTree,
|
356
|
+
value: jnp.ndarray,
|
357
|
+
jax_lbfgsb_state: JaxLbfgsbDict,
|
358
|
+
) -> Tuple[NDArray, NumpyLbfgsbDict]:
|
359
|
+
assert onp.size(value) == 1
|
360
|
+
scipy_lbfgsb_state = ScipyLbfgsbState.from_jax(jax_lbfgsb_state)
|
361
|
+
flat_latent_params = scipy_lbfgsb_state.x.copy()
|
362
|
+
scipy_lbfgsb_state.update(
|
363
|
+
grad=onp.array(flat_latent_grad, dtype=onp.float64),
|
364
|
+
value=onp.array(value, dtype=onp.float64),
|
365
|
+
)
|
366
|
+
updated_flat_latent_params = scipy_lbfgsb_state.x
|
367
|
+
flat_latent_updates: NDArray
|
368
|
+
flat_latent_updates = updated_flat_latent_params - flat_latent_params
|
369
|
+
return flat_latent_updates, scipy_lbfgsb_state.to_dict()
|
370
|
+
|
371
|
+
step, _, latent_params, jax_lbfgsb_state = state
|
372
|
+
metadata, latents = param_base.partition_density_metadata(latent_params)
|
373
|
+
|
374
|
+
def _params_from_latents(latents: PyTree) -> PyTree:
|
375
|
+
latent_params = param_base.combine_density_metadata(metadata, latents)
|
376
|
+
return _params_from_latent_params(latent_params)
|
377
|
+
|
378
|
+
def _constraint_loss_latents(latents: PyTree) -> jnp.ndarray:
|
379
|
+
latent_params = param_base.combine_density_metadata(metadata, latents)
|
380
|
+
return _constraint_loss(latent_params)
|
381
|
+
|
382
|
+
_, vjp_fn = jax.vjp(_params_from_latents, latents)
|
383
|
+
(latents_grad,) = vjp_fn(grad)
|
384
|
+
|
385
|
+
if not (
|
386
|
+
tree_util.tree_structure(latents_grad)
|
387
|
+
== tree_util.tree_structure(latents) # type: ignore[operator]
|
388
|
+
):
|
389
|
+
raise ValueError(
|
390
|
+
f"Tree structure of `latents_grad` was different than expected, got \n"
|
391
|
+
f"{tree_util.tree_structure(latents_grad)} but expected \n"
|
392
|
+
f"{tree_util.tree_structure(latents)}."
|
393
|
+
)
|
394
|
+
|
395
|
+
(
|
396
|
+
constraint_loss_value,
|
397
|
+
constraint_loss_grad,
|
398
|
+
) = jax.value_and_grad(
|
399
|
+
_constraint_loss_latents
|
400
|
+
)(latents)
|
401
|
+
value += constraint_loss_value
|
402
|
+
latents_grad = tree_util.tree_map(
|
403
|
+
lambda a, b: a + b, latents_grad, constraint_loss_grad
|
404
|
+
)
|
405
|
+
|
406
|
+
flat_latents_grad, unflatten_fn = flatten_util.ravel_pytree(
|
407
|
+
latents_grad
|
408
|
+
) # type: ignore[no-untyped-call]
|
409
|
+
|
410
|
+
flat_latent_updates, jax_lbfgsb_state = callback_sequential(
|
411
|
+
_update_pure,
|
412
|
+
(flat_latents_grad, jax_lbfgsb_state),
|
413
|
+
flat_latents_grad,
|
414
|
+
value,
|
415
|
+
jax_lbfgsb_state,
|
416
|
+
)
|
417
|
+
latent_updates = unflatten_fn(flat_latent_updates)
|
418
|
+
latent_params = _apply_updates(
|
419
|
+
params=latent_params,
|
420
|
+
updates=param_base.combine_density_metadata(metadata, latent_updates),
|
421
|
+
value=value,
|
422
|
+
step=step,
|
423
|
+
)
|
424
|
+
latent_params = _clip(latent_params)
|
425
|
+
params = _params_from_latent_params(latent_params)
|
426
|
+
return step + 1, params, latent_params, jax_lbfgsb_state
|
427
|
+
|
428
|
+
# -------------------------------------------------------------------------
|
429
|
+
# Functions related to the density parameterization.
|
430
|
+
# -------------------------------------------------------------------------
|
431
|
+
|
432
|
+
def _init_latents(params: PyTree) -> PyTree:
|
433
|
+
def _leaf_init_latents(leaf: Any) -> Any:
|
434
|
+
leaf = _clip(leaf)
|
435
|
+
if not _is_density(leaf) or density_parameterization is None:
|
436
|
+
return leaf
|
437
|
+
return density_parameterization.from_density(leaf)
|
438
|
+
|
439
|
+
return tree_util.tree_map(_leaf_init_latents, params, is_leaf=_is_custom_type)
|
440
|
+
|
441
|
+
def _params_from_latent_params(latent_params: PyTree) -> PyTree:
|
442
|
+
def _leaf_params_from_latents(leaf: Any) -> Any:
|
443
|
+
if not _is_parameterized_density(leaf) or density_parameterization is None:
|
444
|
+
return leaf
|
445
|
+
return density_parameterization.to_density(leaf)
|
446
|
+
|
447
|
+
return tree_util.tree_map(
|
448
|
+
_leaf_params_from_latents,
|
449
|
+
latent_params,
|
450
|
+
is_leaf=_is_parameterized_density,
|
451
|
+
)
|
452
|
+
|
453
|
+
def _apply_updates(
|
454
|
+
params: PyTree,
|
455
|
+
updates: PyTree,
|
456
|
+
value: jnp.ndarray,
|
457
|
+
step: int,
|
458
|
+
) -> PyTree:
|
459
|
+
def _leaf_apply_updates(update: Any, leaf: Any) -> Any:
|
460
|
+
if _is_parameterized_density(leaf):
|
461
|
+
return density_parameterization.update(
|
462
|
+
params=leaf, updates=update, value=value, step=step
|
463
|
+
)
|
464
|
+
else:
|
465
|
+
return optax.apply_updates(params=leaf, updates=update)
|
466
|
+
|
467
|
+
return tree_util.tree_map(
|
468
|
+
_leaf_apply_updates,
|
469
|
+
updates,
|
470
|
+
params,
|
471
|
+
is_leaf=_is_parameterized_density,
|
472
|
+
)
|
473
|
+
|
474
|
+
# -------------------------------------------------------------------------
|
475
|
+
# Functions related to the constraints to be minimized.
|
476
|
+
# -------------------------------------------------------------------------
|
477
|
+
|
478
|
+
def _constraint_loss(latent_params: PyTree) -> jnp.ndarray:
|
479
|
+
def _constraint_loss_leaf(
|
480
|
+
leaf: param_base.ParameterizedDensity2DArray,
|
481
|
+
) -> jnp.ndarray:
|
482
|
+
constraints = density_parameterization.constraints(leaf)
|
483
|
+
constraints = tree_util.tree_map(
|
484
|
+
lambda x: jnp.sum(jnp.maximum(x, 0.0) ** 2),
|
485
|
+
constraints,
|
486
|
+
)
|
487
|
+
return jnp.sum(jnp.asarray(constraints))
|
488
|
+
|
489
|
+
losses = [0.0] + [
|
490
|
+
_constraint_loss_leaf(p)
|
491
|
+
for p in tree_util.tree_leaves(
|
492
|
+
latent_params, is_leaf=_is_parameterized_density
|
493
|
+
)
|
494
|
+
if _is_parameterized_density(p)
|
495
|
+
]
|
496
|
+
return penalty * jnp.sum(jnp.asarray(losses))
|
497
|
+
|
498
|
+
return base.Optimizer(
|
499
|
+
init=init_fn,
|
500
|
+
params=params_fn,
|
501
|
+
update=update_fn,
|
502
|
+
)
|
503
|
+
|
504
|
+
|
505
|
+
def is_converged(state: LbfgsbState) -> jnp.ndarray:
|
506
|
+
"""Returns `True` if the optimization has converged."""
|
507
|
+
return state[3]["converged"]
|
508
|
+
|
509
|
+
|
510
|
+
# ------------------------------------------------------------------------------
|
511
|
+
# Helper functions.
|
512
|
+
# ------------------------------------------------------------------------------
|
513
|
+
|
514
|
+
|
515
|
+
def _is_density(leaf: Any) -> Any:
|
516
|
+
"""Return `True` if `leaf` is a density array."""
|
517
|
+
return isinstance(leaf, types.Density2DArray)
|
518
|
+
|
519
|
+
|
520
|
+
def _is_parameterized_density(leaf: Any) -> Any:
|
521
|
+
"""Return `True` if `leaf` is a parameterized density array."""
|
522
|
+
return isinstance(leaf, param_base.ParameterizedDensity2DArray)
|
523
|
+
|
524
|
+
|
525
|
+
def _is_custom_type(leaf: Any) -> bool:
|
526
|
+
"""Return `True` if `leaf` is a recognized custom type."""
|
527
|
+
return isinstance(leaf, (types.BoundedArray, types.Density2DArray))
|
528
|
+
|
529
|
+
|
530
|
+
def _clip(pytree: PyTree) -> PyTree:
|
531
|
+
"""Clips leaves on `pytree` to their bounds."""
|
532
|
+
|
533
|
+
def _clip_fn(leaf: Any) -> Any:
|
534
|
+
if not _is_custom_type(leaf):
|
535
|
+
return leaf
|
536
|
+
if leaf.lower_bound is None and leaf.upper_bound is None:
|
537
|
+
return leaf
|
538
|
+
return tree_util.tree_map(
|
539
|
+
lambda x: jnp.clip(x, leaf.lower_bound, leaf.upper_bound), leaf
|
540
|
+
)
|
541
|
+
|
542
|
+
return tree_util.tree_map(_clip_fn, pytree, is_leaf=_is_custom_type)
|
543
|
+
|
544
|
+
|
545
|
+
def _to_numpy(params: PyTree) -> NDArray:
|
546
|
+
"""Flattens a `params` pytree into a single rank-1 numpy array."""
|
547
|
+
x, _ = flatten_util.ravel_pytree(params) # type: ignore[no-untyped-call]
|
548
|
+
return onp.asarray(x, dtype=onp.float64)
|
549
|
+
|
550
|
+
|
551
|
+
def _to_pytree(x_flat: NDArray, params: PyTree) -> PyTree:
|
552
|
+
"""Restores a pytree from a flat numpy array using the structure of `params`.
|
553
|
+
|
554
|
+
Note that the returned pytree includes jax array leaves.
|
555
|
+
|
556
|
+
Args:
|
557
|
+
x_flat: The rank-1 numpy array to be restored.
|
558
|
+
params: A pytree of parameters whose structure is replicated in the restored
|
559
|
+
pytree.
|
560
|
+
|
561
|
+
Returns:
|
562
|
+
The restored pytree, with jax array leaves.
|
563
|
+
"""
|
564
|
+
_, unflatten_fn = flatten_util.ravel_pytree(params) # type: ignore[no-untyped-call]
|
565
|
+
return unflatten_fn(jnp.asarray(x_flat, dtype=float))
|
566
|
+
|
567
|
+
|
568
|
+
def _bound_for_params(bound: PyTree, params: PyTree) -> ElementwiseBound:
|
569
|
+
"""Generates a bound vector for the `params`.
|
570
|
+
|
571
|
+
The `bound` can be specified in various ways; it may be `None` or a scalar,
|
572
|
+
which then applies to all arrays in `params`. It may be a pytree with
|
573
|
+
structure matching that of `params`, where each leaf is either `None`, a
|
574
|
+
scalar, or an array matching the shape of the corresponding leaf in `params`.
|
575
|
+
|
576
|
+
The returned bound is a flat array suitable for use with `ScipyLbfgsbState`.
|
577
|
+
|
578
|
+
Args:
|
579
|
+
bound: The pytree of bounds.
|
580
|
+
params: The pytree of parameters.
|
581
|
+
|
582
|
+
Returns:
|
583
|
+
The flat elementwise bound.
|
584
|
+
"""
|
585
|
+
|
586
|
+
if bound is None or onp.isscalar(bound):
|
587
|
+
bound = tree_util.tree_map(
|
588
|
+
lambda _: bound,
|
589
|
+
params,
|
590
|
+
is_leaf=lambda x: isinstance(x, types.CUSTOM_TYPES),
|
591
|
+
)
|
592
|
+
|
593
|
+
bound_leaves, bound_treedef = tree_util.tree_flatten(
|
594
|
+
bound, is_leaf=lambda x: x is None
|
595
|
+
)
|
596
|
+
params_leaves = tree_util.tree_leaves(params, is_leaf=lambda x: x is None)
|
597
|
+
|
598
|
+
# `bound` should be a pytree of arrays or `None`, while `params` may
|
599
|
+
# include custom pytree nodes. Convert the custom nodes into standard
|
600
|
+
# types to facilitate validation that the tree structures match.
|
601
|
+
params_treedef = tree_util.tree_structure(
|
602
|
+
tree_util.tree_map(
|
603
|
+
lambda x: 0.0,
|
604
|
+
tree=params,
|
605
|
+
is_leaf=lambda x: x is None or isinstance(x, types.CUSTOM_TYPES),
|
606
|
+
)
|
607
|
+
)
|
608
|
+
if bound_treedef != params_treedef: # type: ignore[operator]
|
609
|
+
raise ValueError(
|
610
|
+
f"Tree structure of `bound` and `params` must match, but got "
|
611
|
+
f"{bound_treedef} and {params_treedef}, respectively."
|
612
|
+
)
|
613
|
+
|
614
|
+
bound_flat = []
|
615
|
+
for b, p in zip(bound_leaves, params_leaves):
|
616
|
+
if p is None:
|
617
|
+
continue
|
618
|
+
if b is None or onp.isscalar(b) or onp.shape(b) == ():
|
619
|
+
bound_flat += [b] * onp.size(p)
|
620
|
+
else:
|
621
|
+
if b.shape != p.shape:
|
622
|
+
raise ValueError(
|
623
|
+
f"`bound` must be `None`, a scalar, or have shape matching "
|
624
|
+
f"`params`, but got shape {b.shape} when params has shape "
|
625
|
+
f"{p.shape}."
|
626
|
+
)
|
627
|
+
bound_flat += b.flatten().tolist()
|
628
|
+
|
629
|
+
return bound_flat
|
630
|
+
|
631
|
+
|
632
|
+
def _example_state(params: PyTree, maxcor: int) -> PyTree:
|
633
|
+
"""Return an example state for the given `params` and `maxcor`."""
|
634
|
+
params_flat, _ = flatten_util.ravel_pytree(params) # type: ignore[no-untyped-call]
|
635
|
+
n = params_flat.size
|
636
|
+
float_params = tree_util.tree_map(lambda x: jnp.asarray(x, dtype=float), params)
|
637
|
+
example_jax_lbfgsb_state = dict(
|
638
|
+
x=jnp.zeros(n, dtype=float),
|
639
|
+
converged=jnp.asarray(False),
|
640
|
+
_maxcor=jnp.zeros((), dtype=int),
|
641
|
+
_line_search_max_steps=jnp.zeros((), dtype=int),
|
642
|
+
_ftol=jnp.zeros((), dtype=float),
|
643
|
+
_gtol=jnp.zeros((), dtype=float),
|
644
|
+
_wa=jnp.ones(_wa_size(n=n, maxcor=maxcor), dtype=float),
|
645
|
+
_iwa=jnp.ones(n * 3, dtype=jnp.int32), # Fortran int
|
646
|
+
_task=jnp.zeros(59, dtype=int),
|
647
|
+
_csave=jnp.zeros(59, dtype=int),
|
648
|
+
_lsave=jnp.zeros(4, dtype=jnp.int32), # Fortran int
|
649
|
+
_isave=jnp.zeros(44, dtype=jnp.int32), # Fortran int
|
650
|
+
_dsave=jnp.zeros(29, dtype=float),
|
651
|
+
_lower_bound=jnp.zeros(n, dtype=float),
|
652
|
+
_upper_bound=jnp.zeros(n, dtype=float),
|
653
|
+
_bound_type=jnp.zeros(n, dtype=int),
|
654
|
+
)
|
655
|
+
return float_params, example_jax_lbfgsb_state
|
656
|
+
|
657
|
+
|
658
|
+
# ------------------------------------------------------------------------------
|
659
|
+
# Wrapper for scipy's L-BFGS-B implementation.
|
660
|
+
# ------------------------------------------------------------------------------
|
661
|
+
|
662
|
+
|
663
|
+
@dataclasses.dataclass
|
664
|
+
class ScipyLbfgsbState:
|
665
|
+
"""Stores the state of a scipy L-BFGS-B minimization.
|
666
|
+
|
667
|
+
This class enables optimization with a more functional style, giving the user
|
668
|
+
control over the optimization loop. Example usage is as follows:
|
669
|
+
|
670
|
+
value_fn = lambda x: onp.sum(x**2)
|
671
|
+
grad_fn = lambda x: 2 * x
|
672
|
+
|
673
|
+
x0 = onp.asarray([0.1, 0.2, 0.3])
|
674
|
+
lb = [None, -1, 0.1]
|
675
|
+
ub = [None, None, None]
|
676
|
+
state = ScipyLbfgsbState.init(
|
677
|
+
x0=x0, lower_bound=lb, upper_bound=ub, maxcor=20
|
678
|
+
)
|
679
|
+
|
680
|
+
for _ in range(10):
|
681
|
+
value = value_fn(state.x)
|
682
|
+
grad = grad_fn(state.x)
|
683
|
+
state.update(grad, value)
|
684
|
+
|
685
|
+
This example converges with `state.x` equal to `(0, 0, 0.1)` and value equal
|
686
|
+
to `0.01`.
|
687
|
+
|
688
|
+
Attributes:
|
689
|
+
x: The current solution vector.
|
690
|
+
"""
|
691
|
+
|
692
|
+
x: NDArray
|
693
|
+
converged: NDArray
|
694
|
+
# Private attributes correspond to internal variables in the `scipy.optimize.
|
695
|
+
# lbfgsb._minimize_lbfgsb` function.
|
696
|
+
_maxcor: int
|
697
|
+
_line_search_max_steps: int
|
698
|
+
_ftol: NDArray
|
699
|
+
_gtol: NDArray
|
700
|
+
_wa: NDArray
|
701
|
+
_iwa: NDArray
|
702
|
+
_task: NDArray
|
703
|
+
_csave: NDArray
|
704
|
+
_lsave: NDArray
|
705
|
+
_isave: NDArray
|
706
|
+
_dsave: NDArray
|
707
|
+
_lower_bound: NDArray
|
708
|
+
_upper_bound: NDArray
|
709
|
+
_bound_type: NDArray
|
710
|
+
|
711
|
+
def __post_init__(self) -> None:
|
712
|
+
"""Validates the datatypes for all state attributes."""
|
713
|
+
_validate_array_dtype(self.x, onp.float64)
|
714
|
+
_validate_array_dtype(self._wa, onp.float64)
|
715
|
+
_validate_array_dtype(self._iwa, FORTRAN_INT)
|
716
|
+
_validate_array_dtype(self._task, "S60")
|
717
|
+
_validate_array_dtype(self._csave, "S60")
|
718
|
+
_validate_array_dtype(self._lsave, FORTRAN_INT)
|
719
|
+
_validate_array_dtype(self._isave, FORTRAN_INT)
|
720
|
+
_validate_array_dtype(self._dsave, onp.float64)
|
721
|
+
_validate_array_dtype(self._lower_bound, onp.float64)
|
722
|
+
_validate_array_dtype(self._upper_bound, onp.float64)
|
723
|
+
_validate_array_dtype(self._bound_type, int)
|
724
|
+
|
725
|
+
def to_dict(self) -> NumpyLbfgsbDict:
|
726
|
+
"""Generates a dictionary of jax arrays defining the state."""
|
727
|
+
return dict(
|
728
|
+
x=onp.asarray(self.x),
|
729
|
+
converged=onp.asarray(self.converged),
|
730
|
+
_maxcor=onp.asarray(self._maxcor),
|
731
|
+
_line_search_max_steps=onp.asarray(self._line_search_max_steps),
|
732
|
+
_ftol=onp.asarray(self._ftol),
|
733
|
+
_gtol=onp.asarray(self._gtol),
|
734
|
+
_wa=onp.asarray(self._wa),
|
735
|
+
_iwa=onp.asarray(self._iwa),
|
736
|
+
_task=_array_from_s60_str(self._task),
|
737
|
+
_csave=_array_from_s60_str(self._csave),
|
738
|
+
_lsave=onp.asarray(self._lsave),
|
739
|
+
_isave=onp.asarray(self._isave),
|
740
|
+
_dsave=onp.asarray(self._dsave),
|
741
|
+
_lower_bound=onp.asarray(self._lower_bound),
|
742
|
+
_upper_bound=onp.asarray(self._upper_bound),
|
743
|
+
_bound_type=onp.asarray(self._bound_type),
|
744
|
+
)
|
745
|
+
|
746
|
+
@classmethod
|
747
|
+
def from_jax(cls, state_dict: JaxLbfgsbDict) -> "ScipyLbfgsbState":
|
748
|
+
"""Converts a dictionary of jax arrays to a `ScipyLbfgsbState`."""
|
749
|
+
return ScipyLbfgsbState(
|
750
|
+
x=onp.array(state_dict["x"], dtype=onp.float64),
|
751
|
+
converged=onp.asarray(state_dict["converged"], dtype=bool),
|
752
|
+
_maxcor=int(state_dict["_maxcor"]),
|
753
|
+
_line_search_max_steps=int(state_dict["_line_search_max_steps"]),
|
754
|
+
_ftol=onp.asarray(state_dict["_ftol"], dtype=onp.float64),
|
755
|
+
_gtol=onp.asarray(state_dict["_gtol"], dtype=onp.float64),
|
756
|
+
_wa=onp.array(state_dict["_wa"], onp.float64),
|
757
|
+
_iwa=onp.array(state_dict["_iwa"], dtype=FORTRAN_INT),
|
758
|
+
_task=_s60_str_from_array(onp.asarray(state_dict["_task"])),
|
759
|
+
_csave=_s60_str_from_array(onp.asarray(state_dict["_csave"])),
|
760
|
+
_lsave=onp.array(state_dict["_lsave"], dtype=FORTRAN_INT),
|
761
|
+
_isave=onp.array(state_dict["_isave"], dtype=FORTRAN_INT),
|
762
|
+
_dsave=onp.array(state_dict["_dsave"], dtype=onp.float64),
|
763
|
+
_lower_bound=onp.asarray(state_dict["_lower_bound"], dtype=onp.float64),
|
764
|
+
_upper_bound=onp.asarray(state_dict["_upper_bound"], dtype=onp.float64),
|
765
|
+
_bound_type=onp.asarray(state_dict["_bound_type"], dtype=int),
|
766
|
+
)
|
767
|
+
|
768
|
+
@classmethod
|
769
|
+
def init(
|
770
|
+
cls,
|
771
|
+
x0: NDArray,
|
772
|
+
lower_bound: ElementwiseBound,
|
773
|
+
upper_bound: ElementwiseBound,
|
774
|
+
maxcor: int,
|
775
|
+
line_search_max_steps: int,
|
776
|
+
ftol: float,
|
777
|
+
gtol: float,
|
778
|
+
) -> "ScipyLbfgsbState":
|
779
|
+
"""Initializes the `ScipyLbfgsbState` for `x0`.
|
780
|
+
|
781
|
+
Args:
|
782
|
+
x0: Array giving the initial solution vector.
|
783
|
+
lower_bound: Array giving the elementwise optional lower bound.
|
784
|
+
upper_bound: Array giving the elementwise optional upper bound.
|
785
|
+
maxcor: The maximum number of variable metric corrections used to define
|
786
|
+
the limited memory matrix, in the L-BFGS-B scheme.
|
787
|
+
line_search_max_steps: The maximum number of steps in the line search.
|
788
|
+
ftol: Tolerance for stopping criteria based on function values. See scipy
|
789
|
+
documentation for details.
|
790
|
+
gtol: Tolerance for stopping criteria based on gradient.
|
791
|
+
|
792
|
+
Returns:
|
793
|
+
The `ScipyLbfgsbState`.
|
794
|
+
"""
|
795
|
+
x0 = onp.asarray(x0)
|
796
|
+
if x0.ndim > 1:
|
797
|
+
raise ValueError(f"`x0` must be rank-1 but got shape {x0.shape}.")
|
798
|
+
lower_bound = onp.asarray(lower_bound)
|
799
|
+
upper_bound = onp.asarray(upper_bound)
|
800
|
+
if x0.shape != lower_bound.shape or x0.shape != upper_bound.shape:
|
801
|
+
raise ValueError(
|
802
|
+
f"`x0`, `lower_bound`, and `upper_bound` must have matching "
|
803
|
+
f"shape but got shapes {x0.shape}, {lower_bound.shape}, and "
|
804
|
+
f"{upper_bound.shape}, respectively."
|
805
|
+
)
|
806
|
+
if maxcor < 1:
|
807
|
+
raise ValueError(f"`maxcor` must be positive but got {maxcor}.")
|
808
|
+
|
809
|
+
n = x0.size
|
810
|
+
lower_bound_array, upper_bound_array, bound_type = _configure_bounds(
|
811
|
+
lower_bound, upper_bound
|
812
|
+
)
|
813
|
+
task = onp.zeros(1, "S60")
|
814
|
+
task[:] = TASK_START
|
815
|
+
|
816
|
+
# See initialization of internal variables in the `lbfgsb._minimize_lbfgsb`
|
817
|
+
# function.
|
818
|
+
wa_size = _wa_size(n=n, maxcor=maxcor)
|
819
|
+
state = ScipyLbfgsbState(
|
820
|
+
x=onp.array(x0, onp.float64),
|
821
|
+
converged=onp.asarray(False),
|
822
|
+
_maxcor=maxcor,
|
823
|
+
_line_search_max_steps=line_search_max_steps,
|
824
|
+
_ftol=onp.asarray(ftol, onp.float64),
|
825
|
+
_gtol=onp.asarray(gtol, onp.float64),
|
826
|
+
_wa=onp.zeros(wa_size, onp.float64),
|
827
|
+
_iwa=onp.zeros(3 * n, FORTRAN_INT),
|
828
|
+
_task=task,
|
829
|
+
_csave=onp.zeros(1, "S60"),
|
830
|
+
_lsave=onp.zeros(4, FORTRAN_INT),
|
831
|
+
_isave=onp.zeros(44, FORTRAN_INT),
|
832
|
+
_dsave=onp.zeros(29, onp.float64),
|
833
|
+
_lower_bound=lower_bound_array,
|
834
|
+
_upper_bound=upper_bound_array,
|
835
|
+
_bound_type=bound_type,
|
836
|
+
)
|
837
|
+
# The initial state requires an update with zero value and gradient. This
|
838
|
+
# is because the initial task is "START", which does not actually require
|
839
|
+
# value and gradient evaluation.
|
840
|
+
state.update(onp.zeros(x0.shape, onp.float64), onp.zeros((), onp.float64))
|
841
|
+
return state
|
842
|
+
|
843
|
+
def update(
|
844
|
+
self,
|
845
|
+
grad: NDArray,
|
846
|
+
value: NDArray,
|
847
|
+
) -> None:
|
848
|
+
"""Performs an in-place update of the `ScipyLbfgsbState` if not converged.
|
849
|
+
|
850
|
+
Args:
|
851
|
+
grad: The function gradient for the current `x`.
|
852
|
+
value: The scalar function value for the current `x`.
|
853
|
+
"""
|
854
|
+
if self.converged:
|
855
|
+
return
|
856
|
+
if grad.shape != self.x.shape:
|
857
|
+
raise ValueError(
|
858
|
+
f"`grad` must have the same shape as attribute `x`, but got shapes "
|
859
|
+
f"{grad.shape} and {self.x.shape}, respectively."
|
860
|
+
)
|
861
|
+
if value.shape != ():
|
862
|
+
raise ValueError(f"`value` must be a scalar but got shape {value.shape}.")
|
863
|
+
|
864
|
+
# The `setulb` function will sometimes return with a task that does not
|
865
|
+
# require a value and gradient evaluation. In this case we simply call it
|
866
|
+
# again, advancing past such "dummy" steps.
|
867
|
+
for _ in range(3):
|
868
|
+
scipy_lbfgsb.setulb(
|
869
|
+
m=self._maxcor,
|
870
|
+
x=self.x,
|
871
|
+
l=self._lower_bound,
|
872
|
+
u=self._upper_bound,
|
873
|
+
nbd=self._bound_type,
|
874
|
+
f=value,
|
875
|
+
g=grad,
|
876
|
+
factr=self._ftol / onp.finfo(float).eps,
|
877
|
+
pgtol=self._gtol,
|
878
|
+
wa=self._wa,
|
879
|
+
iwa=self._iwa,
|
880
|
+
task=self._task,
|
881
|
+
iprint=UPDATE_IPRINT,
|
882
|
+
csave=self._csave,
|
883
|
+
lsave=self._lsave,
|
884
|
+
isave=self._isave,
|
885
|
+
dsave=self._dsave,
|
886
|
+
maxls=self._line_search_max_steps,
|
887
|
+
)
|
888
|
+
task_str = self._task.tobytes()
|
889
|
+
if task_str.startswith(TASK_CONVERGED):
|
890
|
+
self.converged = onp.asarray(True)
|
891
|
+
if task_str.startswith(TASK_FG):
|
892
|
+
break
|
893
|
+
|
894
|
+
|
895
|
+
def _wa_size(n: int, maxcor: int) -> int:
|
896
|
+
"""Return the size of the `wa` attribute of lbfgsb state."""
|
897
|
+
return 2 * maxcor * n + 5 * n + 11 * maxcor**2 + 8 * maxcor
|
898
|
+
|
899
|
+
|
900
|
+
def _validate_array_dtype(x: NDArray, dtype: Union[type, str]) -> None:
|
901
|
+
"""Validates that `x` is an array with the specified `dtype`."""
|
902
|
+
if not isinstance(x, onp.ndarray):
|
903
|
+
raise ValueError(f"`x` must be an `onp.ndarray` but got {type(x)}")
|
904
|
+
if x.dtype != dtype:
|
905
|
+
raise ValueError(f"`x` must have dtype {dtype} but got {x.dtype}")
|
906
|
+
|
907
|
+
|
908
|
+
def _configure_bounds(
|
909
|
+
lower_bound: ElementwiseBound,
|
910
|
+
upper_bound: ElementwiseBound,
|
911
|
+
) -> Tuple[NDArray, NDArray, NDArray]:
|
912
|
+
"""Configures the bounds for an L-BFGS-B optimization."""
|
913
|
+
bound_type = [
|
914
|
+
BOUNDS_MAP[(lower is None, upper is None)]
|
915
|
+
for lower, upper in zip(lower_bound, upper_bound)
|
916
|
+
]
|
917
|
+
lower_bound_array = [0.0 if x is None else x for x in lower_bound]
|
918
|
+
upper_bound_array = [0.0 if x is None else x for x in upper_bound]
|
919
|
+
return (
|
920
|
+
onp.asarray(lower_bound_array, onp.float64),
|
921
|
+
onp.asarray(upper_bound_array, onp.float64),
|
922
|
+
onp.asarray(bound_type),
|
923
|
+
)
|
924
|
+
|
925
|
+
|
926
|
+
def _array_from_s60_str(s60_str: NDArray) -> NDArray:
|
927
|
+
"""Return a jax array for a numpy s60 string."""
|
928
|
+
assert s60_str.shape == (1,)
|
929
|
+
chars = [int(o) for o in s60_str[0]]
|
930
|
+
chars.extend([32] * (59 - len(chars)))
|
931
|
+
return onp.asarray(chars, dtype=int)
|
932
|
+
|
933
|
+
|
934
|
+
def _s60_str_from_array(array: NDArray) -> NDArray:
|
935
|
+
"""Return a numpy s60 string for a jax array."""
|
936
|
+
return onp.asarray(
|
937
|
+
[b"".join(int(i).to_bytes(length=1, byteorder="big") for i in array)],
|
938
|
+
dtype="S60",
|
939
|
+
)
|