investing-algorithm-framework 1.5__py3-none-any.whl → 7.25.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- investing_algorithm_framework/__init__.py +192 -16
- investing_algorithm_framework/analysis/__init__.py +16 -0
- investing_algorithm_framework/analysis/backtest_data_ranges.py +202 -0
- investing_algorithm_framework/analysis/data.py +170 -0
- investing_algorithm_framework/analysis/markdown.py +91 -0
- investing_algorithm_framework/analysis/ranking.py +298 -0
- investing_algorithm_framework/app/__init__.py +29 -4
- investing_algorithm_framework/app/algorithm/__init__.py +7 -0
- investing_algorithm_framework/app/algorithm/algorithm.py +193 -0
- investing_algorithm_framework/app/algorithm/algorithm_factory.py +118 -0
- investing_algorithm_framework/app/app.py +2220 -379
- investing_algorithm_framework/app/app_hook.py +28 -0
- investing_algorithm_framework/app/context.py +1724 -0
- investing_algorithm_framework/app/eventloop.py +620 -0
- investing_algorithm_framework/app/reporting/__init__.py +27 -0
- investing_algorithm_framework/app/reporting/ascii.py +921 -0
- investing_algorithm_framework/app/reporting/backtest_report.py +349 -0
- investing_algorithm_framework/app/reporting/charts/__init__.py +19 -0
- investing_algorithm_framework/app/reporting/charts/entry_exist_signals.py +66 -0
- investing_algorithm_framework/app/reporting/charts/equity_curve.py +37 -0
- investing_algorithm_framework/app/reporting/charts/equity_curve_drawdown.py +74 -0
- investing_algorithm_framework/app/reporting/charts/line_chart.py +11 -0
- investing_algorithm_framework/app/reporting/charts/monthly_returns_heatmap.py +70 -0
- investing_algorithm_framework/app/reporting/charts/ohlcv_data_completeness.py +51 -0
- investing_algorithm_framework/app/reporting/charts/rolling_sharp_ratio.py +79 -0
- investing_algorithm_framework/app/reporting/charts/yearly_returns_barchart.py +55 -0
- investing_algorithm_framework/app/reporting/generate.py +185 -0
- investing_algorithm_framework/app/reporting/tables/__init__.py +11 -0
- investing_algorithm_framework/app/reporting/tables/key_metrics_table.py +217 -0
- investing_algorithm_framework/app/reporting/tables/time_metrics_table.py +80 -0
- investing_algorithm_framework/app/reporting/tables/trade_metrics_table.py +147 -0
- investing_algorithm_framework/app/reporting/tables/trades_table.py +75 -0
- investing_algorithm_framework/app/reporting/tables/utils.py +29 -0
- investing_algorithm_framework/app/reporting/templates/report_template.html.j2 +154 -0
- investing_algorithm_framework/app/stateless/action_handlers/__init__.py +6 -3
- investing_algorithm_framework/app/stateless/action_handlers/action_handler_strategy.py +1 -1
- investing_algorithm_framework/app/stateless/action_handlers/check_online_handler.py +2 -1
- investing_algorithm_framework/app/stateless/action_handlers/run_strategy_handler.py +14 -7
- investing_algorithm_framework/app/strategy.py +867 -60
- investing_algorithm_framework/app/task.py +5 -3
- investing_algorithm_framework/app/web/__init__.py +2 -1
- investing_algorithm_framework/app/web/controllers/__init__.py +2 -2
- investing_algorithm_framework/app/web/controllers/orders.py +3 -2
- investing_algorithm_framework/app/web/controllers/positions.py +2 -2
- investing_algorithm_framework/app/web/create_app.py +4 -2
- investing_algorithm_framework/app/web/schemas/position.py +1 -0
- investing_algorithm_framework/cli/__init__.py +0 -0
- investing_algorithm_framework/cli/cli.py +231 -0
- investing_algorithm_framework/cli/deploy_to_aws_lambda.py +501 -0
- investing_algorithm_framework/cli/deploy_to_azure_function.py +718 -0
- investing_algorithm_framework/cli/initialize_app.py +603 -0
- investing_algorithm_framework/cli/templates/.gitignore.template +178 -0
- investing_algorithm_framework/cli/templates/app.py.template +18 -0
- investing_algorithm_framework/cli/templates/app_aws_lambda_function.py.template +48 -0
- investing_algorithm_framework/cli/templates/app_azure_function.py.template +14 -0
- investing_algorithm_framework/cli/templates/app_web.py.template +18 -0
- investing_algorithm_framework/cli/templates/aws_lambda_dockerfile.template +22 -0
- investing_algorithm_framework/cli/templates/aws_lambda_dockerignore.template +92 -0
- investing_algorithm_framework/cli/templates/aws_lambda_readme.md.template +110 -0
- investing_algorithm_framework/cli/templates/aws_lambda_requirements.txt.template +2 -0
- investing_algorithm_framework/cli/templates/azure_function_function_app.py.template +65 -0
- investing_algorithm_framework/cli/templates/azure_function_host.json.template +15 -0
- investing_algorithm_framework/cli/templates/azure_function_local.settings.json.template +8 -0
- investing_algorithm_framework/cli/templates/azure_function_requirements.txt.template +3 -0
- investing_algorithm_framework/cli/templates/data_providers.py.template +17 -0
- investing_algorithm_framework/cli/templates/env.example.template +2 -0
- investing_algorithm_framework/cli/templates/env_azure_function.example.template +4 -0
- investing_algorithm_framework/cli/templates/market_data_providers.py.template +9 -0
- investing_algorithm_framework/cli/templates/readme.md.template +135 -0
- investing_algorithm_framework/cli/templates/requirements.txt.template +2 -0
- investing_algorithm_framework/cli/templates/run_backtest.py.template +20 -0
- investing_algorithm_framework/cli/templates/strategy.py.template +124 -0
- investing_algorithm_framework/cli/validate_backtest_checkpoints.py +197 -0
- investing_algorithm_framework/create_app.py +40 -7
- investing_algorithm_framework/dependency_container.py +100 -47
- investing_algorithm_framework/domain/__init__.py +97 -30
- investing_algorithm_framework/domain/algorithm_id.py +69 -0
- investing_algorithm_framework/domain/backtesting/__init__.py +25 -0
- investing_algorithm_framework/domain/backtesting/backtest.py +548 -0
- investing_algorithm_framework/domain/backtesting/backtest_date_range.py +113 -0
- investing_algorithm_framework/domain/backtesting/backtest_evaluation_focuss.py +241 -0
- investing_algorithm_framework/domain/backtesting/backtest_metrics.py +470 -0
- investing_algorithm_framework/domain/backtesting/backtest_permutation_test.py +275 -0
- investing_algorithm_framework/domain/backtesting/backtest_run.py +663 -0
- investing_algorithm_framework/domain/backtesting/backtest_summary_metrics.py +162 -0
- investing_algorithm_framework/domain/backtesting/backtest_utils.py +198 -0
- investing_algorithm_framework/domain/backtesting/combine_backtests.py +392 -0
- investing_algorithm_framework/domain/config.py +59 -136
- investing_algorithm_framework/domain/constants.py +18 -37
- investing_algorithm_framework/domain/data_provider.py +334 -0
- investing_algorithm_framework/domain/data_structures.py +42 -0
- investing_algorithm_framework/domain/exceptions.py +51 -1
- investing_algorithm_framework/domain/models/__init__.py +26 -19
- investing_algorithm_framework/domain/models/app_mode.py +34 -0
- investing_algorithm_framework/domain/models/data/__init__.py +7 -0
- investing_algorithm_framework/domain/models/data/data_source.py +222 -0
- investing_algorithm_framework/domain/models/data/data_type.py +46 -0
- investing_algorithm_framework/domain/models/event.py +35 -0
- investing_algorithm_framework/domain/models/market/__init__.py +5 -0
- investing_algorithm_framework/domain/models/market/market_credential.py +88 -0
- investing_algorithm_framework/domain/models/order/__init__.py +3 -4
- investing_algorithm_framework/domain/models/order/order.py +198 -65
- investing_algorithm_framework/domain/models/order/order_status.py +2 -2
- investing_algorithm_framework/domain/models/order/order_type.py +1 -3
- investing_algorithm_framework/domain/models/portfolio/__init__.py +6 -2
- investing_algorithm_framework/domain/models/portfolio/portfolio.py +98 -3
- investing_algorithm_framework/domain/models/portfolio/portfolio_configuration.py +37 -43
- investing_algorithm_framework/domain/models/portfolio/portfolio_snapshot.py +108 -11
- investing_algorithm_framework/domain/models/position/__init__.py +2 -1
- investing_algorithm_framework/domain/models/position/position.py +20 -0
- investing_algorithm_framework/domain/models/position/position_size.py +41 -0
- investing_algorithm_framework/domain/models/position/position_snapshot.py +0 -2
- investing_algorithm_framework/domain/models/risk_rules/__init__.py +7 -0
- investing_algorithm_framework/domain/models/risk_rules/stop_loss_rule.py +51 -0
- investing_algorithm_framework/domain/models/risk_rules/take_profit_rule.py +55 -0
- investing_algorithm_framework/domain/models/snapshot_interval.py +45 -0
- investing_algorithm_framework/domain/models/strategy_profile.py +19 -141
- investing_algorithm_framework/domain/models/time_frame.py +94 -98
- investing_algorithm_framework/domain/models/time_interval.py +33 -0
- investing_algorithm_framework/domain/models/time_unit.py +66 -2
- investing_algorithm_framework/domain/models/tracing/__init__.py +0 -0
- investing_algorithm_framework/domain/models/tracing/trace.py +23 -0
- investing_algorithm_framework/domain/models/trade/__init__.py +11 -0
- investing_algorithm_framework/domain/models/trade/trade.py +389 -0
- investing_algorithm_framework/domain/models/trade/trade_status.py +40 -0
- investing_algorithm_framework/domain/models/trade/trade_stop_loss.py +332 -0
- investing_algorithm_framework/domain/models/trade/trade_take_profit.py +365 -0
- investing_algorithm_framework/domain/order_executor.py +112 -0
- investing_algorithm_framework/domain/portfolio_provider.py +118 -0
- investing_algorithm_framework/domain/services/__init__.py +11 -0
- investing_algorithm_framework/domain/services/market_credential_service.py +37 -0
- investing_algorithm_framework/domain/services/portfolios/__init__.py +5 -0
- investing_algorithm_framework/domain/services/portfolios/portfolio_sync_service.py +9 -0
- investing_algorithm_framework/domain/services/rounding_service.py +27 -0
- investing_algorithm_framework/domain/services/state_handler.py +38 -0
- investing_algorithm_framework/domain/strategy.py +1 -29
- investing_algorithm_framework/domain/utils/__init__.py +15 -5
- investing_algorithm_framework/domain/utils/csv.py +22 -0
- investing_algorithm_framework/domain/utils/custom_tqdm.py +22 -0
- investing_algorithm_framework/domain/utils/dates.py +57 -0
- investing_algorithm_framework/domain/utils/jupyter_notebook_detection.py +19 -0
- investing_algorithm_framework/domain/utils/polars.py +53 -0
- investing_algorithm_framework/domain/utils/random.py +29 -0
- investing_algorithm_framework/download_data.py +244 -0
- investing_algorithm_framework/infrastructure/__init__.py +37 -11
- investing_algorithm_framework/infrastructure/data_providers/__init__.py +36 -0
- investing_algorithm_framework/infrastructure/data_providers/ccxt.py +1152 -0
- investing_algorithm_framework/infrastructure/data_providers/csv.py +568 -0
- investing_algorithm_framework/infrastructure/data_providers/pandas.py +599 -0
- investing_algorithm_framework/infrastructure/database/__init__.py +6 -2
- investing_algorithm_framework/infrastructure/database/sql_alchemy.py +86 -12
- investing_algorithm_framework/infrastructure/models/__init__.py +7 -3
- investing_algorithm_framework/infrastructure/models/order/__init__.py +2 -2
- investing_algorithm_framework/infrastructure/models/order/order.py +53 -53
- investing_algorithm_framework/infrastructure/models/order/order_metadata.py +44 -0
- investing_algorithm_framework/infrastructure/models/order_trade_association.py +10 -0
- investing_algorithm_framework/infrastructure/models/portfolio/__init__.py +1 -1
- investing_algorithm_framework/infrastructure/models/portfolio/portfolio_snapshot.py +8 -2
- investing_algorithm_framework/infrastructure/models/portfolio/{portfolio.py → sql_portfolio.py} +17 -6
- investing_algorithm_framework/infrastructure/models/position/position_snapshot.py +3 -1
- investing_algorithm_framework/infrastructure/models/trades/__init__.py +9 -0
- investing_algorithm_framework/infrastructure/models/trades/trade.py +130 -0
- investing_algorithm_framework/infrastructure/models/trades/trade_stop_loss.py +59 -0
- investing_algorithm_framework/infrastructure/models/trades/trade_take_profit.py +55 -0
- investing_algorithm_framework/infrastructure/order_executors/__init__.py +21 -0
- investing_algorithm_framework/infrastructure/order_executors/backtest_oder_executor.py +28 -0
- investing_algorithm_framework/infrastructure/order_executors/ccxt_order_executor.py +200 -0
- investing_algorithm_framework/infrastructure/portfolio_providers/__init__.py +19 -0
- investing_algorithm_framework/infrastructure/portfolio_providers/ccxt_portfolio_provider.py +199 -0
- investing_algorithm_framework/infrastructure/repositories/__init__.py +10 -4
- investing_algorithm_framework/infrastructure/repositories/order_metadata_repository.py +17 -0
- investing_algorithm_framework/infrastructure/repositories/order_repository.py +16 -5
- investing_algorithm_framework/infrastructure/repositories/portfolio_repository.py +2 -2
- investing_algorithm_framework/infrastructure/repositories/position_repository.py +11 -0
- investing_algorithm_framework/infrastructure/repositories/repository.py +84 -30
- investing_algorithm_framework/infrastructure/repositories/trade_repository.py +71 -0
- investing_algorithm_framework/infrastructure/repositories/trade_stop_loss_repository.py +29 -0
- investing_algorithm_framework/infrastructure/repositories/trade_take_profit_repository.py +29 -0
- investing_algorithm_framework/infrastructure/services/__init__.py +9 -4
- investing_algorithm_framework/infrastructure/services/aws/__init__.py +6 -0
- investing_algorithm_framework/infrastructure/services/aws/state_handler.py +193 -0
- investing_algorithm_framework/infrastructure/services/azure/__init__.py +5 -0
- investing_algorithm_framework/infrastructure/services/azure/state_handler.py +158 -0
- investing_algorithm_framework/infrastructure/services/backtesting/__init__.py +9 -0
- investing_algorithm_framework/infrastructure/services/backtesting/backtest_service.py +2596 -0
- investing_algorithm_framework/infrastructure/services/backtesting/event_backtest_service.py +285 -0
- investing_algorithm_framework/infrastructure/services/backtesting/vector_backtest_service.py +468 -0
- investing_algorithm_framework/services/__init__.py +123 -15
- investing_algorithm_framework/services/configuration_service.py +77 -11
- investing_algorithm_framework/services/data_providers/__init__.py +5 -0
- investing_algorithm_framework/services/data_providers/data_provider_service.py +1058 -0
- investing_algorithm_framework/services/market_credential_service.py +40 -0
- investing_algorithm_framework/services/metrics/__init__.py +119 -0
- investing_algorithm_framework/services/metrics/alpha.py +0 -0
- investing_algorithm_framework/services/metrics/beta.py +0 -0
- investing_algorithm_framework/services/metrics/cagr.py +60 -0
- investing_algorithm_framework/services/metrics/calmar_ratio.py +40 -0
- investing_algorithm_framework/services/metrics/drawdown.py +218 -0
- investing_algorithm_framework/services/metrics/equity_curve.py +24 -0
- investing_algorithm_framework/services/metrics/exposure.py +210 -0
- investing_algorithm_framework/services/metrics/generate.py +358 -0
- investing_algorithm_framework/services/metrics/mean_daily_return.py +84 -0
- investing_algorithm_framework/services/metrics/price_efficiency.py +57 -0
- investing_algorithm_framework/services/metrics/profit_factor.py +165 -0
- investing_algorithm_framework/services/metrics/recovery.py +113 -0
- investing_algorithm_framework/services/metrics/returns.py +452 -0
- investing_algorithm_framework/services/metrics/risk_free_rate.py +28 -0
- investing_algorithm_framework/services/metrics/sharpe_ratio.py +137 -0
- investing_algorithm_framework/services/metrics/sortino_ratio.py +74 -0
- investing_algorithm_framework/services/metrics/standard_deviation.py +156 -0
- investing_algorithm_framework/services/metrics/trades.py +473 -0
- investing_algorithm_framework/services/metrics/treynor_ratio.py +0 -0
- investing_algorithm_framework/services/metrics/ulcer.py +0 -0
- investing_algorithm_framework/services/metrics/value_at_risk.py +0 -0
- investing_algorithm_framework/services/metrics/volatility.py +118 -0
- investing_algorithm_framework/services/metrics/win_rate.py +177 -0
- investing_algorithm_framework/services/order_service/__init__.py +9 -0
- investing_algorithm_framework/services/order_service/order_backtest_service.py +178 -0
- investing_algorithm_framework/services/order_service/order_executor_lookup.py +110 -0
- investing_algorithm_framework/services/order_service/order_service.py +826 -0
- investing_algorithm_framework/services/portfolios/__init__.py +16 -0
- investing_algorithm_framework/services/portfolios/backtest_portfolio_service.py +54 -0
- investing_algorithm_framework/services/{portfolio_configuration_service.py → portfolios/portfolio_configuration_service.py} +27 -12
- investing_algorithm_framework/services/portfolios/portfolio_provider_lookup.py +106 -0
- investing_algorithm_framework/services/portfolios/portfolio_service.py +188 -0
- investing_algorithm_framework/services/portfolios/portfolio_snapshot_service.py +136 -0
- investing_algorithm_framework/services/portfolios/portfolio_sync_service.py +182 -0
- investing_algorithm_framework/services/positions/__init__.py +7 -0
- investing_algorithm_framework/services/positions/position_service.py +210 -0
- investing_algorithm_framework/services/repository_service.py +8 -2
- investing_algorithm_framework/services/trade_order_evaluator/__init__.py +9 -0
- investing_algorithm_framework/services/trade_order_evaluator/backtest_trade_oder_evaluator.py +117 -0
- investing_algorithm_framework/services/trade_order_evaluator/default_trade_order_evaluator.py +51 -0
- investing_algorithm_framework/services/trade_order_evaluator/trade_order_evaluator.py +80 -0
- investing_algorithm_framework/services/trade_service/__init__.py +9 -0
- investing_algorithm_framework/services/trade_service/trade_service.py +1099 -0
- investing_algorithm_framework/services/trade_service/trade_stop_loss_service.py +39 -0
- investing_algorithm_framework/services/trade_service/trade_take_profit_service.py +41 -0
- investing_algorithm_framework-7.25.6.dist-info/METADATA +535 -0
- investing_algorithm_framework-7.25.6.dist-info/RECORD +268 -0
- {investing_algorithm_framework-1.5.dist-info → investing_algorithm_framework-7.25.6.dist-info}/WHEEL +1 -2
- investing_algorithm_framework-7.25.6.dist-info/entry_points.txt +3 -0
- investing_algorithm_framework/app/algorithm.py +0 -630
- investing_algorithm_framework/domain/models/backtest_profile.py +0 -414
- investing_algorithm_framework/domain/models/market_data/__init__.py +0 -11
- investing_algorithm_framework/domain/models/market_data/asset_price.py +0 -50
- investing_algorithm_framework/domain/models/market_data/ohlcv.py +0 -105
- investing_algorithm_framework/domain/models/market_data/order_book.py +0 -63
- investing_algorithm_framework/domain/models/market_data/ticker.py +0 -92
- investing_algorithm_framework/domain/models/order/order_fee.py +0 -45
- investing_algorithm_framework/domain/models/trade.py +0 -78
- investing_algorithm_framework/domain/models/trading_data_types.py +0 -47
- investing_algorithm_framework/domain/models/trading_time_frame.py +0 -223
- investing_algorithm_framework/domain/singleton.py +0 -9
- investing_algorithm_framework/domain/utils/backtesting.py +0 -82
- investing_algorithm_framework/infrastructure/models/order/order_fee.py +0 -21
- investing_algorithm_framework/infrastructure/repositories/order_fee_repository.py +0 -15
- investing_algorithm_framework/infrastructure/services/market_backtest_service.py +0 -360
- investing_algorithm_framework/infrastructure/services/market_service.py +0 -410
- investing_algorithm_framework/infrastructure/services/performance_service.py +0 -192
- investing_algorithm_framework/services/backtest_service.py +0 -268
- investing_algorithm_framework/services/market_data_service.py +0 -77
- investing_algorithm_framework/services/order_backtest_service.py +0 -122
- investing_algorithm_framework/services/order_service.py +0 -752
- investing_algorithm_framework/services/portfolio_service.py +0 -164
- investing_algorithm_framework/services/portfolio_snapshot_service.py +0 -68
- investing_algorithm_framework/services/position_cost_service.py +0 -5
- investing_algorithm_framework/services/position_service.py +0 -63
- investing_algorithm_framework/services/strategy_orchestrator_service.py +0 -225
- investing_algorithm_framework-1.5.dist-info/AUTHORS.md +0 -8
- investing_algorithm_framework-1.5.dist-info/METADATA +0 -230
- investing_algorithm_framework-1.5.dist-info/RECORD +0 -119
- investing_algorithm_framework-1.5.dist-info/top_level.txt +0 -1
- /investing_algorithm_framework/{infrastructure/services/performance_backtest_service.py → app/reporting/tables/stop_loss_table.py} +0 -0
- /investing_algorithm_framework/services/{position_snapshot_service.py → positions/position_snapshot_service.py} +0 -0
- {investing_algorithm_framework-1.5.dist-info → investing_algorithm_framework-7.25.6.dist-info}/LICENSE +0 -0
|
@@ -0,0 +1,452 @@
|
|
|
1
|
+
from typing import List, Tuple
|
|
2
|
+
from datetime import datetime, date
|
|
3
|
+
|
|
4
|
+
import pandas as pd
|
|
5
|
+
|
|
6
|
+
from investing_algorithm_framework.domain import PortfolioSnapshot, Trade, \
|
|
7
|
+
OperationalException
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def get_monthly_returns(snapshots: List[PortfolioSnapshot]) -> List[Tuple[float, datetime]]:
|
|
11
|
+
"""
|
|
12
|
+
Calculate the monthly returns from a list of portfolio snapshots.
|
|
13
|
+
|
|
14
|
+
Monthly return is calculated as the percentage change in portfolio value
|
|
15
|
+
from the end of one month to the end of the next month.
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
19
|
+
|
|
20
|
+
Returns:
|
|
21
|
+
List[Tuple[float, datetime]]: A list of tuples containing the monthly return
|
|
22
|
+
and the corresponding month.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
# Create DataFrame from snapshots
|
|
26
|
+
data = [(s.created_at, s.total_value) for s in snapshots]
|
|
27
|
+
df = pd.DataFrame(data, columns=["created_at", "total_value"])
|
|
28
|
+
df['created_at'] = pd.to_datetime(df['created_at'])
|
|
29
|
+
df = df.sort_values('created_at').drop_duplicates('created_at')\
|
|
30
|
+
.set_index('created_at')
|
|
31
|
+
|
|
32
|
+
# Resample to monthly frequency using last value of the month
|
|
33
|
+
monthly_df = df.resample('ME').last().dropna()
|
|
34
|
+
monthly_df['return'] = monthly_df['total_value'].pct_change()
|
|
35
|
+
monthly_df = monthly_df.dropna()
|
|
36
|
+
|
|
37
|
+
# Ensure returns are Python floats, not numpy floats
|
|
38
|
+
monthly_returns = [
|
|
39
|
+
(float(row['return']), row.name) for _, row in monthly_df.iterrows()
|
|
40
|
+
]
|
|
41
|
+
return monthly_returns
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def get_yearly_returns(snapshots: List[PortfolioSnapshot]) -> List[Tuple[float, date]]:
|
|
45
|
+
"""
|
|
46
|
+
Calculate the yearly returns from a list of portfolio snapshots.
|
|
47
|
+
|
|
48
|
+
Yearly return is calculated as the percentage change in portfolio value
|
|
49
|
+
from the end of one year to the end of the next year.
|
|
50
|
+
|
|
51
|
+
Args:
|
|
52
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
53
|
+
|
|
54
|
+
Returns:
|
|
55
|
+
List[Tuple[float, date]]: A list of tuples containing the yearly return
|
|
56
|
+
and the corresponding year.
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
# Create DataFrame from snapshots
|
|
60
|
+
data = [(s.created_at, s.total_value) for s in snapshots]
|
|
61
|
+
df = pd.DataFrame(data, columns=["created_at", "total_value"])
|
|
62
|
+
df['created_at'] = pd.to_datetime(df['created_at'])
|
|
63
|
+
df = df.sort_values('created_at').drop_duplicates('created_at')\
|
|
64
|
+
.set_index('created_at')
|
|
65
|
+
|
|
66
|
+
# Remove timezone information if present to avoid warning
|
|
67
|
+
if df.index.tz is not None:
|
|
68
|
+
df.index = df.index.tz_localize(None)
|
|
69
|
+
|
|
70
|
+
# Resample to yearly frequency using last value of the year
|
|
71
|
+
yearly_df = df.resample('YE').last().dropna()
|
|
72
|
+
yearly_df['return'] = yearly_df['total_value'].pct_change()
|
|
73
|
+
yearly_df = yearly_df.dropna()
|
|
74
|
+
|
|
75
|
+
# Yearly returns with date objects only representing the year
|
|
76
|
+
yearly_df.index = yearly_df.index.to_period('Y').to_timestamp()
|
|
77
|
+
yearly_returns = [
|
|
78
|
+
(float(row['return']), row.name) for _, row in yearly_df.iterrows()
|
|
79
|
+
]
|
|
80
|
+
return yearly_returns
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def get_percentage_winning_months(snapshots: List[PortfolioSnapshot]) -> float:
|
|
84
|
+
"""
|
|
85
|
+
Calculate the percentage of winning months from portfolio snapshots.
|
|
86
|
+
|
|
87
|
+
A winning month is defined as a month where the portfolio value at the end
|
|
88
|
+
of the month is greater than at the start of the month.
|
|
89
|
+
|
|
90
|
+
Args:
|
|
91
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
92
|
+
|
|
93
|
+
Returns:
|
|
94
|
+
float: The percentage of winning months.
|
|
95
|
+
"""
|
|
96
|
+
|
|
97
|
+
monthly_returns = get_monthly_returns(snapshots)
|
|
98
|
+
winning_months = sum(1 for r, _ in monthly_returns if r > 0)
|
|
99
|
+
|
|
100
|
+
if not monthly_returns:
|
|
101
|
+
return 0.0
|
|
102
|
+
|
|
103
|
+
return (winning_months / len(monthly_returns))
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def get_best_month(snapshots: List[PortfolioSnapshot]) -> Tuple[float, datetime]:
|
|
107
|
+
"""
|
|
108
|
+
Get the best month in terms of return from portfolio snapshots.
|
|
109
|
+
|
|
110
|
+
Args:
|
|
111
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
112
|
+
|
|
113
|
+
Returns:
|
|
114
|
+
Tuple[float, datetime]: The best monthly return and the corresponding month.
|
|
115
|
+
"""
|
|
116
|
+
|
|
117
|
+
monthly_returns = get_monthly_returns(snapshots)
|
|
118
|
+
|
|
119
|
+
if not monthly_returns:
|
|
120
|
+
return 0.0, None
|
|
121
|
+
|
|
122
|
+
return max(monthly_returns, key=lambda x: x[0])
|
|
123
|
+
|
|
124
|
+
def get_worst_month(snapshots: List[PortfolioSnapshot]) -> Tuple[float, datetime]:
|
|
125
|
+
"""
|
|
126
|
+
Get the worst month in terms of return from portfolio snapshots.
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
130
|
+
|
|
131
|
+
Returns:
|
|
132
|
+
Tuple[float, datetime]: The worst monthly return and the corresponding month.
|
|
133
|
+
"""
|
|
134
|
+
|
|
135
|
+
monthly_returns = get_monthly_returns(snapshots)
|
|
136
|
+
|
|
137
|
+
if not monthly_returns:
|
|
138
|
+
return 0.0, None
|
|
139
|
+
|
|
140
|
+
return min(monthly_returns, key=lambda x: x[0])
|
|
141
|
+
|
|
142
|
+
def get_best_year(
|
|
143
|
+
snapshots: List[PortfolioSnapshot]
|
|
144
|
+
) -> Tuple[float, datetime]:
|
|
145
|
+
"""
|
|
146
|
+
Get the best year in terms of return from portfolio snapshots.
|
|
147
|
+
|
|
148
|
+
Args:
|
|
149
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
150
|
+
|
|
151
|
+
Returns:
|
|
152
|
+
Tuple[float, datetime]: The best yearly return and the corresponding year.
|
|
153
|
+
"""
|
|
154
|
+
|
|
155
|
+
yearly_returns = get_yearly_returns(snapshots)
|
|
156
|
+
|
|
157
|
+
if not yearly_returns:
|
|
158
|
+
return None, None
|
|
159
|
+
|
|
160
|
+
return max(yearly_returns, key=lambda x: x[0])
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
def get_worst_year(
|
|
164
|
+
snapshots: List[PortfolioSnapshot]
|
|
165
|
+
) -> Tuple[float, date]:
|
|
166
|
+
"""
|
|
167
|
+
Get the worst year in terms of return from portfolio snapshots.
|
|
168
|
+
|
|
169
|
+
Args:
|
|
170
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
171
|
+
|
|
172
|
+
Returns:
|
|
173
|
+
Tuple[float, datetime]: The worst yearly return and the corresponding year.
|
|
174
|
+
"""
|
|
175
|
+
|
|
176
|
+
yearly_returns = get_yearly_returns(snapshots)
|
|
177
|
+
|
|
178
|
+
if not yearly_returns:
|
|
179
|
+
return None, None
|
|
180
|
+
|
|
181
|
+
return min(yearly_returns, key=lambda x: x[0])
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
def get_average_monthly_return(snapshots: List[PortfolioSnapshot]) -> float:
|
|
185
|
+
"""
|
|
186
|
+
Calculate the average monthly return from portfolio snapshots.
|
|
187
|
+
|
|
188
|
+
The average monthly return is calculated as the mean of all monthly returns.
|
|
189
|
+
|
|
190
|
+
Args:
|
|
191
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
192
|
+
|
|
193
|
+
Returns:
|
|
194
|
+
float: The average monthly return as a percentage.
|
|
195
|
+
"""
|
|
196
|
+
|
|
197
|
+
monthly_returns = get_monthly_returns(snapshots)
|
|
198
|
+
|
|
199
|
+
if not monthly_returns:
|
|
200
|
+
return 0.0
|
|
201
|
+
|
|
202
|
+
return sum(r for r, _ in monthly_returns) / len(monthly_returns)
|
|
203
|
+
|
|
204
|
+
def get_average_monthly_return_winning_months(snapshots: List[PortfolioSnapshot]) -> float:
|
|
205
|
+
"""
|
|
206
|
+
Calculate the average monthly return from winning months in portfolio snapshots.
|
|
207
|
+
|
|
208
|
+
The average monthly return is calculated as the mean of all monthly returns
|
|
209
|
+
where the return is positive.
|
|
210
|
+
|
|
211
|
+
Args:
|
|
212
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
213
|
+
|
|
214
|
+
Returns:
|
|
215
|
+
float: The average monthly return from winning months as a percentage.
|
|
216
|
+
"""
|
|
217
|
+
|
|
218
|
+
monthly_returns = get_monthly_returns(snapshots)
|
|
219
|
+
winning_months = [r for r, _ in monthly_returns if r > 0]
|
|
220
|
+
|
|
221
|
+
if not winning_months:
|
|
222
|
+
return 0.0
|
|
223
|
+
|
|
224
|
+
return sum(winning_months) / len(winning_months)
|
|
225
|
+
|
|
226
|
+
def get_average_monthly_return_losing_months(snapshots: List[PortfolioSnapshot]) -> float:
|
|
227
|
+
"""
|
|
228
|
+
Calculate the average monthly return from losing months in portfolio snapshots.
|
|
229
|
+
|
|
230
|
+
The average monthly return is calculated as the mean of all monthly returns
|
|
231
|
+
where the return is negative.
|
|
232
|
+
|
|
233
|
+
Args:
|
|
234
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
235
|
+
|
|
236
|
+
Returns:
|
|
237
|
+
float: The average monthly return from losing months as a percentage.
|
|
238
|
+
"""
|
|
239
|
+
|
|
240
|
+
monthly_returns = get_monthly_returns(snapshots)
|
|
241
|
+
losing_months = [r for r, _ in monthly_returns if r < 0]
|
|
242
|
+
|
|
243
|
+
if not losing_months:
|
|
244
|
+
return 0.0
|
|
245
|
+
|
|
246
|
+
return sum(losing_months) / len(losing_months)
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
def get_average_yearly_return(snapshots: List[PortfolioSnapshot]) -> float:
|
|
250
|
+
"""
|
|
251
|
+
Calculate the average yearly return from portfolio snapshots.
|
|
252
|
+
|
|
253
|
+
The average yearly return is calculated as the mean of all yearly returns.
|
|
254
|
+
|
|
255
|
+
Args:
|
|
256
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
257
|
+
|
|
258
|
+
Returns:
|
|
259
|
+
float: The average yearly return as a percentage.
|
|
260
|
+
"""
|
|
261
|
+
|
|
262
|
+
yearly_returns = get_yearly_returns(snapshots)
|
|
263
|
+
|
|
264
|
+
if not yearly_returns:
|
|
265
|
+
return 0.0
|
|
266
|
+
|
|
267
|
+
return sum(r for r, _ in yearly_returns) / len(yearly_returns)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
def get_total_return(
|
|
271
|
+
snapshots: List[PortfolioSnapshot]
|
|
272
|
+
) -> Tuple[float, float]:
|
|
273
|
+
"""
|
|
274
|
+
Calculate the total return from portfolio snapshots.
|
|
275
|
+
|
|
276
|
+
The total return is calculated as the percentage change in portfolio value
|
|
277
|
+
from the first snapshot to the last snapshot.
|
|
278
|
+
|
|
279
|
+
Args:
|
|
280
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
281
|
+
|
|
282
|
+
Returns:
|
|
283
|
+
Tuple[Float, Float]: First number is the absolute return and the
|
|
284
|
+
second number is the percentage total return
|
|
285
|
+
"""
|
|
286
|
+
|
|
287
|
+
if not snapshots or len(snapshots) < 2:
|
|
288
|
+
return 0.0, 0.0
|
|
289
|
+
|
|
290
|
+
initial_value = snapshots[0].total_value
|
|
291
|
+
final_value = snapshots[-1].total_value
|
|
292
|
+
|
|
293
|
+
if initial_value == 0:
|
|
294
|
+
return 0.0, 0.0
|
|
295
|
+
|
|
296
|
+
absolute_return = final_value - initial_value
|
|
297
|
+
percentage = (absolute_return / initial_value)
|
|
298
|
+
return absolute_return, percentage
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
def get_total_loss(
|
|
302
|
+
snapshots: List[PortfolioSnapshot]
|
|
303
|
+
) -> Tuple[float, float]:
|
|
304
|
+
"""
|
|
305
|
+
Calculate the total loss from portfolio snapshots.
|
|
306
|
+
|
|
307
|
+
The total loss is calculated as the percentage change in portfolio value
|
|
308
|
+
from the first snapshot to the last snapshot, only if there is a loss.
|
|
309
|
+
|
|
310
|
+
Args:
|
|
311
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
312
|
+
|
|
313
|
+
Returns:
|
|
314
|
+
Tuple[Float, Float]: First number is the absolute loss and the
|
|
315
|
+
second number is the percentage total loss
|
|
316
|
+
"""
|
|
317
|
+
|
|
318
|
+
if not snapshots or len(snapshots) < 2:
|
|
319
|
+
return 0.0, 0.0
|
|
320
|
+
|
|
321
|
+
initial_value = snapshots[0].total_value
|
|
322
|
+
final_value = snapshots[-1].total_value
|
|
323
|
+
|
|
324
|
+
if initial_value == 0:
|
|
325
|
+
return 0.0, 0.0
|
|
326
|
+
|
|
327
|
+
absolute_return = final_value - initial_value
|
|
328
|
+
|
|
329
|
+
if absolute_return >= 0:
|
|
330
|
+
return 0.0, 0.0
|
|
331
|
+
|
|
332
|
+
percentage = (absolute_return / initial_value)
|
|
333
|
+
return absolute_return, percentage
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
def get_total_growth(
|
|
337
|
+
snapshots: List[PortfolioSnapshot]
|
|
338
|
+
) -> Tuple[float, float]:
|
|
339
|
+
"""
|
|
340
|
+
Calculate the total growth from portfolio snapshots.
|
|
341
|
+
|
|
342
|
+
The total return is calculated as the percentage change in portfolio value
|
|
343
|
+
from the first snapshot to the last snapshot added to the initial value.
|
|
344
|
+
|
|
345
|
+
Args:
|
|
346
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
347
|
+
|
|
348
|
+
Returns:
|
|
349
|
+
Tuple[Float, Float]: First number is the absolute return and the
|
|
350
|
+
second number is the percentage total return
|
|
351
|
+
"""
|
|
352
|
+
|
|
353
|
+
if not snapshots or len(snapshots) < 2:
|
|
354
|
+
return 0.0, 0.0
|
|
355
|
+
|
|
356
|
+
initial_value = snapshots[0].total_value
|
|
357
|
+
final_value = snapshots[-1].total_value
|
|
358
|
+
|
|
359
|
+
if initial_value == 0:
|
|
360
|
+
return 0.0, 0.0
|
|
361
|
+
|
|
362
|
+
growth = final_value - initial_value
|
|
363
|
+
growth_percentage = (growth / initial_value)
|
|
364
|
+
return growth, growth_percentage
|
|
365
|
+
|
|
366
|
+
|
|
367
|
+
def get_percentage_winning_years(snapshots: List[PortfolioSnapshot]) -> float:
|
|
368
|
+
"""
|
|
369
|
+
Calculate the percentage of winning years from portfolio snapshots.
|
|
370
|
+
|
|
371
|
+
A winning year is defined as a year where the portfolio value at the end
|
|
372
|
+
of the year is greater than at the start of the year.
|
|
373
|
+
|
|
374
|
+
Args:
|
|
375
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
376
|
+
|
|
377
|
+
Returns:
|
|
378
|
+
float: The percentage of winning years.
|
|
379
|
+
"""
|
|
380
|
+
|
|
381
|
+
yearly_returns = get_yearly_returns(snapshots)
|
|
382
|
+
winning_years = sum(1 for r, _ in yearly_returns if r > 0)
|
|
383
|
+
|
|
384
|
+
if not yearly_returns:
|
|
385
|
+
return 0.0
|
|
386
|
+
|
|
387
|
+
return winning_years / len(yearly_returns)
|
|
388
|
+
|
|
389
|
+
|
|
390
|
+
def get_final_value(snapshots: List[PortfolioSnapshot]) -> float:
|
|
391
|
+
"""
|
|
392
|
+
Calculate the final portfolio value from portfolio snapshots.
|
|
393
|
+
|
|
394
|
+
Args:
|
|
395
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots.
|
|
396
|
+
|
|
397
|
+
Returns:
|
|
398
|
+
float: The final portfolio value.
|
|
399
|
+
"""
|
|
400
|
+
|
|
401
|
+
if not snapshots:
|
|
402
|
+
return 0.0
|
|
403
|
+
|
|
404
|
+
return snapshots[-1].total_value
|
|
405
|
+
|
|
406
|
+
|
|
407
|
+
def get_cumulative_return(snapshots: list[PortfolioSnapshot]) -> float:
|
|
408
|
+
"""
|
|
409
|
+
Calculate cumulative return over the full period of snapshots.
|
|
410
|
+
Returns a single float (e.g., 0.25 for +25%).
|
|
411
|
+
"""
|
|
412
|
+
if len(snapshots) < 2:
|
|
413
|
+
return 0.0
|
|
414
|
+
|
|
415
|
+
# Sort snapshots by date
|
|
416
|
+
snapshots = sorted(snapshots, key=lambda s: s.created_at)
|
|
417
|
+
|
|
418
|
+
start_value = snapshots[0].total_value
|
|
419
|
+
end_value = snapshots[-1].total_value
|
|
420
|
+
|
|
421
|
+
if start_value == 0:
|
|
422
|
+
return 0.0
|
|
423
|
+
|
|
424
|
+
return (end_value / start_value) - 1
|
|
425
|
+
|
|
426
|
+
|
|
427
|
+
def get_cumulative_return_series(
|
|
428
|
+
snapshots: list[PortfolioSnapshot]
|
|
429
|
+
) -> List[Tuple[float, datetime]]:
|
|
430
|
+
"""
|
|
431
|
+
Calculate cumulative returns from a list of PortfolioSnapshot objects.
|
|
432
|
+
|
|
433
|
+
Args:
|
|
434
|
+
snapshots (list[PortfolioSnapshot]): List of snapshots ordered by time.
|
|
435
|
+
|
|
436
|
+
Returns:
|
|
437
|
+
List[Tuple[float, datetime]]: Cumulative returns for each snapshot.
|
|
438
|
+
"""
|
|
439
|
+
|
|
440
|
+
# Ensure snapshots are sorted by date
|
|
441
|
+
snapshots = sorted(snapshots, key=lambda s: s.get_created_at())
|
|
442
|
+
|
|
443
|
+
initial_value = snapshots[0].get_total_value()
|
|
444
|
+
if initial_value == 0:
|
|
445
|
+
raise ValueError("Initial portfolio value cannot be zero.")
|
|
446
|
+
|
|
447
|
+
cumulative_returns = []
|
|
448
|
+
for snap in snapshots:
|
|
449
|
+
cum_return = (snap.get_total_value() / initial_value) - 1
|
|
450
|
+
cumulative_returns.append((cum_return, snap.created_at))
|
|
451
|
+
|
|
452
|
+
return cumulative_returns
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
import yfinance as yf
|
|
2
|
+
import logging
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
logger = logging.getLogger("investing_algorithm_framework")
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def get_risk_free_rate_us():
|
|
9
|
+
"""
|
|
10
|
+
Retrieves the US 10-year Treasury yield from Yahoo Finance.
|
|
11
|
+
|
|
12
|
+
Returns:
|
|
13
|
+
float or None: The latest yield as a decimal (e.g., 0.0423 for 4.23%), or None if unavailable.
|
|
14
|
+
"""
|
|
15
|
+
try:
|
|
16
|
+
ten_year = yf.Ticker("^TNX")
|
|
17
|
+
hist = ten_year.history(period="5d")
|
|
18
|
+
|
|
19
|
+
if hist.empty or "Close" not in hist.columns:
|
|
20
|
+
logger.warning("Risk-free rate data is unavailable or malformed.")
|
|
21
|
+
return None
|
|
22
|
+
|
|
23
|
+
latest_yield = hist["Close"].dropna().iloc[-1] / 100
|
|
24
|
+
return latest_yield
|
|
25
|
+
|
|
26
|
+
except Exception as e:
|
|
27
|
+
logger.warning(f"Could not retrieve risk-free rate: {e}")
|
|
28
|
+
return None
|
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
"""
|
|
2
|
+
The Sharpe Ratio is a widely used risk-adjusted performance metric. It
|
|
3
|
+
measures the excess return per unit of risk (volatility), where risk is
|
|
4
|
+
represented by the standard deviation of returns.
|
|
5
|
+
|
|
6
|
+
| Sharpe Ratio | Interpretation |
|
|
7
|
+
| -------------- | ------------------------------------------- |
|
|
8
|
+
| **< 0** | Bad: Underperforms risk-free asset |
|
|
9
|
+
| **0.0 – 1.0** | Suboptimal: Returns do not justify risk |
|
|
10
|
+
| **1.0 – 1.99** | Acceptable: Reasonable risk-adjusted return |
|
|
11
|
+
| **2.0 – 2.99** | Good: Strong risk-adjusted performance |
|
|
12
|
+
| **3.0+** | Excellent: Exceptional risk-adjusted return |
|
|
13
|
+
|
|
14
|
+
Sharpe Ratio is highly sensitive to the volatility estimate: Inconsistent sampling frequency, short backtests, or low trade frequency can distort it.
|
|
15
|
+
|
|
16
|
+
Different strategies have different risk profiles:
|
|
17
|
+
|
|
18
|
+
High-frequency strategies may have high Sharpe Ratios (>3).
|
|
19
|
+
|
|
20
|
+
Trend-following strategies might have lower Sharpe (1–2) but strong CAGR and Calmar.
|
|
21
|
+
|
|
22
|
+
Use risk-free rate (~4–5% annual currently) if your backtest spans long periods.
|
|
23
|
+
|
|
24
|
+
### 📌 Practical Notes about the implementation:
|
|
25
|
+
|
|
26
|
+
- Use **daily returns** for consistent Sharpe Ratio calculation and **annualize** the result using this formula:
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
Sharpe Ratio Formula:
|
|
30
|
+
Sharpe Ratio = (Mean Daily Return × Periods Per Year - Risk-Free Rate) /
|
|
31
|
+
(Standard Deviation of Daily Returns × sqrt(Periods Per Year))
|
|
32
|
+
|
|
33
|
+
- You can also calculate a **rolling Sharpe Ratio** (e.g., over a 90-day window) to detect changes in performance stability over time.
|
|
34
|
+
|
|
35
|
+
Mean daily return is either based on the real returns from the backtest or the CAGR, depending on the data duration.
|
|
36
|
+
|
|
37
|
+
When do we use actual returns vs CAGR?
|
|
38
|
+
|
|
39
|
+
| Data Duration | Use This Approach | Reason |
|
|
40
|
+
| ------------- | --------------------------------------------------------------- | ----------------------------------------------------------------- |
|
|
41
|
+
| **< 1 year** | Use **CAGR** directly and avoid Sharpe Ratio | Not enough data to estimate volatility robustly |
|
|
42
|
+
| **1–2 years** | Use **CAGR + conservative vol estimate** OR Sharpe with caution | Sharpe may be unstable, consider adding error bars or disclaimers |
|
|
43
|
+
| **> 2 years** | Use **Sharpe Ratio** based on periodic returns | Adequate data to reliably estimate risk-adjusted return |
|
|
44
|
+
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
import math
|
|
48
|
+
from datetime import datetime
|
|
49
|
+
from typing import List, Tuple
|
|
50
|
+
|
|
51
|
+
import numpy as np
|
|
52
|
+
import pandas as pd
|
|
53
|
+
|
|
54
|
+
from investing_algorithm_framework.domain import PortfolioSnapshot
|
|
55
|
+
from .mean_daily_return import get_mean_daily_return
|
|
56
|
+
from .standard_deviation import get_daily_returns_std
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def get_sharpe_ratio(
|
|
60
|
+
snapshots: List[PortfolioSnapshot], risk_free_rate: float,
|
|
61
|
+
) -> float:
|
|
62
|
+
"""
|
|
63
|
+
Calculate the Sharpe Ratio from a backtest report using daily or
|
|
64
|
+
weekly returns.
|
|
65
|
+
|
|
66
|
+
The Sharpe Ratio is calculated as:
|
|
67
|
+
(Annualized Return - Risk-Free Rate) / Annualized Std Dev of Returns
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots
|
|
71
|
+
risk_free_rate (float, optional): Annual risk-free rate as a
|
|
72
|
+
decimal (e.g., 0.047 for 4.7%).
|
|
73
|
+
|
|
74
|
+
Returns:
|
|
75
|
+
float: The Sharpe Ratio.
|
|
76
|
+
"""
|
|
77
|
+
snapshots = sorted(snapshots, key=lambda s: s.created_at)
|
|
78
|
+
mean_daily_return = get_mean_daily_return(snapshots)
|
|
79
|
+
std_daily_return = get_daily_returns_std(snapshots)
|
|
80
|
+
|
|
81
|
+
if std_daily_return == 0:
|
|
82
|
+
return float('nan') # Avoid division by zero
|
|
83
|
+
|
|
84
|
+
# Formula: Sharpe Ratio = (Mean Daily Return × Periods Per Year - Risk-Free Rate) /
|
|
85
|
+
# (Standard Deviation of Daily Returns × sqrt(Periods Per Year))
|
|
86
|
+
return (mean_daily_return * 365 - risk_free_rate) / \
|
|
87
|
+
(std_daily_return * math.sqrt(365))
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def get_rolling_sharpe_ratio(
|
|
91
|
+
snapshots: List[PortfolioSnapshot], risk_free_rate: float
|
|
92
|
+
) -> List[Tuple[float, datetime]]:
|
|
93
|
+
"""
|
|
94
|
+
Calculate the rolling Sharpe Ratio over a 365-day window.
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
snapshots (List[PortfolioSnapshot]): Time-sorted list of snapshots.
|
|
98
|
+
risk_free_rate (float): Annualized risk-free rate (e.g., 0.03 for 3%).
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
List[Tuple[float, datetime]]: List of (sharpe_ratio, snapshot_date).
|
|
102
|
+
"""
|
|
103
|
+
data = [(s.created_at, s.total_value) for s in snapshots]
|
|
104
|
+
df = pd.DataFrame(data, columns=["created_at", "total_value"])
|
|
105
|
+
df['created_at'] = pd.to_datetime(df['created_at'])
|
|
106
|
+
df = df.sort_values('created_at').drop_duplicates('created_at')\
|
|
107
|
+
.set_index('created_at')
|
|
108
|
+
|
|
109
|
+
# Resample to daily frequency using last value of the day
|
|
110
|
+
daily_df = df.resample('1D').last().dropna()
|
|
111
|
+
|
|
112
|
+
# Returns as percentage change
|
|
113
|
+
returns_s = daily_df['total_value'].pct_change().dropna()
|
|
114
|
+
|
|
115
|
+
# Rolling Annualised Sharpe
|
|
116
|
+
rolling = returns_s.rolling(window=365)
|
|
117
|
+
rolling_sharpe_s = np.sqrt(365) * (
|
|
118
|
+
rolling.mean() / rolling.std()
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
# Ensure chronological order
|
|
122
|
+
snapshots = sorted(snapshots, key=lambda s: s.created_at)
|
|
123
|
+
|
|
124
|
+
result = []
|
|
125
|
+
for date, sharpe in rolling_sharpe_s.items():
|
|
126
|
+
|
|
127
|
+
if pd.isna(sharpe):
|
|
128
|
+
result.append((sharpe, date))
|
|
129
|
+
continue
|
|
130
|
+
|
|
131
|
+
# Find the corresponding snapshot
|
|
132
|
+
snapshot = next((s for s in snapshots if s.created_at == date), None)
|
|
133
|
+
|
|
134
|
+
if snapshot:
|
|
135
|
+
result.append((sharpe, snapshot.created_at))
|
|
136
|
+
|
|
137
|
+
return result
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
"""
|
|
2
|
+
The Sortino Ratio is a risk-adjusted performance metric that tells you how
|
|
3
|
+
much return you're getting per unit of downside risk — a more nuanced
|
|
4
|
+
alternative to the Sharpe Ratio, especially when returns are not
|
|
5
|
+
symmetrically distributed.
|
|
6
|
+
|
|
7
|
+
| **Sortino Ratio** | **Interpretation** |
|
|
8
|
+
|-------------------|----------------------------------------------------------------------|
|
|
9
|
+
| **< 0** | 🚫 Bad — Portfolio underperforms the risk-free rate with downside risk |
|
|
10
|
+
| **0 to 1** | ⚠️ Suboptimal — Low excess return relative to downside risk |
|
|
11
|
+
| **1 to 2** | ✅ Acceptable/Good — Reasonable performance for most portfolios |
|
|
12
|
+
| **2 to 3** | 💪 Strong — Very good risk-adjusted returns |
|
|
13
|
+
| **> 3** | 🌟 Excellent — Rare, may indicate exceptional strategy or overfitting |
|
|
14
|
+
|
|
15
|
+
Formula:
|
|
16
|
+
Sortino Ratio = (Mean Daily Return × Periods Per Year - Risk-Free Rate) /
|
|
17
|
+
(Downside Standard Deviation of Daily Returns × sqrt(Periods Per Year))
|
|
18
|
+
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
from typing import Optional
|
|
22
|
+
|
|
23
|
+
import math
|
|
24
|
+
import numpy as np
|
|
25
|
+
from typing import List
|
|
26
|
+
from investing_algorithm_framework.domain import PortfolioSnapshot
|
|
27
|
+
from .mean_daily_return import get_mean_daily_return
|
|
28
|
+
from .risk_free_rate import get_risk_free_rate_us
|
|
29
|
+
from .standard_deviation import get_downside_std_of_daily_returns
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def get_sortino_ratio(
|
|
33
|
+
snapshots: List[PortfolioSnapshot], risk_free_rate: float
|
|
34
|
+
) -> float:
|
|
35
|
+
"""
|
|
36
|
+
Calculate the Sortino Ratio for a given report.
|
|
37
|
+
|
|
38
|
+
The formula for Sortino Ratio is:
|
|
39
|
+
Sortino Ratio = (Annualized Return - Risk-Free Rate) / Downside Standard Deviation
|
|
40
|
+
|
|
41
|
+
Where:
|
|
42
|
+
- Annualized Return is the CAGR of the investment
|
|
43
|
+
- Risk-Free Rate is the return of a risk-free asset (e.g. treasury bills)
|
|
44
|
+
- Downside Standard Deviation is the standard deviation of negative returns
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
snapshots (List[PortfolioSnapshot]): List of portfolio snapshots
|
|
48
|
+
from the backtest report.
|
|
49
|
+
risk_free_rate (float): Annual risk-free rate as a decimal
|
|
50
|
+
(e.g., 0.047 for 4.7%).
|
|
51
|
+
|
|
52
|
+
Returns:
|
|
53
|
+
float: The Sortino Ratio.
|
|
54
|
+
"""
|
|
55
|
+
snapshots = sorted(snapshots, key=lambda s: s.created_at)
|
|
56
|
+
|
|
57
|
+
if not snapshots:
|
|
58
|
+
return float('inf')
|
|
59
|
+
|
|
60
|
+
mean_daily_return = get_mean_daily_return(snapshots)
|
|
61
|
+
std_downside_daily_return = get_downside_std_of_daily_returns(snapshots)
|
|
62
|
+
|
|
63
|
+
if std_downside_daily_return == 0:
|
|
64
|
+
return float('nan') # or 0.0, depending on preference
|
|
65
|
+
|
|
66
|
+
# Formula: Sharpe Ratio = (Mean Daily Return × Periods Per Year - Risk-Free Rate) /
|
|
67
|
+
# (Standard Deviation of Daily Returns × sqrt(Periods Per Year))
|
|
68
|
+
ratio = (mean_daily_return * 365 - risk_free_rate) / \
|
|
69
|
+
(std_downside_daily_return * math.sqrt(365))
|
|
70
|
+
|
|
71
|
+
if np.float64("inf") == ratio or np.float64("-inf") == ratio:
|
|
72
|
+
return float('inf')
|
|
73
|
+
|
|
74
|
+
return ratio if not np.isnan(ratio) else 0.0
|