ins-pricing 0.4.4__py3-none-any.whl → 0.4.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -32,6 +32,7 @@ class ConfigBuilder:
32
32
  "save_preprocess": False,
33
33
  "preprocess_artifact_path": None,
34
34
  "bo_sample_limit": None,
35
+ "build_oht": True,
35
36
  "cache_predictions": False,
36
37
  "prediction_cache_dir": None,
37
38
  "prediction_cache_format": "parquet",
@@ -0,0 +1,67 @@
1
+ # Modelling
2
+
3
+ This directory contains reusable training tooling and frameworks centered on BayesOpt.
4
+
5
+ ## Key locations
6
+
7
+ - `core/bayesopt/` - core training/tuning package
8
+ - `explain/` - explainability helpers
9
+ - `plotting/` - plotting utilities
10
+ - `ins_pricing/cli/` - CLI entry points
11
+ - `examples/` - example configs and notebooks (repo only)
12
+
13
+ ## Common usage
14
+
15
+ - CLI training: `python ins_pricing/cli/BayesOpt_entry.py --config-json config_template.json`
16
+ - Notebook API: `from ins_pricing.modelling import BayesOptModel`
17
+
18
+ ## Explainability
19
+
20
+ - CLI: `python ins_pricing/cli/Explain_entry.py --config-json config_explain_template.json`
21
+ - Notebook: `examples/04 Explain_Run.ipynb`
22
+
23
+ ## Loss functions
24
+
25
+ Configure the regression/classification loss with `loss_name` in the BayesOpt config.
26
+
27
+ Supported `loss_name` values:
28
+ - `auto` (default): legacy behavior based on model name
29
+ - `tweedie`: Tweedie deviance
30
+ - `poisson`: Poisson deviance
31
+ - `gamma`: Gamma deviance
32
+ - `mse`: mean squared error
33
+ - `mae`: mean absolute error
34
+
35
+ Mapping summary:
36
+ - Tweedie deviance -> `tweedie`
37
+ - Poisson deviance -> `poisson`
38
+ - Gamma deviance -> `gamma`
39
+ - Mean squared error -> `mse`
40
+ - Mean absolute error -> `mae`
41
+ - Classification log loss -> `logloss` (classification only)
42
+ - Classification BCE -> `bce` (classification only)
43
+
44
+ Classification tasks:
45
+ - `loss_name` can be `auto`, `logloss`, or `bce`.
46
+ - Training uses `BCEWithLogits` for torch models; evaluation uses log loss.
47
+
48
+ Where to set `loss_name`:
49
+
50
+ ```json
51
+ {
52
+ "task_type": "regression",
53
+ "loss_name": "mse"
54
+ }
55
+ ```
56
+
57
+ Behavior notes:
58
+ - When `loss_name` is `mse` or `mae`, tuning does not sample Tweedie power.
59
+ - When `loss_name` is `poisson` or `gamma`, power is fixed (1.0 / 2.0).
60
+ - When `loss_name` is `tweedie`, power is sampled as usual.
61
+ - XGBoost objective is selected from the loss name.
62
+
63
+ ## Notes
64
+
65
+ - Models load from `output_dir/model` by default (override with `explain.model_dir`).
66
+ - Training outputs are written to `plot/`, `Results/`, and `model/` under `output_dir`.
67
+ - Keep large data and secrets outside the repo; use environment variables or `.env` files.
@@ -0,0 +1,59 @@
1
+ # BayesOpt
2
+
3
+ BayesOpt is the training/tuning core for GLM, XGBoost, ResNet, FT-Transformer, and GNN workflows.
4
+ It supports JSON-driven CLI runs and a Python API for notebooks/scripts.
5
+
6
+ ## Recommended API (config-based)
7
+
8
+ ```python
9
+ from ins_pricing.modelling.core.bayesopt import BayesOptConfig
10
+ from ins_pricing.modelling import BayesOptModel
11
+
12
+ config = BayesOptConfig(
13
+ model_nme="my_model",
14
+ resp_nme="target",
15
+ weight_nme="weight",
16
+ factor_nmes=["f1", "f2"],
17
+ cate_list=["f2"],
18
+ task_type="regression",
19
+ epochs=50,
20
+ output_dir="./Results",
21
+ )
22
+
23
+ model = BayesOptModel(train_data, test_data, config=config)
24
+ model.optimize_model("xgb", max_evals=50)
25
+ ```
26
+
27
+ ## Load config from file
28
+
29
+ ```python
30
+ from ins_pricing.modelling.core.bayesopt import BayesOptConfig
31
+ from ins_pricing.modelling import BayesOptModel
32
+
33
+ config = BayesOptConfig.from_file("config.json")
34
+ model = BayesOptModel(train_data, test_data, config=config)
35
+ ```
36
+
37
+ ## CLI entry
38
+
39
+ ```bash
40
+ python ins_pricing/cli/BayesOpt_entry.py --config-json config_template.json
41
+ ```
42
+
43
+ ## FT roles
44
+
45
+ - `model`: FT is a prediction model (writes `pred_ft`).
46
+ - `embedding`: FT trains with labels but exports embeddings (`pred_<prefix>_*`).
47
+ - `unsupervised_embedding`: FT trains without labels and exports embeddings.
48
+
49
+ ## Output layout
50
+
51
+ `output_dir/` contains:
52
+ - `plot/` plots and diagnostics
53
+ - `Results/` metrics, params, and snapshots
54
+ - `model/` saved models
55
+
56
+ ## Notes
57
+
58
+ - Relative paths in config are resolved from the config file directory.
59
+ - For multi-GPU, use `torchrun` and set `runner.nproc_per_node` in config.
@@ -97,6 +97,7 @@ class BayesOptConfig:
97
97
  use_gnn_ddp: Use DDP for GNN
98
98
  ft_role: FT-Transformer role ('model', 'embedding', 'unsupervised_embedding')
99
99
  cv_strategy: CV strategy ('random', 'group', 'time', 'stratified')
100
+ build_oht: Whether to build one-hot encoded features (default True)
100
101
 
101
102
  Example:
102
103
  >>> config = BayesOptConfig(
@@ -192,6 +193,7 @@ class BayesOptConfig:
192
193
  preprocess_artifact_path: Optional[str] = None
193
194
  plot_path_style: str = "nested"
194
195
  bo_sample_limit: Optional[int] = None
196
+ build_oht: bool = True
195
197
  cache_predictions: bool = False
196
198
  prediction_cache_dir: Optional[str] = None
197
199
  prediction_cache_format: str = "parquet"
@@ -465,6 +467,16 @@ class DatasetPreprocessor:
465
467
  self.num_features = [
466
468
  nme for nme in cfg.factor_nmes if nme not in cate_list]
467
469
 
470
+ build_oht = bool(getattr(cfg, "build_oht", True))
471
+ if not build_oht:
472
+ print("[Preprocess] build_oht=False; skip one-hot features.", flush=True)
473
+ self.train_oht_data = None
474
+ self.test_oht_data = None
475
+ self.train_oht_scl_data = None
476
+ self.test_oht_scl_data = None
477
+ self.var_nmes = list(cfg.factor_nmes)
478
+ return self
479
+
468
480
  # Memory optimization: Single copy + in-place operations
469
481
  train_oht = self.train_data[cfg.factor_nmes +
470
482
  [cfg.weight_nme] + [cfg.resp_nme]].copy()
@@ -201,6 +201,8 @@ class BayesOptModel(BayesOptPlottingMixin, BayesOptExplainMixin):
201
201
  raise ValueError("weight_nme is required when not using config parameter")
202
202
 
203
203
  # Infer categorical features if needed
204
+ # Only use user-specified categorical list for one-hot; do not auto-infer.
205
+ user_cate_list = [] if cate_list is None else list(cate_list)
204
206
  inferred_factors, inferred_cats = infer_factor_and_cate_list(
205
207
  train_df=train_data,
206
208
  test_df=test_data,
@@ -208,7 +210,7 @@ class BayesOptModel(BayesOptPlottingMixin, BayesOptExplainMixin):
208
210
  weight_nme=weight_nme,
209
211
  binary_resp_nme=binary_resp_nme,
210
212
  factor_nmes=factor_nmes,
211
- cate_list=cate_list,
213
+ cate_list=user_cate_list,
212
214
  infer_categorical_max_unique=int(infer_categorical_max_unique),
213
215
  infer_categorical_max_ratio=float(infer_categorical_max_ratio),
214
216
  )
ins_pricing/setup.py CHANGED
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name="ins_pricing",
6
- version="0.4.4",
6
+ version="0.4.5",
7
7
  description="Reusable modelling, pricing, governance, and reporting utilities.",
8
8
  author="meishi125478",
9
9
  license="Proprietary",
@@ -1,162 +1,182 @@
1
- Metadata-Version: 2.4
2
- Name: ins_pricing
3
- Version: 0.4.4
4
- Summary: Reusable modelling, pricing, governance, and reporting utilities.
5
- Author: meishi125478
6
- License: Proprietary
7
- Keywords: pricing,insurance,bayesopt,ml
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: Programming Language :: Python :: 3 :: Only
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: License :: Other/Proprietary License
12
- Classifier: Operating System :: OS Independent
13
- Classifier: Intended Audience :: Developers
14
- Requires-Python: >=3.9
15
- Description-Content-Type: text/markdown
16
- Requires-Dist: numpy>=1.20
17
- Requires-Dist: pandas>=1.4
18
- Provides-Extra: bayesopt
19
- Requires-Dist: torch>=1.13; extra == "bayesopt"
20
- Requires-Dist: optuna>=3.0; extra == "bayesopt"
21
- Requires-Dist: xgboost>=1.6; extra == "bayesopt"
22
- Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
23
- Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
24
- Requires-Dist: joblib>=1.2; extra == "bayesopt"
25
- Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
26
- Provides-Extra: plotting
27
- Requires-Dist: matplotlib>=3.5; extra == "plotting"
28
- Requires-Dist: scikit-learn>=1.1; extra == "plotting"
29
- Provides-Extra: explain
30
- Requires-Dist: torch>=1.13; extra == "explain"
31
- Requires-Dist: shap>=0.41; extra == "explain"
32
- Requires-Dist: scikit-learn>=1.1; extra == "explain"
33
- Provides-Extra: geo
34
- Requires-Dist: contextily>=1.3; extra == "geo"
35
- Requires-Dist: matplotlib>=3.5; extra == "geo"
36
- Provides-Extra: gnn
37
- Requires-Dist: torch>=1.13; extra == "gnn"
38
- Requires-Dist: pynndescent>=0.5; extra == "gnn"
39
- Requires-Dist: torch-geometric>=2.3; extra == "gnn"
40
- Provides-Extra: all
41
- Requires-Dist: torch>=1.13; extra == "all"
42
- Requires-Dist: optuna>=3.0; extra == "all"
43
- Requires-Dist: xgboost>=1.6; extra == "all"
44
- Requires-Dist: scikit-learn>=1.1; extra == "all"
45
- Requires-Dist: statsmodels>=0.13; extra == "all"
46
- Requires-Dist: joblib>=1.2; extra == "all"
47
- Requires-Dist: matplotlib>=3.5; extra == "all"
48
- Requires-Dist: shap>=0.41; extra == "all"
49
- Requires-Dist: contextily>=1.3; extra == "all"
50
- Requires-Dist: pynndescent>=0.5; extra == "all"
51
- Requires-Dist: torch-geometric>=2.3; extra == "all"
52
-
53
- # Insurance-Pricing
54
-
55
- A reusable toolkit for insurance modeling, pricing, governance, and reporting.
56
-
57
- ## Overview
58
-
59
- Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning model training, pricing calculations, and model governance workflows in the insurance industry.
60
-
61
- ### Core Modules
62
-
63
- | Module | Description |
64
- |--------|-------------|
65
- | **modelling** | ML model training (GLM, XGBoost, ResNet, FT-Transformer, GNN) and model interpretability (SHAP, permutation importance) |
66
- | **pricing** | Factor table construction, numeric binning, premium calibration, exposure calculation, PSI monitoring |
67
- | **production** | Model prediction, batch scoring, data drift detection, production metrics monitoring |
68
- | **governance** | Model registry, version management, approval workflows, audit logging |
69
- | **reporting** | Report generation (Markdown format), report scheduling |
70
- | **utils** | Data validation, performance profiling, device management, logging configuration |
71
-
72
- ### Quick Start
73
-
74
- ```python
75
- # Model training with Bayesian optimization
76
- from ins_pricing import bayesopt as ropt
77
-
78
- model = ropt.BayesOptModel(
79
- train_data, test_data,
80
- model_name='my_model',
81
- resp_nme='target',
82
- weight_nme='weight',
83
- factor_nmes=feature_list,
84
- cate_list=categorical_features,
85
- )
86
- model.bayesopt_xgb(max_evals=100) # Train XGBoost
87
- model.bayesopt_resnet(max_evals=50) # Train ResNet
88
- model.bayesopt_ft(max_evals=50) # Train FT-Transformer
89
-
90
- # Pricing: build factor table
91
- from ins_pricing.pricing import build_factor_table
92
- factors = build_factor_table(
93
- df,
94
- factor_col='age_band',
95
- loss_col='claim_amount',
96
- exposure_col='exposure',
97
- )
98
-
99
- # Production: batch scoring
100
- from ins_pricing.production import batch_score
101
- scores = batch_score(model.trainers['xgb'].predict, df)
102
-
103
- # Model governance
104
- from ins_pricing.governance import ModelRegistry
105
- registry = ModelRegistry('models.json')
106
- registry.register(model_name, version, metrics=metrics)
107
- ```
108
-
109
- ### Project Structure
110
-
111
- ```
112
- ins_pricing/
113
- ├── cli/ # Command-line entry points
114
- ├── modelling/
115
- │ ├── core/bayesopt/ # ML model training core
116
- │ ├── explain/ # Model interpretability
117
- │ └── plotting/ # Model visualization
118
- ├── pricing/ # Insurance pricing module
119
- ├── production/ # Production deployment module
120
- ├── governance/ # Model governance
121
- ├── reporting/ # Report generation
122
- ├── utils/ # Utilities
123
- └── tests/ # Test suite
124
- ```
125
-
126
- ### Installation
127
-
128
- ```bash
129
- # Basic installation
130
- pip install ins_pricing
131
-
132
- # Full installation (all optional dependencies)
133
- pip install ins_pricing[all]
134
-
135
- # Install specific extras
136
- pip install ins_pricing[bayesopt] # Model training
137
- pip install ins_pricing[explain] # Model explanation
138
- pip install ins_pricing[plotting] # Visualization
139
- pip install ins_pricing[gnn] # Graph neural networks
140
- ```
141
-
142
- #### Multi-platform & GPU installation notes
143
-
144
- - **PyTorch (CPU/GPU/MPS)**: Install the correct PyTorch build for your platform/GPU first (CUDA on
145
- Linux/Windows, ROCm on supported AMD platforms, or MPS on Apple Silicon). Then install the
146
- optional extras you need (e.g., `bayesopt`, `explain`, or `gnn`). This avoids pip pulling a
147
- mismatched wheel.
148
- - **Torch Geometric (GNN)**: `torch-geometric` often requires platform-specific wheels (e.g.,
149
- `torch-scatter`, `torch-sparse`). Follow the official PyG installation instructions for your
150
- CUDA/ROCm/CPU environment, then install `ins_pricing[gnn]`.
151
- - **Multi-GPU**: Training code will use CUDA when available and can enable multi-GPU via
152
- `torch.distributed`/`DataParallel` where supported. On Windows, CUDA DDP is not supported and will
153
- fall back to single-GPU or DataParallel where possible.
154
-
155
- ### Requirements
156
-
157
- - Python >= 3.9
158
- - Core dependencies: numpy >= 1.20, pandas >= 1.4
159
-
160
- ### License
161
-
162
- Proprietary
1
+ Metadata-Version: 2.4
2
+ Name: ins_pricing
3
+ Version: 0.4.5
4
+ Summary: Reusable modelling, pricing, governance, and reporting utilities.
5
+ Author: meishi125478
6
+ License: Proprietary
7
+ Keywords: pricing,insurance,bayesopt,ml
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Programming Language :: Python :: 3 :: Only
10
+ Classifier: Programming Language :: Python :: 3.9
11
+ Classifier: License :: Other/Proprietary License
12
+ Classifier: Operating System :: OS Independent
13
+ Classifier: Intended Audience :: Developers
14
+ Requires-Python: >=3.9
15
+ Description-Content-Type: text/markdown
16
+ Requires-Dist: numpy>=1.20
17
+ Requires-Dist: pandas>=1.4
18
+ Provides-Extra: bayesopt
19
+ Requires-Dist: torch>=1.13; extra == "bayesopt"
20
+ Requires-Dist: optuna>=3.0; extra == "bayesopt"
21
+ Requires-Dist: xgboost>=1.6; extra == "bayesopt"
22
+ Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
23
+ Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
24
+ Requires-Dist: joblib>=1.2; extra == "bayesopt"
25
+ Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
26
+ Provides-Extra: plotting
27
+ Requires-Dist: matplotlib>=3.5; extra == "plotting"
28
+ Requires-Dist: scikit-learn>=1.1; extra == "plotting"
29
+ Provides-Extra: explain
30
+ Requires-Dist: torch>=1.13; extra == "explain"
31
+ Requires-Dist: shap>=0.41; extra == "explain"
32
+ Requires-Dist: scikit-learn>=1.1; extra == "explain"
33
+ Provides-Extra: geo
34
+ Requires-Dist: contextily>=1.3; extra == "geo"
35
+ Requires-Dist: matplotlib>=3.5; extra == "geo"
36
+ Provides-Extra: gnn
37
+ Requires-Dist: torch>=1.13; extra == "gnn"
38
+ Requires-Dist: pynndescent>=0.5; extra == "gnn"
39
+ Requires-Dist: torch-geometric>=2.3; extra == "gnn"
40
+ Provides-Extra: all
41
+ Requires-Dist: torch>=1.13; extra == "all"
42
+ Requires-Dist: optuna>=3.0; extra == "all"
43
+ Requires-Dist: xgboost>=1.6; extra == "all"
44
+ Requires-Dist: scikit-learn>=1.1; extra == "all"
45
+ Requires-Dist: statsmodels>=0.13; extra == "all"
46
+ Requires-Dist: joblib>=1.2; extra == "all"
47
+ Requires-Dist: matplotlib>=3.5; extra == "all"
48
+ Requires-Dist: shap>=0.41; extra == "all"
49
+ Requires-Dist: contextily>=1.3; extra == "all"
50
+ Requires-Dist: pynndescent>=0.5; extra == "all"
51
+ Requires-Dist: torch-geometric>=2.3; extra == "all"
52
+
53
+ # Insurance-Pricing
54
+
55
+ A reusable toolkit for insurance modeling, pricing, governance, and reporting.
56
+
57
+ ## Overview
58
+
59
+ Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning
60
+ model training, pricing calculations, and model governance workflows in the insurance industry.
61
+
62
+ ### Core Modules
63
+
64
+ | Module | Description |
65
+ |--------|-------------|
66
+ | modelling | ML model training (GLM, XGBoost, ResNet, FT-Transformer, GNN) and model interpretability |
67
+ | pricing | Factor table construction, numeric binning, premium calibration, exposure calculation, PSI monitoring |
68
+ | production | Model prediction, batch scoring, data drift detection, production metrics monitoring |
69
+ | governance | Model registry, version management, approval workflows, audit logging |
70
+ | reporting | Report generation (Markdown format), report scheduling |
71
+ | utils | Data validation, performance profiling, device management, logging configuration |
72
+
73
+ ### Quick Start
74
+
75
+ ```python
76
+ # Model training with Bayesian optimization
77
+ from ins_pricing import bayesopt as ropt
78
+
79
+ model = ropt.BayesOptModel(
80
+ train_data, test_data,
81
+ model_name='my_model',
82
+ resp_nme='target',
83
+ weight_nme='weight',
84
+ factor_nmes=feature_list,
85
+ cate_list=categorical_features,
86
+ )
87
+ model.bayesopt_xgb(max_evals=100) # Train XGBoost
88
+ model.bayesopt_resnet(max_evals=50) # Train ResNet
89
+ model.bayesopt_ft(max_evals=50) # Train FT-Transformer
90
+
91
+ # Pricing: build factor table
92
+ from ins_pricing.pricing import build_factor_table
93
+ factors = build_factor_table(
94
+ df,
95
+ factor_col='age_band',
96
+ loss_col='claim_amount',
97
+ exposure_col='exposure',
98
+ )
99
+
100
+ # Production: batch scoring
101
+ from ins_pricing.production import batch_score
102
+ scores = batch_score(model.trainers['xgb'].predict, df)
103
+
104
+ # Model governance
105
+ from ins_pricing.governance import ModelRegistry
106
+ registry = ModelRegistry('models.json')
107
+ registry.register(model_name, version, metrics=metrics)
108
+ ```
109
+
110
+ ### Project Structure
111
+
112
+ ```
113
+ ins_pricing/
114
+ cli/ # Command-line entry points
115
+ modelling/
116
+ core/bayesopt/ # ML model training core
117
+ explain/ # Model interpretability
118
+ plotting/ # Model visualization
119
+ pricing/ # Insurance pricing module
120
+ production/ # Production deployment module
121
+ governance/ # Model governance
122
+ reporting/ # Report generation
123
+ utils/ # Utilities
124
+ tests/ # Test suite
125
+ ```
126
+
127
+ ### Installation
128
+
129
+ ```bash
130
+ # Basic installation
131
+ pip install ins_pricing
132
+
133
+ # Full installation (all optional dependencies)
134
+ pip install ins_pricing[all]
135
+
136
+ # Install specific extras
137
+ pip install ins_pricing[bayesopt] # Model training
138
+ pip install ins_pricing[explain] # Model explanation
139
+ pip install ins_pricing[plotting] # Visualization
140
+ pip install ins_pricing[gnn] # Graph neural networks
141
+ ```
142
+
143
+ #### Multi-platform and GPU notes
144
+
145
+ - Install the correct PyTorch build for your platform/GPU before installing extras.
146
+ - Torch Geometric requires platform-specific wheels; follow the official PyG install guide.
147
+ - Multi-GPU uses torch.distributed/DataParallel where supported; Windows disables CUDA DDP.
148
+
149
+ ---
150
+ ## PyPI Upload (scripts)
151
+
152
+ This repo includes upload scripts for Windows and Linux/macOS.
153
+
154
+ ### Windows
155
+
156
+ ```cmd
157
+ set TWINE_PASSWORD=your_pypi_token_here
158
+ python -m build
159
+ upload_to_pypi.bat
160
+ ```
161
+
162
+ ### Linux / macOS
163
+
164
+ ```bash
165
+ chmod +x upload_to_pypi.sh
166
+ export TWINE_PASSWORD='your_pypi_token_here'
167
+ python -m build
168
+ ./upload_to_pypi.sh
169
+ ```
170
+
171
+ ### Makefile (if make is available)
172
+
173
+ ```bash
174
+ make build
175
+ make upload
176
+ ```
177
+
178
+ ### Tips
179
+
180
+ - Never commit tokens to version control.
181
+ - Use environment variables or secret managers to store credentials.
182
+ - Test with TestPyPI before publishing when needed.
@@ -1,16 +1,14 @@
1
- ins_pricing/CHANGELOG.md,sha256=5fgGpaLI3kc_JuV3it0yNgMATst5fWEKuNT121Djea8,11633
2
- ins_pricing/README.md,sha256=W4V2xtzM6pyQzwJPvWP7cNn-We9rxM8xrxRlBVQwoY8,3399
3
- ins_pricing/RELEASE_NOTES_0.2.8.md,sha256=KIJzk1jbZbZPKjwnkPSDHO_2Ipv3SP3CzCNDdf07jI0,9331
1
+ ins_pricing/README.md,sha256=lmT3UhGMxWtM_FCmg8elQZIgaFTEhoZYTTv_Iq26eJY,2770
4
2
  ins_pricing/__init__.py,sha256=46j1wCdLVrgrofeBwKl-3NXTxzjbTv-w3KjW-dyKGiY,2622
5
3
  ins_pricing/exceptions.py,sha256=5fZavPV4zNJ7wPC75L215KkHXX9pRrfDAYZOdSKJMGo,4778
6
- ins_pricing/setup.py,sha256=skNhJD6j6gCSzDBOl7RI2YikhLMySbTS1qQ2MHRzJg0,1702
4
+ ins_pricing/setup.py,sha256=gAnzDOPPzmun2x7Is9inR5MX7XE7_bHJc9VIQqGmMNo,1702
7
5
  ins_pricing/cli/BayesOpt_entry.py,sha256=6UBVxu36O3bXn1WC-BBi-l_W9_MqEoHmDGnwwDKNo5Q,1594
8
- ins_pricing/cli/BayesOpt_incremental.py,sha256=_Klr5vvNoq_TbgwrH_T3f0a6cHmA9iVJMViiji6ahJY,35927
6
+ ins_pricing/cli/BayesOpt_incremental.py,sha256=WR2DJSVsCfUvR6_0xc-2vss85CB4m0bIiB_xjRRxqSE,36809
9
7
  ins_pricing/cli/Explain_Run.py,sha256=gEPQjqHiXyXlCTKjUzwSvbAn5_h74ABgb_sEGs-YHVE,664
10
8
  ins_pricing/cli/Explain_entry.py,sha256=xS23x31qRvXqy2Wvo21wbkxmPRLHy77aZbtjY-J59NA,23570
11
9
  ins_pricing/cli/Pricing_Run.py,sha256=qZribQ_ku4NK4oIvlrLJdM-jyyKtIUoCbbvo8Wh_RQ4,711
12
10
  ins_pricing/cli/__init__.py,sha256=F296f1J_tBPv33lDJQ6LaN_CPwMJTMtOuTsMof0dr2o,50
13
- ins_pricing/cli/bayesopt_entry_runner.py,sha256=Cl5_uw_nHxkRESUW_OLjSJaHQMfiXdbitttN7ZS-tVM,53841
11
+ ins_pricing/cli/bayesopt_entry_runner.py,sha256=JERCqHcS50lcA1dIP8RiA-7xsjfIQD8ZXWLyUAq5Nqk,55261
14
12
  ins_pricing/cli/watchdog_run.py,sha256=ehUkN9VqsQkxc6YC_WLanU6Pu-ers-nvPEtCaJ9UsgY,6188
15
13
  ins_pricing/cli/utils/__init__.py,sha256=u3kt1B27OiuOEgw6PQN-fNs9vNiAjdPyybsRQsZkM_I,54
16
14
  ins_pricing/cli/utils/cli_common.py,sha256=CgMnN_0NQQt7Bh5RjClOydz0LzU2TBmIOsFa3KxYQOQ,8254
@@ -19,14 +17,10 @@ ins_pricing/cli/utils/evaluation_context.py,sha256=0zuDOcVzkWiuj4HyAT0psaAfEbSqp
19
17
  ins_pricing/cli/utils/import_resolver.py,sha256=Ut-SBN4F2sw8O7B3GveMoZn4__1IGwljvxC4sLU0tpk,12531
20
18
  ins_pricing/cli/utils/notebook_utils.py,sha256=xjSjn6z4_x2vfX1SV4X_VG0jXdK1KJzWJ5tJ4CHFxy0,12037
21
19
  ins_pricing/cli/utils/run_logging.py,sha256=V3Wh2EV6c1Mo0QTvfe4hl2J4LOR6bdQsT210o__YBWk,3677
22
- ins_pricing/docs/LOSS_FUNCTIONS.md,sha256=PCiHcVHaEpwSLQEXZzusQxojY4UmmTHmVxIpSmacGsI,2381
23
- ins_pricing/docs/modelling/BayesOpt_USAGE.md,sha256=O5A50RT-drWsEhKIooqWJPfTNN1AwB0166MLli0vMvw,40593
24
- ins_pricing/docs/modelling/README.md,sha256=2a7m1dBnacxBKjEV9k16Qj9IPstlwwuis1QxdsMrFmA,1976
25
- ins_pricing/frontend/QUICKSTART.md,sha256=uS5RuuICXt8J7BjPruoGOoAnTBjzgaNpwqemmUqZrZ4,4488
26
- ins_pricing/frontend/README.md,sha256=Dlo4QghAWkawIK_x2P-0hu2Sv2yZTFkduOPxVLe_1qs,12524
20
+ ins_pricing/frontend/README.md,sha256=MKQuVtwpvrOKBJhcz9wgVtMc-jKERYATRNDIj-hA78Y,17551
27
21
  ins_pricing/frontend/__init__.py,sha256=KeL6QbUGAzWKbjGyZi_u7p289Zv5yslRCNZ6wHWY63Q,335
28
22
  ins_pricing/frontend/app.py,sha256=DBrnewX5RUjuJXGEezihZJcDnp-tEeA-fCuTeqAFEqU,38484
29
- ins_pricing/frontend/config_builder.py,sha256=pKeWaC2KD3Slub5sJLetqBJVdBy01dcfmReJuf-8LCo,12230
23
+ ins_pricing/frontend/config_builder.py,sha256=GNeEe7-Xt-WLakKlbdbQOE82ogWWwEFaKQ5LxxZeLFc,12261
30
24
  ins_pricing/frontend/example_config.json,sha256=aDXH9_5bVlIclwMWH5WfgK572LVuraNbj4565o3d71k,741
31
25
  ins_pricing/frontend/example_workflows.py,sha256=7iuFOIhN6l__3AVDkhDU7zvi2oWx_Z9lktpATPM336s,36813
32
26
  ins_pricing/frontend/ft_workflow.py,sha256=CWrviErHEjZ2NPibIbPh69AYKPVkn-mXY7uncPihn-0,11206
@@ -37,17 +31,16 @@ ins_pricing/governance/approval.py,sha256=cjJQjU1ziR-d-9wVSXyMyX6S5zijJqDWERZNxj
37
31
  ins_pricing/governance/audit.py,sha256=f0aw-LaOxH5NGzxwczeLrGMJcxO-JDRn99BpI55KRn4,1040
38
32
  ins_pricing/governance/registry.py,sha256=2uxQL6qMGY5IYWJti9MpaV_auvL--piJaasFrX20ghk,3139
39
33
  ins_pricing/governance/release.py,sha256=ltyFIdeKbwj9fnEDxcQCURaQ5Zc_j0mqXFPNunmX_NQ,4743
34
+ ins_pricing/modelling/README.md,sha256=4q3CykeFcXo5FILGD2EtoX2yYVV0EbrYW-hwgcySBN0,2157
40
35
  ins_pricing/modelling/__init__.py,sha256=0tiXRE3rAwSxHT0dSaosWf_vGd7FpRA_kHW6dclr4PA,2710
41
36
  ins_pricing/modelling/core/BayesOpt.py,sha256=i2tB3c6EeucjKAsHyicGDNU7DVVCTihg-TgSoM1y18E,3332
42
37
  ins_pricing/modelling/core/__init__.py,sha256=bF5OWfK_mfg5P2oz2jid3MGi9uA13fpqKK-DbPkuci0,54
43
38
  ins_pricing/modelling/core/evaluation.py,sha256=wEMWdzs12vPnDo5t183ORMDA6APuc5g6g9Uyfd6GVi8,3905
44
- ins_pricing/modelling/core/bayesopt/PHASE2_REFACTORING_SUMMARY.md,sha256=x8890HLvIZ7q2N0AdYwL1_8lBUl6vClZ9SoEj-BskuQ,11835
45
- ins_pricing/modelling/core/bayesopt/PHASE3_REFACTORING_SUMMARY.md,sha256=B8ZEzaLesU454OaR10Tg50es7t30UB9pxF6GabbNbj0,11804
46
- ins_pricing/modelling/core/bayesopt/REFACTORING_SUMMARY.md,sha256=hJZKXe9-bBGJVN_5c5l8nHQ1X7NK4BbeE-uXQoH0rAM,7479
39
+ ins_pricing/modelling/core/bayesopt/README.md,sha256=vNTYu5Jk425-RpyVZg_W4PRPWBy6pULYlQHks1a0S2Y,1625
47
40
  ins_pricing/modelling/core/bayesopt/__init__.py,sha256=nj6IA0r7D5U5-hYyiwXmcp_bEtoU-hRJ_prdtRmLMg0,2070
48
41
  ins_pricing/modelling/core/bayesopt/config_components.py,sha256=OjRyM1EuSXL9_3THD1nGLRsioJs7lO_ZKVZDkUA3LX8,12156
49
- ins_pricing/modelling/core/bayesopt/config_preprocess.py,sha256=vjxhDuJJm-bYyfphWnsZP_O3Tgtx22WGo80myLCB4cw,21647
50
- ins_pricing/modelling/core/bayesopt/core.py,sha256=1m4pCrPP3iYIfU6QX3j6Eczjwz3-cD4ySzv9bll3PGg,44474
42
+ ins_pricing/modelling/core/bayesopt/config_preprocess.py,sha256=lAsdvLr-H7ajkyRElcKvAQn4ZWEOqkpDqb6ZBsdesfc,22157
43
+ ins_pricing/modelling/core/bayesopt/core.py,sha256=RvnP3yIy-FOQUFdONVfJQxnI7hhNbPTKNQaqhtXd928,44640
51
44
  ins_pricing/modelling/core/bayesopt/model_explain_mixin.py,sha256=jCk1zPpwgwBBCndaq-A0_cQnc4RHueh2p5cAuE9ArTo,11620
52
45
  ins_pricing/modelling/core/bayesopt/model_plotting_mixin.py,sha256=lD0rUvWV4eWatmTzMrmAUm2Flj8uAOa3R9S2JyYV94k,21807
53
46
  ins_pricing/modelling/core/bayesopt/utils.py,sha256=fTDqBHCxsOVte0QhPqnMw8vkefIvkppufIRkt9iHqjU,2852
@@ -131,7 +124,7 @@ ins_pricing/utils/paths.py,sha256=o_tBiclFvBci4cYg9WANwKPxrMcglEdOjDP-EZgGjdQ,87
131
124
  ins_pricing/utils/profiling.py,sha256=kmbykHLcYywlZxAf_aVU8HXID3zOvUcBoO5Q58AijhA,11132
132
125
  ins_pricing/utils/torch_compat.py,sha256=UrRsqx2qboDG8WE0OmxNOi08ojwE-dCxTQh0N2s3Rgw,2441
133
126
  ins_pricing/utils/validation.py,sha256=4Tw9VUJPk0N-WO3YUqZP-xXRl1Xpubkm0vi3WzzZrv4,13348
134
- ins_pricing-0.4.4.dist-info/METADATA,sha256=OIsdS7Kh7LadvJ2EqK_ZVxNqEAtWEU2X3IqvEi2eD4I,6263
135
- ins_pricing-0.4.4.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
136
- ins_pricing-0.4.4.dist-info/top_level.txt,sha256=haZuNQpHKNBEPZx3NjLnHp8pV3I_J9QG8-HyJn00FA0,12
137
- ins_pricing-0.4.4.dist-info/RECORD,,
127
+ ins_pricing-0.4.5.dist-info/METADATA,sha256=hPEBGaROhj_R7RTIT0fc4J5oeVaImalZYp8DNSC0rG8,5891
128
+ ins_pricing-0.4.5.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
129
+ ins_pricing-0.4.5.dist-info/top_level.txt,sha256=haZuNQpHKNBEPZx3NjLnHp8pV3I_J9QG8-HyJn00FA0,12
130
+ ins_pricing-0.4.5.dist-info/RECORD,,