ins-pricing 0.4.0__py3-none-any.whl → 0.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -269,13 +269,16 @@ class TorchTrainerMixin:
269
269
  cpu_mid, cpu_small = base_bs_cpu
270
270
 
271
271
  if self._device_type() == 'cuda':
272
- device_count = torch.cuda.device_count()
272
+ # Only scale batch size by GPU count when DDP is enabled.
273
+ # In single-process (non-DDP) mode, large multi-GPU nodes can
274
+ # still OOM on RAM/VRAM if we scale by device_count.
275
+ device_count = 1
273
276
  if getattr(self, "is_ddp_enabled", False):
274
- device_count = 1
275
- if device_count > 1:
276
- min_bs = min_bs * device_count
277
- print(
278
- f">>> Multi-GPU detected: {device_count} devices. Adjusted min_bs to {min_bs}.")
277
+ device_count = torch.cuda.device_count()
278
+ if device_count > 1:
279
+ min_bs = min_bs * device_count
280
+ print(
281
+ f">>> Multi-GPU detected: {device_count} devices. Adjusted min_bs to {min_bs}.")
279
282
 
280
283
  if N > large_threshold:
281
284
  base_bs = gpu_large * device_count
ins_pricing/setup.py CHANGED
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name="ins_pricing",
6
- version="0.4.0",
6
+ version="0.4.2",
7
7
  description="Reusable modelling, pricing, governance, and reporting utilities.",
8
8
  author="meishi125478",
9
9
  license="Proprietary",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ins_pricing
3
- Version: 0.4.0
3
+ Version: 0.4.2
4
4
  Summary: Reusable modelling, pricing, governance, and reporting utilities.
5
5
  Author: meishi125478
6
6
  License: Proprietary
@@ -3,7 +3,7 @@ ins_pricing/README.md,sha256=W4V2xtzM6pyQzwJPvWP7cNn-We9rxM8xrxRlBVQwoY8,3399
3
3
  ins_pricing/RELEASE_NOTES_0.2.8.md,sha256=KIJzk1jbZbZPKjwnkPSDHO_2Ipv3SP3CzCNDdf07jI0,9331
4
4
  ins_pricing/__init__.py,sha256=46j1wCdLVrgrofeBwKl-3NXTxzjbTv-w3KjW-dyKGiY,2622
5
5
  ins_pricing/exceptions.py,sha256=5fZavPV4zNJ7wPC75L215KkHXX9pRrfDAYZOdSKJMGo,4778
6
- ins_pricing/setup.py,sha256=VG4H2vA9aokEGoafQ1iM9N-G9Qb_OTMOQXbFNCtQigo,1702
6
+ ins_pricing/setup.py,sha256=z5ZF0fvEybSq_iHLYPMCVQhAYqaH1fAoXaM2fCcLDP0,1702
7
7
  ins_pricing/cli/BayesOpt_entry.py,sha256=6UBVxu36O3bXn1WC-BBi-l_W9_MqEoHmDGnwwDKNo5Q,1594
8
8
  ins_pricing/cli/BayesOpt_incremental.py,sha256=_Klr5vvNoq_TbgwrH_T3f0a6cHmA9iVJMViiji6ahJY,35927
9
9
  ins_pricing/cli/Explain_Run.py,sha256=gEPQjqHiXyXlCTKjUzwSvbAn5_h74ABgb_sEGs-YHVE,664
@@ -23,9 +23,9 @@ ins_pricing/docs/LOSS_FUNCTIONS.md,sha256=PCiHcVHaEpwSLQEXZzusQxojY4UmmTHmVxIpSm
23
23
  ins_pricing/docs/modelling/BayesOpt_USAGE.md,sha256=O5A50RT-drWsEhKIooqWJPfTNN1AwB0166MLli0vMvw,40593
24
24
  ins_pricing/docs/modelling/README.md,sha256=2a7m1dBnacxBKjEV9k16Qj9IPstlwwuis1QxdsMrFmA,1976
25
25
  ins_pricing/frontend/QUICKSTART.md,sha256=uS5RuuICXt8J7BjPruoGOoAnTBjzgaNpwqemmUqZrZ4,4488
26
- ins_pricing/frontend/README.md,sha256=LGcaCCz-OyCFfOty-4Poplsy3xgAC2YHMi6Sel-sTSU,11897
26
+ ins_pricing/frontend/README.md,sha256=Dlo4QghAWkawIK_x2P-0hu2Sv2yZTFkduOPxVLe_1qs,12524
27
27
  ins_pricing/frontend/__init__.py,sha256=KeL6QbUGAzWKbjGyZi_u7p289Zv5yslRCNZ6wHWY63Q,335
28
- ins_pricing/frontend/app.py,sha256=tG3-cjxhtnbi2LZW2OcfklrVxbGRjiW2-HVsLee9FxY,36377
28
+ ins_pricing/frontend/app.py,sha256=DBrnewX5RUjuJXGEezihZJcDnp-tEeA-fCuTeqAFEqU,38484
29
29
  ins_pricing/frontend/config_builder.py,sha256=pKeWaC2KD3Slub5sJLetqBJVdBy01dcfmReJuf-8LCo,12230
30
30
  ins_pricing/frontend/example_config.json,sha256=aDXH9_5bVlIclwMWH5WfgK572LVuraNbj4565o3d71k,741
31
31
  ins_pricing/frontend/example_workflows.py,sha256=7iuFOIhN6l__3AVDkhDU7zvi2oWx_Z9lktpATPM336s,36813
@@ -70,7 +70,7 @@ ins_pricing/modelling/core/bayesopt/utils/distributed_utils.py,sha256=cu01dHyYE5
70
70
  ins_pricing/modelling/core/bayesopt/utils/io_utils.py,sha256=vXDlAc_taCG2joxnC6wu0jVYA76UhRbX9OT_5z_im-E,3857
71
71
  ins_pricing/modelling/core/bayesopt/utils/losses.py,sha256=yn3ggeM1NRkCzcTt_Nef_EvpD6Pb_jGs49bj-VV4uWU,3894
72
72
  ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py,sha256=kfQZnGE8FvGfl7WsTFShGGIA_sQhp5Th9mrwUXphiNQ,21200
73
- ins_pricing/modelling/core/bayesopt/utils/torch_trainer_mixin.py,sha256=35suek4OfV29jfBdqh2tA-76JUlwc18m9H3L2HAmB70,25337
73
+ ins_pricing/modelling/core/bayesopt/utils/torch_trainer_mixin.py,sha256=P6EoXkIqEgU8-6i0gXznf2ms-2o8GfMLsMLLfWPmcjI,25562
74
74
  ins_pricing/modelling/explain/__init__.py,sha256=CPoGzGu8TTO3FOXjxoXC13VkuIDCf3YTH6L3BqJq3Ok,1171
75
75
  ins_pricing/modelling/explain/gradients.py,sha256=9TqCws_p49nFxVMcjVxe4KCZ7frezeL0uV_LCdoM5yo,11088
76
76
  ins_pricing/modelling/explain/metrics.py,sha256=K_xOY7ZrHWhbJ79RNB7eXN3VXeTe8vq68ZLH2BlZufA,5389
@@ -131,7 +131,7 @@ ins_pricing/utils/paths.py,sha256=o_tBiclFvBci4cYg9WANwKPxrMcglEdOjDP-EZgGjdQ,87
131
131
  ins_pricing/utils/profiling.py,sha256=kmbykHLcYywlZxAf_aVU8HXID3zOvUcBoO5Q58AijhA,11132
132
132
  ins_pricing/utils/torch_compat.py,sha256=UrRsqx2qboDG8WE0OmxNOi08ojwE-dCxTQh0N2s3Rgw,2441
133
133
  ins_pricing/utils/validation.py,sha256=4Tw9VUJPk0N-WO3YUqZP-xXRl1Xpubkm0vi3WzzZrv4,13348
134
- ins_pricing-0.4.0.dist-info/METADATA,sha256=9J_xcEhe5rR7E8wprEJ6qQnu_s1BlIhYWGcUno93eko,6263
135
- ins_pricing-0.4.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
136
- ins_pricing-0.4.0.dist-info/top_level.txt,sha256=haZuNQpHKNBEPZx3NjLnHp8pV3I_J9QG8-HyJn00FA0,12
137
- ins_pricing-0.4.0.dist-info/RECORD,,
134
+ ins_pricing-0.4.2.dist-info/METADATA,sha256=B-DRCDLLg6vBMXvenWPsCUeA015Kmv4WSchARg3PoHk,6263
135
+ ins_pricing-0.4.2.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
136
+ ins_pricing-0.4.2.dist-info/top_level.txt,sha256=haZuNQpHKNBEPZx3NjLnHp8pV3I_J9QG8-HyJn00FA0,12
137
+ ins_pricing-0.4.2.dist-info/RECORD,,