ins-pricing 0.2.8__py3-none-any.whl → 0.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ins_pricing/CHANGELOG.md +93 -0
- ins_pricing/README.md +11 -0
- ins_pricing/cli/bayesopt_entry_runner.py +626 -499
- ins_pricing/cli/utils/evaluation_context.py +320 -0
- ins_pricing/cli/utils/import_resolver.py +350 -0
- ins_pricing/modelling/core/bayesopt/PHASE2_REFACTORING_SUMMARY.md +449 -0
- ins_pricing/modelling/core/bayesopt/PHASE3_REFACTORING_SUMMARY.md +406 -0
- ins_pricing/modelling/core/bayesopt/REFACTORING_SUMMARY.md +247 -0
- ins_pricing/modelling/core/bayesopt/config_components.py +351 -0
- ins_pricing/modelling/core/bayesopt/config_preprocess.py +3 -4
- ins_pricing/modelling/core/bayesopt/core.py +153 -94
- ins_pricing/modelling/core/bayesopt/models/model_ft_trainer.py +118 -31
- ins_pricing/modelling/core/bayesopt/trainers/trainer_base.py +294 -139
- ins_pricing/modelling/core/bayesopt/utils/__init__.py +86 -0
- ins_pricing/modelling/core/bayesopt/utils/constants.py +183 -0
- ins_pricing/modelling/core/bayesopt/utils/distributed_utils.py +186 -0
- ins_pricing/modelling/core/bayesopt/utils/io_utils.py +126 -0
- ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py +540 -0
- ins_pricing/modelling/core/bayesopt/utils/torch_trainer_mixin.py +587 -0
- ins_pricing/modelling/core/bayesopt/utils.py +98 -1495
- ins_pricing/modelling/core/bayesopt/utils_backup.py +1503 -0
- ins_pricing/setup.py +1 -1
- ins_pricing-0.3.0.dist-info/METADATA +162 -0
- {ins_pricing-0.2.8.dist-info → ins_pricing-0.3.0.dist-info}/RECORD +26 -13
- ins_pricing-0.2.8.dist-info/METADATA +0 -51
- {ins_pricing-0.2.8.dist-info → ins_pricing-0.3.0.dist-info}/WHEEL +0 -0
- {ins_pricing-0.2.8.dist-info → ins_pricing-0.3.0.dist-info}/top_level.txt +0 -0
ins_pricing/setup.py
CHANGED
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ins_pricing
|
|
3
|
+
Version: 0.3.0
|
|
4
|
+
Summary: Reusable modelling, pricing, governance, and reporting utilities.
|
|
5
|
+
Author: meishi125478
|
|
6
|
+
License: Proprietary
|
|
7
|
+
Keywords: pricing,insurance,bayesopt,ml
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
+
Classifier: License :: Other/Proprietary License
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Classifier: Intended Audience :: Developers
|
|
14
|
+
Requires-Python: >=3.9
|
|
15
|
+
Description-Content-Type: text/markdown
|
|
16
|
+
Requires-Dist: numpy>=1.20
|
|
17
|
+
Requires-Dist: pandas>=1.4
|
|
18
|
+
Provides-Extra: bayesopt
|
|
19
|
+
Requires-Dist: torch>=1.13; extra == "bayesopt"
|
|
20
|
+
Requires-Dist: optuna>=3.0; extra == "bayesopt"
|
|
21
|
+
Requires-Dist: xgboost>=1.6; extra == "bayesopt"
|
|
22
|
+
Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
|
|
23
|
+
Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
|
|
24
|
+
Requires-Dist: joblib>=1.2; extra == "bayesopt"
|
|
25
|
+
Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
|
|
26
|
+
Provides-Extra: plotting
|
|
27
|
+
Requires-Dist: matplotlib>=3.5; extra == "plotting"
|
|
28
|
+
Requires-Dist: scikit-learn>=1.1; extra == "plotting"
|
|
29
|
+
Provides-Extra: explain
|
|
30
|
+
Requires-Dist: torch>=1.13; extra == "explain"
|
|
31
|
+
Requires-Dist: shap>=0.41; extra == "explain"
|
|
32
|
+
Requires-Dist: scikit-learn>=1.1; extra == "explain"
|
|
33
|
+
Provides-Extra: geo
|
|
34
|
+
Requires-Dist: contextily>=1.3; extra == "geo"
|
|
35
|
+
Requires-Dist: matplotlib>=3.5; extra == "geo"
|
|
36
|
+
Provides-Extra: gnn
|
|
37
|
+
Requires-Dist: torch>=1.13; extra == "gnn"
|
|
38
|
+
Requires-Dist: pynndescent>=0.5; extra == "gnn"
|
|
39
|
+
Requires-Dist: torch-geometric>=2.3; extra == "gnn"
|
|
40
|
+
Provides-Extra: all
|
|
41
|
+
Requires-Dist: torch>=1.13; extra == "all"
|
|
42
|
+
Requires-Dist: optuna>=3.0; extra == "all"
|
|
43
|
+
Requires-Dist: xgboost>=1.6; extra == "all"
|
|
44
|
+
Requires-Dist: scikit-learn>=1.1; extra == "all"
|
|
45
|
+
Requires-Dist: statsmodels>=0.13; extra == "all"
|
|
46
|
+
Requires-Dist: joblib>=1.2; extra == "all"
|
|
47
|
+
Requires-Dist: matplotlib>=3.5; extra == "all"
|
|
48
|
+
Requires-Dist: shap>=0.41; extra == "all"
|
|
49
|
+
Requires-Dist: contextily>=1.3; extra == "all"
|
|
50
|
+
Requires-Dist: pynndescent>=0.5; extra == "all"
|
|
51
|
+
Requires-Dist: torch-geometric>=2.3; extra == "all"
|
|
52
|
+
|
|
53
|
+
# Insurance-Pricing
|
|
54
|
+
|
|
55
|
+
A reusable toolkit for insurance modeling, pricing, governance, and reporting.
|
|
56
|
+
|
|
57
|
+
## Overview
|
|
58
|
+
|
|
59
|
+
Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning model training, pricing calculations, and model governance workflows in the insurance industry.
|
|
60
|
+
|
|
61
|
+
### Core Modules
|
|
62
|
+
|
|
63
|
+
| Module | Description |
|
|
64
|
+
|--------|-------------|
|
|
65
|
+
| **modelling** | ML model training (GLM, XGBoost, ResNet, FT-Transformer, GNN) and model interpretability (SHAP, permutation importance) |
|
|
66
|
+
| **pricing** | Factor table construction, numeric binning, premium calibration, exposure calculation, PSI monitoring |
|
|
67
|
+
| **production** | Model prediction, batch scoring, data drift detection, production metrics monitoring |
|
|
68
|
+
| **governance** | Model registry, version management, approval workflows, audit logging |
|
|
69
|
+
| **reporting** | Report generation (Markdown format), report scheduling |
|
|
70
|
+
| **utils** | Data validation, performance profiling, device management, logging configuration |
|
|
71
|
+
|
|
72
|
+
### Quick Start
|
|
73
|
+
|
|
74
|
+
```python
|
|
75
|
+
# Model training with Bayesian optimization
|
|
76
|
+
from ins_pricing import bayesopt as ropt
|
|
77
|
+
|
|
78
|
+
model = ropt.BayesOptModel(
|
|
79
|
+
train_data, test_data,
|
|
80
|
+
model_name='my_model',
|
|
81
|
+
resp_nme='target',
|
|
82
|
+
weight_nme='weight',
|
|
83
|
+
factor_nmes=feature_list,
|
|
84
|
+
cate_list=categorical_features,
|
|
85
|
+
)
|
|
86
|
+
model.bayesopt_xgb(max_evals=100) # Train XGBoost
|
|
87
|
+
model.bayesopt_resnet(max_evals=50) # Train ResNet
|
|
88
|
+
model.bayesopt_ft(max_evals=50) # Train FT-Transformer
|
|
89
|
+
|
|
90
|
+
# Pricing: build factor table
|
|
91
|
+
from ins_pricing.pricing import build_factor_table
|
|
92
|
+
factors = build_factor_table(
|
|
93
|
+
df,
|
|
94
|
+
factor_col='age_band',
|
|
95
|
+
loss_col='claim_amount',
|
|
96
|
+
exposure_col='exposure',
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
# Production: batch scoring
|
|
100
|
+
from ins_pricing.production import batch_score
|
|
101
|
+
scores = batch_score(model.trainers['xgb'].predict, df)
|
|
102
|
+
|
|
103
|
+
# Model governance
|
|
104
|
+
from ins_pricing.governance import ModelRegistry
|
|
105
|
+
registry = ModelRegistry('models.json')
|
|
106
|
+
registry.register(model_name, version, metrics=metrics)
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
### Project Structure
|
|
110
|
+
|
|
111
|
+
```
|
|
112
|
+
ins_pricing/
|
|
113
|
+
├── cli/ # Command-line entry points
|
|
114
|
+
├── modelling/
|
|
115
|
+
│ ├── core/bayesopt/ # ML model training core
|
|
116
|
+
│ ├── explain/ # Model interpretability
|
|
117
|
+
│ └── plotting/ # Model visualization
|
|
118
|
+
├── pricing/ # Insurance pricing module
|
|
119
|
+
├── production/ # Production deployment module
|
|
120
|
+
├── governance/ # Model governance
|
|
121
|
+
├── reporting/ # Report generation
|
|
122
|
+
├── utils/ # Utilities
|
|
123
|
+
└── tests/ # Test suite
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
### Installation
|
|
127
|
+
|
|
128
|
+
```bash
|
|
129
|
+
# Basic installation
|
|
130
|
+
pip install ins_pricing
|
|
131
|
+
|
|
132
|
+
# Full installation (all optional dependencies)
|
|
133
|
+
pip install ins_pricing[all]
|
|
134
|
+
|
|
135
|
+
# Install specific extras
|
|
136
|
+
pip install ins_pricing[bayesopt] # Model training
|
|
137
|
+
pip install ins_pricing[explain] # Model explanation
|
|
138
|
+
pip install ins_pricing[plotting] # Visualization
|
|
139
|
+
pip install ins_pricing[gnn] # Graph neural networks
|
|
140
|
+
```
|
|
141
|
+
|
|
142
|
+
#### Multi-platform & GPU installation notes
|
|
143
|
+
|
|
144
|
+
- **PyTorch (CPU/GPU/MPS)**: Install the correct PyTorch build for your platform/GPU first (CUDA on
|
|
145
|
+
Linux/Windows, ROCm on supported AMD platforms, or MPS on Apple Silicon). Then install the
|
|
146
|
+
optional extras you need (e.g., `bayesopt`, `explain`, or `gnn`). This avoids pip pulling a
|
|
147
|
+
mismatched wheel.
|
|
148
|
+
- **Torch Geometric (GNN)**: `torch-geometric` often requires platform-specific wheels (e.g.,
|
|
149
|
+
`torch-scatter`, `torch-sparse`). Follow the official PyG installation instructions for your
|
|
150
|
+
CUDA/ROCm/CPU environment, then install `ins_pricing[gnn]`.
|
|
151
|
+
- **Multi-GPU**: Training code will use CUDA when available and can enable multi-GPU via
|
|
152
|
+
`torch.distributed`/`DataParallel` where supported. On Windows, CUDA DDP is not supported and will
|
|
153
|
+
fall back to single-GPU or DataParallel where possible.
|
|
154
|
+
|
|
155
|
+
### Requirements
|
|
156
|
+
|
|
157
|
+
- Python >= 3.9
|
|
158
|
+
- Core dependencies: numpy >= 1.20, pandas >= 1.4
|
|
159
|
+
|
|
160
|
+
### License
|
|
161
|
+
|
|
162
|
+
Proprietary
|
|
@@ -1,20 +1,22 @@
|
|
|
1
|
-
ins_pricing/CHANGELOG.md,sha256=
|
|
2
|
-
ins_pricing/README.md,sha256=
|
|
1
|
+
ins_pricing/CHANGELOG.md,sha256=5fgGpaLI3kc_JuV3it0yNgMATst5fWEKuNT121Djea8,11633
|
|
2
|
+
ins_pricing/README.md,sha256=W4V2xtzM6pyQzwJPvWP7cNn-We9rxM8xrxRlBVQwoY8,3399
|
|
3
3
|
ins_pricing/RELEASE_NOTES_0.2.8.md,sha256=KIJzk1jbZbZPKjwnkPSDHO_2Ipv3SP3CzCNDdf07jI0,9331
|
|
4
4
|
ins_pricing/__init__.py,sha256=46j1wCdLVrgrofeBwKl-3NXTxzjbTv-w3KjW-dyKGiY,2622
|
|
5
5
|
ins_pricing/exceptions.py,sha256=5fZavPV4zNJ7wPC75L215KkHXX9pRrfDAYZOdSKJMGo,4778
|
|
6
|
-
ins_pricing/setup.py,sha256=
|
|
6
|
+
ins_pricing/setup.py,sha256=Rwx8jUs1m2BbK0xw8aaHvUpr6HOln42XCmHb7QE7BmU,1702
|
|
7
7
|
ins_pricing/cli/BayesOpt_entry.py,sha256=X3AiNQQh5ARcjVMM2vOKWPYPDIId40n_RPZA76pTGl4,558
|
|
8
8
|
ins_pricing/cli/BayesOpt_incremental.py,sha256=_Klr5vvNoq_TbgwrH_T3f0a6cHmA9iVJMViiji6ahJY,35927
|
|
9
9
|
ins_pricing/cli/Explain_Run.py,sha256=gEPQjqHiXyXlCTKjUzwSvbAn5_h74ABgb_sEGs-YHVE,664
|
|
10
10
|
ins_pricing/cli/Explain_entry.py,sha256=PP6j4uQspmettCk21lhh9L9jurDwZfWXGxS2EBUZpMs,23191
|
|
11
11
|
ins_pricing/cli/Pricing_Run.py,sha256=qZribQ_ku4NK4oIvlrLJdM-jyyKtIUoCbbvo8Wh_RQ4,711
|
|
12
12
|
ins_pricing/cli/__init__.py,sha256=F296f1J_tBPv33lDJQ6LaN_CPwMJTMtOuTsMof0dr2o,50
|
|
13
|
-
ins_pricing/cli/bayesopt_entry_runner.py,sha256=
|
|
13
|
+
ins_pricing/cli/bayesopt_entry_runner.py,sha256=TKqaupVDoG0pkVBrsU5_IQidJ2dx4tms52tzptMOp_0,53365
|
|
14
14
|
ins_pricing/cli/watchdog_run.py,sha256=ehUkN9VqsQkxc6YC_WLanU6Pu-ers-nvPEtCaJ9UsgY,6188
|
|
15
15
|
ins_pricing/cli/utils/__init__.py,sha256=u3kt1B27OiuOEgw6PQN-fNs9vNiAjdPyybsRQsZkM_I,54
|
|
16
16
|
ins_pricing/cli/utils/cli_common.py,sha256=CgMnN_0NQQt7Bh5RjClOydz0LzU2TBmIOsFa3KxYQOQ,8254
|
|
17
17
|
ins_pricing/cli/utils/cli_config.py,sha256=TC8fR1XdQIbaojbeac7dESj7TmCKSfpZTbLvJrkJLEY,13247
|
|
18
|
+
ins_pricing/cli/utils/evaluation_context.py,sha256=0zuDOcVzkWiuj4HyAT0psaAfEbSqpDXEGXSjxztHY6E,9485
|
|
19
|
+
ins_pricing/cli/utils/import_resolver.py,sha256=-1pvBQsB22vEAlx0x1-siERY1NgRCVxww7CbQ6u1A8s,11573
|
|
18
20
|
ins_pricing/cli/utils/notebook_utils.py,sha256=qffnR84JVDjcsesWjGwnmJ4gyNhW0WhROnvISnWTT1s,11987
|
|
19
21
|
ins_pricing/cli/utils/run_logging.py,sha256=V3Wh2EV6c1Mo0QTvfe4hl2J4LOR6bdQsT210o__YBWk,3677
|
|
20
22
|
ins_pricing/docs/modelling/BayesOpt_USAGE.md,sha256=kPhaIhRSS4SkbIYjaJ1f3dVfXWqNIWKi0BgUU5QQEqc,40560
|
|
@@ -29,24 +31,35 @@ ins_pricing/modelling/__init__.py,sha256=0tiXRE3rAwSxHT0dSaosWf_vGd7FpRA_kHW6dcl
|
|
|
29
31
|
ins_pricing/modelling/core/BayesOpt.py,sha256=i2tB3c6EeucjKAsHyicGDNU7DVVCTihg-TgSoM1y18E,3332
|
|
30
32
|
ins_pricing/modelling/core/__init__.py,sha256=bF5OWfK_mfg5P2oz2jid3MGi9uA13fpqKK-DbPkuci0,54
|
|
31
33
|
ins_pricing/modelling/core/evaluation.py,sha256=wEMWdzs12vPnDo5t183ORMDA6APuc5g6g9Uyfd6GVi8,3905
|
|
34
|
+
ins_pricing/modelling/core/bayesopt/PHASE2_REFACTORING_SUMMARY.md,sha256=x8890HLvIZ7q2N0AdYwL1_8lBUl6vClZ9SoEj-BskuQ,11835
|
|
35
|
+
ins_pricing/modelling/core/bayesopt/PHASE3_REFACTORING_SUMMARY.md,sha256=B8ZEzaLesU454OaR10Tg50es7t30UB9pxF6GabbNbj0,11804
|
|
36
|
+
ins_pricing/modelling/core/bayesopt/REFACTORING_SUMMARY.md,sha256=hJZKXe9-bBGJVN_5c5l8nHQ1X7NK4BbeE-uXQoH0rAM,7479
|
|
32
37
|
ins_pricing/modelling/core/bayesopt/__init__.py,sha256=5WGZeQI9B1P9OXQUgq7XogcjAbv2oXnp076bW16e_ss,1955
|
|
33
|
-
ins_pricing/modelling/core/bayesopt/
|
|
34
|
-
ins_pricing/modelling/core/bayesopt/
|
|
38
|
+
ins_pricing/modelling/core/bayesopt/config_components.py,sha256=OjRyM1EuSXL9_3THD1nGLRsioJs7lO_ZKVZDkUA3LX8,12156
|
|
39
|
+
ins_pricing/modelling/core/bayesopt/config_preprocess.py,sha256=5oFbesUPiTeqEVY_j6c9Ake_7K9CWcwSutcUWo6EuxY,20665
|
|
40
|
+
ins_pricing/modelling/core/bayesopt/core.py,sha256=tRgCso6--QL-Orj8oFqLgsFj6wV5bR5Rx21iffKNWVY,43873
|
|
35
41
|
ins_pricing/modelling/core/bayesopt/model_explain_mixin.py,sha256=jCk1zPpwgwBBCndaq-A0_cQnc4RHueh2p5cAuE9ArTo,11620
|
|
36
42
|
ins_pricing/modelling/core/bayesopt/model_plotting_mixin.py,sha256=lD0rUvWV4eWatmTzMrmAUm2Flj8uAOa3R9S2JyYV94k,21807
|
|
37
|
-
ins_pricing/modelling/core/bayesopt/utils.py,sha256=
|
|
43
|
+
ins_pricing/modelling/core/bayesopt/utils.py,sha256=fTDqBHCxsOVte0QhPqnMw8vkefIvkppufIRkt9iHqjU,2852
|
|
44
|
+
ins_pricing/modelling/core/bayesopt/utils_backup.py,sha256=5RKizpR3j6KwR87WqqaXPtgjQXWPW4vM75sIkx38SSM,57924
|
|
38
45
|
ins_pricing/modelling/core/bayesopt/models/__init__.py,sha256=vFFCkGnO6rm50TbxR6QekKKQjq-NW4UFwog6fng8-p8,700
|
|
39
46
|
ins_pricing/modelling/core/bayesopt/models/model_ft_components.py,sha256=0I0NiDf1D3cOhTRQwatsNTw9Julmxv5v3HZV8fTrvcQ,10989
|
|
40
|
-
ins_pricing/modelling/core/bayesopt/models/model_ft_trainer.py,sha256=
|
|
47
|
+
ins_pricing/modelling/core/bayesopt/models/model_ft_trainer.py,sha256=2rOKekH20_9Ccb9X-S6adW-TZcSN9Aj1Bmym8c3Sgrc,39206
|
|
41
48
|
ins_pricing/modelling/core/bayesopt/models/model_gnn.py,sha256=l_oIgLeTJndfYR8lpZbqUq0MKH6wReE2z1B8n1E0P8k,28095
|
|
42
49
|
ins_pricing/modelling/core/bayesopt/models/model_resn.py,sha256=hAU77GcGC1mHbOOLfZ9vC5nhUhHlaPZmXjrkH3BrjKc,17128
|
|
43
50
|
ins_pricing/modelling/core/bayesopt/trainers/__init__.py,sha256=ODYKjT-v4IDxu4ohGLCXY8r1-pMME9LAaNx6pmj5_38,481
|
|
44
|
-
ins_pricing/modelling/core/bayesopt/trainers/trainer_base.py,sha256
|
|
51
|
+
ins_pricing/modelling/core/bayesopt/trainers/trainer_base.py,sha256=-AaGt9pIeynG5ZcCZkemXsyjUzNbAzzWN_-hoh2Yo5Q,54788
|
|
45
52
|
ins_pricing/modelling/core/bayesopt/trainers/trainer_ft.py,sha256=jkafhvfEqIV_PYJ90e8kkOXVGvFpCKS0CRSKLvQ_elQ,34730
|
|
46
53
|
ins_pricing/modelling/core/bayesopt/trainers/trainer_glm.py,sha256=wVU6F2Ubyu3IxP6K-epjkUTGOE8gKPCdpVxGW-JP9rM,7806
|
|
47
54
|
ins_pricing/modelling/core/bayesopt/trainers/trainer_gnn.py,sha256=OChMeBELl_XWYZmZcpKq5BLY-srtTgempk4L5D0I7ys,13453
|
|
48
55
|
ins_pricing/modelling/core/bayesopt/trainers/trainer_resn.py,sha256=y9KyKoUHLiKoXiX6XP4QGu0MKX5LyvlmSAT5tgn826M,11140
|
|
49
56
|
ins_pricing/modelling/core/bayesopt/trainers/trainer_xgb.py,sha256=Ha3PtkB7AedlnRwWEfIBTEAPO69LY5lnjUrdGNL-yas,13783
|
|
57
|
+
ins_pricing/modelling/core/bayesopt/utils/__init__.py,sha256=dbf4DrWOH4rABOuaZdBF7drYOBH5prjvM0TexT6DYyg,1911
|
|
58
|
+
ins_pricing/modelling/core/bayesopt/utils/constants.py,sha256=0ihYxGlJ8tIElYvkhIDe5FfJShegvu29WZ_Xvfqa0iE,5790
|
|
59
|
+
ins_pricing/modelling/core/bayesopt/utils/distributed_utils.py,sha256=cu01dHyYE5EREbmtJgCHSH6z5mQIqajz8_-oWZV6zVc,5787
|
|
60
|
+
ins_pricing/modelling/core/bayesopt/utils/io_utils.py,sha256=vXDlAc_taCG2joxnC6wu0jVYA76UhRbX9OT_5z_im-E,3857
|
|
61
|
+
ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py,sha256=irrsE-oDDpOd82QyW9uxfDueF8RFKkUHME4wyWr7vRI,20533
|
|
62
|
+
ins_pricing/modelling/core/bayesopt/utils/torch_trainer_mixin.py,sha256=q5aEy9Lp8Vemf3iCyWi-OGsbe9roVEbKYkN3qRJlVUo,24283
|
|
50
63
|
ins_pricing/modelling/explain/__init__.py,sha256=CPoGzGu8TTO3FOXjxoXC13VkuIDCf3YTH6L3BqJq3Ok,1171
|
|
51
64
|
ins_pricing/modelling/explain/gradients.py,sha256=9TqCws_p49nFxVMcjVxe4KCZ7frezeL0uV_LCdoM5yo,11088
|
|
52
65
|
ins_pricing/modelling/explain/metrics.py,sha256=K_xOY7ZrHWhbJ79RNB7eXN3VXeTe8vq68ZLH2BlZufA,5389
|
|
@@ -106,7 +119,7 @@ ins_pricing/utils/metrics.py,sha256=zhKYgXgki8RDscjP_GO2lEgzrtMIZCqOX_aLpQzdw6k,
|
|
|
106
119
|
ins_pricing/utils/paths.py,sha256=o_tBiclFvBci4cYg9WANwKPxrMcglEdOjDP-EZgGjdQ,8749
|
|
107
120
|
ins_pricing/utils/profiling.py,sha256=kmbykHLcYywlZxAf_aVU8HXID3zOvUcBoO5Q58AijhA,11132
|
|
108
121
|
ins_pricing/utils/validation.py,sha256=4Tw9VUJPk0N-WO3YUqZP-xXRl1Xpubkm0vi3WzzZrv4,13348
|
|
109
|
-
ins_pricing-0.
|
|
110
|
-
ins_pricing-0.
|
|
111
|
-
ins_pricing-0.
|
|
112
|
-
ins_pricing-0.
|
|
122
|
+
ins_pricing-0.3.0.dist-info/METADATA,sha256=dCrwU2NZzA2I-VyTq85Pr5ucyoQA8gV4Un8bOMCejkg,6101
|
|
123
|
+
ins_pricing-0.3.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
124
|
+
ins_pricing-0.3.0.dist-info/top_level.txt,sha256=haZuNQpHKNBEPZx3NjLnHp8pV3I_J9QG8-HyJn00FA0,12
|
|
125
|
+
ins_pricing-0.3.0.dist-info/RECORD,,
|
|
@@ -1,51 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: ins_pricing
|
|
3
|
-
Version: 0.2.8
|
|
4
|
-
Summary: Reusable modelling, pricing, governance, and reporting utilities.
|
|
5
|
-
Author: meishi125478
|
|
6
|
-
License: Proprietary
|
|
7
|
-
Keywords: pricing,insurance,bayesopt,ml
|
|
8
|
-
Classifier: Programming Language :: Python :: 3
|
|
9
|
-
Classifier: Programming Language :: Python :: 3 :: Only
|
|
10
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
-
Classifier: License :: Other/Proprietary License
|
|
12
|
-
Classifier: Operating System :: OS Independent
|
|
13
|
-
Classifier: Intended Audience :: Developers
|
|
14
|
-
Requires-Python: >=3.9
|
|
15
|
-
Description-Content-Type: text/markdown
|
|
16
|
-
Requires-Dist: numpy>=1.20
|
|
17
|
-
Requires-Dist: pandas>=1.4
|
|
18
|
-
Provides-Extra: bayesopt
|
|
19
|
-
Requires-Dist: torch>=1.13; extra == "bayesopt"
|
|
20
|
-
Requires-Dist: optuna>=3.0; extra == "bayesopt"
|
|
21
|
-
Requires-Dist: xgboost>=1.6; extra == "bayesopt"
|
|
22
|
-
Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
|
|
23
|
-
Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
|
|
24
|
-
Requires-Dist: joblib>=1.2; extra == "bayesopt"
|
|
25
|
-
Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
|
|
26
|
-
Provides-Extra: plotting
|
|
27
|
-
Requires-Dist: matplotlib>=3.5; extra == "plotting"
|
|
28
|
-
Requires-Dist: scikit-learn>=1.1; extra == "plotting"
|
|
29
|
-
Provides-Extra: explain
|
|
30
|
-
Requires-Dist: torch>=1.13; extra == "explain"
|
|
31
|
-
Requires-Dist: shap>=0.41; extra == "explain"
|
|
32
|
-
Requires-Dist: scikit-learn>=1.1; extra == "explain"
|
|
33
|
-
Provides-Extra: geo
|
|
34
|
-
Requires-Dist: contextily>=1.3; extra == "geo"
|
|
35
|
-
Requires-Dist: matplotlib>=3.5; extra == "geo"
|
|
36
|
-
Provides-Extra: gnn
|
|
37
|
-
Requires-Dist: torch>=1.13; extra == "gnn"
|
|
38
|
-
Requires-Dist: pynndescent>=0.5; extra == "gnn"
|
|
39
|
-
Requires-Dist: torch-geometric>=2.3; extra == "gnn"
|
|
40
|
-
Provides-Extra: all
|
|
41
|
-
Requires-Dist: torch>=1.13; extra == "all"
|
|
42
|
-
Requires-Dist: optuna>=3.0; extra == "all"
|
|
43
|
-
Requires-Dist: xgboost>=1.6; extra == "all"
|
|
44
|
-
Requires-Dist: scikit-learn>=1.1; extra == "all"
|
|
45
|
-
Requires-Dist: statsmodels>=0.13; extra == "all"
|
|
46
|
-
Requires-Dist: joblib>=1.2; extra == "all"
|
|
47
|
-
Requires-Dist: matplotlib>=3.5; extra == "all"
|
|
48
|
-
Requires-Dist: shap>=0.41; extra == "all"
|
|
49
|
-
Requires-Dist: contextily>=1.3; extra == "all"
|
|
50
|
-
Requires-Dist: pynndescent>=0.5; extra == "all"
|
|
51
|
-
Requires-Dist: torch-geometric>=2.3; extra == "all"
|
|
File without changes
|
|
File without changes
|