ins-pricing 0.1.11__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. ins_pricing/README.md +9 -6
  2. ins_pricing/__init__.py +3 -11
  3. ins_pricing/cli/BayesOpt_entry.py +24 -0
  4. ins_pricing/{modelling → cli}/BayesOpt_incremental.py +197 -64
  5. ins_pricing/cli/Explain_Run.py +25 -0
  6. ins_pricing/{modelling → cli}/Explain_entry.py +169 -124
  7. ins_pricing/cli/Pricing_Run.py +25 -0
  8. ins_pricing/cli/__init__.py +1 -0
  9. ins_pricing/cli/bayesopt_entry_runner.py +1312 -0
  10. ins_pricing/cli/utils/__init__.py +1 -0
  11. ins_pricing/cli/utils/cli_common.py +320 -0
  12. ins_pricing/cli/utils/cli_config.py +375 -0
  13. ins_pricing/{modelling → cli/utils}/notebook_utils.py +74 -19
  14. {ins_pricing_gemini/modelling → ins_pricing/cli}/watchdog_run.py +2 -2
  15. ins_pricing/{modelling → docs/modelling}/BayesOpt_USAGE.md +69 -49
  16. ins_pricing/docs/modelling/README.md +34 -0
  17. ins_pricing/modelling/__init__.py +57 -6
  18. ins_pricing/modelling/core/__init__.py +1 -0
  19. ins_pricing/modelling/{bayesopt → core/bayesopt}/config_preprocess.py +64 -1
  20. ins_pricing/modelling/{bayesopt → core/bayesopt}/core.py +150 -810
  21. ins_pricing/modelling/core/bayesopt/model_explain_mixin.py +296 -0
  22. ins_pricing/modelling/core/bayesopt/model_plotting_mixin.py +548 -0
  23. ins_pricing/modelling/core/bayesopt/models/__init__.py +27 -0
  24. ins_pricing/modelling/core/bayesopt/models/model_ft_components.py +316 -0
  25. ins_pricing/modelling/core/bayesopt/models/model_ft_trainer.py +808 -0
  26. ins_pricing/modelling/core/bayesopt/models/model_gnn.py +675 -0
  27. ins_pricing/modelling/core/bayesopt/models/model_resn.py +435 -0
  28. ins_pricing/modelling/core/bayesopt/trainers/__init__.py +19 -0
  29. ins_pricing/modelling/core/bayesopt/trainers/trainer_base.py +1020 -0
  30. ins_pricing/modelling/core/bayesopt/trainers/trainer_ft.py +787 -0
  31. ins_pricing/modelling/core/bayesopt/trainers/trainer_glm.py +195 -0
  32. ins_pricing/modelling/core/bayesopt/trainers/trainer_gnn.py +312 -0
  33. ins_pricing/modelling/core/bayesopt/trainers/trainer_resn.py +261 -0
  34. ins_pricing/modelling/core/bayesopt/trainers/trainer_xgb.py +348 -0
  35. ins_pricing/modelling/{bayesopt → core/bayesopt}/utils.py +2 -2
  36. ins_pricing/modelling/core/evaluation.py +115 -0
  37. ins_pricing/production/__init__.py +4 -0
  38. ins_pricing/production/preprocess.py +71 -0
  39. ins_pricing/setup.py +10 -5
  40. {ins_pricing_gemini/modelling/tests → ins_pricing/tests/modelling}/test_plotting.py +2 -2
  41. {ins_pricing-0.1.11.dist-info → ins_pricing-0.2.0.dist-info}/METADATA +4 -4
  42. ins_pricing-0.2.0.dist-info/RECORD +125 -0
  43. {ins_pricing-0.1.11.dist-info → ins_pricing-0.2.0.dist-info}/top_level.txt +0 -1
  44. ins_pricing/modelling/BayesOpt_entry.py +0 -633
  45. ins_pricing/modelling/Explain_Run.py +0 -36
  46. ins_pricing/modelling/Pricing_Run.py +0 -36
  47. ins_pricing/modelling/README.md +0 -33
  48. ins_pricing/modelling/bayesopt/models.py +0 -2196
  49. ins_pricing/modelling/bayesopt/trainers.py +0 -2446
  50. ins_pricing/modelling/cli_common.py +0 -136
  51. ins_pricing/modelling/tests/test_plotting.py +0 -63
  52. ins_pricing/modelling/watchdog_run.py +0 -211
  53. ins_pricing-0.1.11.dist-info/RECORD +0 -169
  54. ins_pricing_gemini/__init__.py +0 -23
  55. ins_pricing_gemini/governance/__init__.py +0 -20
  56. ins_pricing_gemini/governance/approval.py +0 -93
  57. ins_pricing_gemini/governance/audit.py +0 -37
  58. ins_pricing_gemini/governance/registry.py +0 -99
  59. ins_pricing_gemini/governance/release.py +0 -159
  60. ins_pricing_gemini/modelling/Explain_Run.py +0 -36
  61. ins_pricing_gemini/modelling/Pricing_Run.py +0 -36
  62. ins_pricing_gemini/modelling/__init__.py +0 -151
  63. ins_pricing_gemini/modelling/cli_common.py +0 -141
  64. ins_pricing_gemini/modelling/config.py +0 -249
  65. ins_pricing_gemini/modelling/config_preprocess.py +0 -254
  66. ins_pricing_gemini/modelling/core.py +0 -741
  67. ins_pricing_gemini/modelling/data_container.py +0 -42
  68. ins_pricing_gemini/modelling/explain/__init__.py +0 -55
  69. ins_pricing_gemini/modelling/explain/gradients.py +0 -334
  70. ins_pricing_gemini/modelling/explain/metrics.py +0 -176
  71. ins_pricing_gemini/modelling/explain/permutation.py +0 -155
  72. ins_pricing_gemini/modelling/explain/shap_utils.py +0 -146
  73. ins_pricing_gemini/modelling/features.py +0 -215
  74. ins_pricing_gemini/modelling/model_manager.py +0 -148
  75. ins_pricing_gemini/modelling/model_plotting.py +0 -463
  76. ins_pricing_gemini/modelling/models.py +0 -2203
  77. ins_pricing_gemini/modelling/notebook_utils.py +0 -294
  78. ins_pricing_gemini/modelling/plotting/__init__.py +0 -45
  79. ins_pricing_gemini/modelling/plotting/common.py +0 -63
  80. ins_pricing_gemini/modelling/plotting/curves.py +0 -572
  81. ins_pricing_gemini/modelling/plotting/diagnostics.py +0 -139
  82. ins_pricing_gemini/modelling/plotting/geo.py +0 -362
  83. ins_pricing_gemini/modelling/plotting/importance.py +0 -121
  84. ins_pricing_gemini/modelling/run_logging.py +0 -133
  85. ins_pricing_gemini/modelling/tests/conftest.py +0 -8
  86. ins_pricing_gemini/modelling/tests/test_cross_val_generic.py +0 -66
  87. ins_pricing_gemini/modelling/tests/test_distributed_utils.py +0 -18
  88. ins_pricing_gemini/modelling/tests/test_explain.py +0 -56
  89. ins_pricing_gemini/modelling/tests/test_geo_tokens_split.py +0 -49
  90. ins_pricing_gemini/modelling/tests/test_graph_cache.py +0 -33
  91. ins_pricing_gemini/modelling/tests/test_plotting_library.py +0 -150
  92. ins_pricing_gemini/modelling/tests/test_preprocessor.py +0 -48
  93. ins_pricing_gemini/modelling/trainers.py +0 -2447
  94. ins_pricing_gemini/modelling/utils.py +0 -1020
  95. ins_pricing_gemini/pricing/__init__.py +0 -27
  96. ins_pricing_gemini/pricing/calibration.py +0 -39
  97. ins_pricing_gemini/pricing/data_quality.py +0 -117
  98. ins_pricing_gemini/pricing/exposure.py +0 -85
  99. ins_pricing_gemini/pricing/factors.py +0 -91
  100. ins_pricing_gemini/pricing/monitoring.py +0 -99
  101. ins_pricing_gemini/pricing/rate_table.py +0 -78
  102. ins_pricing_gemini/production/__init__.py +0 -21
  103. ins_pricing_gemini/production/drift.py +0 -30
  104. ins_pricing_gemini/production/monitoring.py +0 -143
  105. ins_pricing_gemini/production/scoring.py +0 -40
  106. ins_pricing_gemini/reporting/__init__.py +0 -11
  107. ins_pricing_gemini/reporting/report_builder.py +0 -72
  108. ins_pricing_gemini/reporting/scheduler.py +0 -45
  109. ins_pricing_gemini/scripts/BayesOpt_incremental.py +0 -722
  110. ins_pricing_gemini/scripts/Explain_entry.py +0 -545
  111. ins_pricing_gemini/scripts/__init__.py +0 -1
  112. ins_pricing_gemini/scripts/train.py +0 -568
  113. ins_pricing_gemini/setup.py +0 -55
  114. ins_pricing_gemini/smoke_test.py +0 -28
  115. /ins_pricing/{modelling → cli/utils}/run_logging.py +0 -0
  116. /ins_pricing/modelling/{BayesOpt.py → core/BayesOpt.py} +0 -0
  117. /ins_pricing/modelling/{bayesopt → core/bayesopt}/__init__.py +0 -0
  118. /ins_pricing/{modelling/tests → tests/modelling}/conftest.py +0 -0
  119. /ins_pricing/{modelling/tests → tests/modelling}/test_cross_val_generic.py +0 -0
  120. /ins_pricing/{modelling/tests → tests/modelling}/test_distributed_utils.py +0 -0
  121. /ins_pricing/{modelling/tests → tests/modelling}/test_explain.py +0 -0
  122. /ins_pricing/{modelling/tests → tests/modelling}/test_geo_tokens_split.py +0 -0
  123. /ins_pricing/{modelling/tests → tests/modelling}/test_graph_cache.py +0 -0
  124. /ins_pricing/{modelling/tests → tests/modelling}/test_plotting_library.py +0 -0
  125. /ins_pricing/{modelling/tests → tests/modelling}/test_preprocessor.py +0 -0
  126. {ins_pricing-0.1.11.dist-info → ins_pricing-0.2.0.dist-info}/WHEEL +0 -0
@@ -1,633 +0,0 @@
1
- """
2
- CLI entry point generated from BayesOpt_AutoPricing.ipynb so the workflow can
3
- run non‑interactively (e.g., via torchrun).
4
-
5
- Example:
6
- python -m torch.distributed.run --standalone --nproc_per_node=2 \\
7
- ins_pricing/modelling/BayesOpt_entry.py \\
8
- --config-json ins_pricing/modelling/demo/config_template.json \\
9
- --model-keys ft --max-evals 50 --use-ft-ddp
10
- """
11
-
12
- from __future__ import annotations
13
-
14
- import argparse
15
- import os
16
- from pathlib import Path
17
- from typing import Dict, List
18
-
19
- import pandas as pd
20
- from sklearn.model_selection import train_test_split
21
-
22
- try:
23
- from . import bayesopt as ropt # type: ignore
24
- from .cli_common import ( # type: ignore
25
- PLOT_MODEL_LABELS,
26
- PYTORCH_TRAINERS,
27
- build_model_names,
28
- dedupe_preserve_order,
29
- load_config_json,
30
- normalize_config_paths,
31
- parse_model_pairs,
32
- resolve_config_path,
33
- resolve_path,
34
- set_env,
35
- )
36
- except Exception: # pragma: no cover
37
- try:
38
- import bayesopt as ropt # type: ignore
39
- from cli_common import ( # type: ignore
40
- PLOT_MODEL_LABELS,
41
- PYTORCH_TRAINERS,
42
- build_model_names,
43
- dedupe_preserve_order,
44
- load_config_json,
45
- normalize_config_paths,
46
- parse_model_pairs,
47
- resolve_config_path,
48
- resolve_path,
49
- set_env,
50
- )
51
- except Exception:
52
- try:
53
- import ins_pricing.bayesopt as ropt # type: ignore
54
- from ins_pricing.cli_common import ( # type: ignore
55
- PLOT_MODEL_LABELS,
56
- PYTORCH_TRAINERS,
57
- build_model_names,
58
- dedupe_preserve_order,
59
- load_config_json,
60
- normalize_config_paths,
61
- parse_model_pairs,
62
- resolve_config_path,
63
- resolve_path,
64
- set_env,
65
- )
66
- except Exception:
67
- import BayesOpt as ropt # type: ignore
68
- from cli_common import ( # type: ignore
69
- PLOT_MODEL_LABELS,
70
- PYTORCH_TRAINERS,
71
- build_model_names,
72
- dedupe_preserve_order,
73
- load_config_json,
74
- normalize_config_paths,
75
- parse_model_pairs,
76
- resolve_config_path,
77
- resolve_path,
78
- set_env,
79
- )
80
-
81
- import matplotlib
82
-
83
- if os.name != "nt" and not os.environ.get("DISPLAY") and not os.environ.get("MPLBACKEND"):
84
- matplotlib.use("Agg")
85
- import matplotlib.pyplot as plt
86
-
87
- try:
88
- from .run_logging import configure_run_logging # type: ignore
89
- except Exception: # pragma: no cover
90
- try:
91
- from run_logging import configure_run_logging # type: ignore
92
- except Exception: # pragma: no cover
93
- configure_run_logging = None # type: ignore
94
-
95
- try:
96
- from .plotting.diagnostics import plot_loss_curve as plot_loss_curve_common
97
- except Exception: # pragma: no cover
98
- try:
99
- from ins_pricing.plotting.diagnostics import plot_loss_curve as plot_loss_curve_common
100
- except Exception: # pragma: no cover
101
- plot_loss_curve_common = None
102
-
103
- def _parse_args() -> argparse.Namespace:
104
- parser = argparse.ArgumentParser(
105
- description="Batch trainer generated from BayesOpt_AutoPricing notebook."
106
- )
107
- parser.add_argument(
108
- "--config-json",
109
- required=True,
110
- help="Path to the JSON config describing datasets and feature columns.",
111
- )
112
- parser.add_argument(
113
- "--model-keys",
114
- nargs="+",
115
- default=["ft"],
116
- choices=["glm", "xgb", "resn", "ft", "gnn", "all"],
117
- help="Space-separated list of trainers to run (e.g., --model-keys glm xgb). Include 'all' to run every trainer.",
118
- )
119
- parser.add_argument(
120
- "--stack-model-keys",
121
- nargs="+",
122
- default=None,
123
- choices=["glm", "xgb", "resn", "ft", "gnn", "all"],
124
- help=(
125
- "Only used when ft_role != 'model' (FT runs as feature generator). "
126
- "When provided (or when config defines stack_model_keys), these trainers run after FT features "
127
- "are generated. Use 'all' to run every non-FT trainer."
128
- ),
129
- )
130
- parser.add_argument(
131
- "--max-evals",
132
- type=int,
133
- default=50,
134
- help="Optuna trial count per dataset.",
135
- )
136
- parser.add_argument(
137
- "--use-resn-ddp",
138
- action="store_true",
139
- help="Force ResNet trainer to use DistributedDataParallel.",
140
- )
141
- parser.add_argument(
142
- "--use-ft-ddp",
143
- action="store_true",
144
- help="Force FT-Transformer trainer to use DistributedDataParallel.",
145
- )
146
- parser.add_argument(
147
- "--use-resn-dp",
148
- action="store_true",
149
- help="Enable ResNet DataParallel fall-back regardless of config.",
150
- )
151
- parser.add_argument(
152
- "--use-ft-dp",
153
- action="store_true",
154
- help="Enable FT-Transformer DataParallel fall-back regardless of config.",
155
- )
156
- parser.add_argument(
157
- "--use-gnn-dp",
158
- action="store_true",
159
- help="Enable GNN DataParallel fall-back regardless of config.",
160
- )
161
- parser.add_argument(
162
- "--use-gnn-ddp",
163
- action="store_true",
164
- help="Force GNN trainer to use DistributedDataParallel.",
165
- )
166
- parser.add_argument(
167
- "--gnn-no-ann",
168
- action="store_true",
169
- help="Disable approximate k-NN for GNN graph construction and use exact search.",
170
- )
171
- parser.add_argument(
172
- "--gnn-ann-threshold",
173
- type=int,
174
- default=None,
175
- help="Row threshold above which approximate k-NN is preferred (overrides config).",
176
- )
177
- parser.add_argument(
178
- "--gnn-graph-cache",
179
- default=None,
180
- help="Optional path to persist/load cached adjacency matrix for GNN.",
181
- )
182
- parser.add_argument(
183
- "--gnn-max-gpu-nodes",
184
- type=int,
185
- default=None,
186
- help="Overrides the maximum node count allowed for GPU k-NN graph construction.",
187
- )
188
- parser.add_argument(
189
- "--gnn-gpu-mem-ratio",
190
- type=float,
191
- default=None,
192
- help="Overrides the fraction of free GPU memory the k-NN builder may consume.",
193
- )
194
- parser.add_argument(
195
- "--gnn-gpu-mem-overhead",
196
- type=float,
197
- default=None,
198
- help="Overrides the temporary GPU memory overhead multiplier for k-NN estimation.",
199
- )
200
- parser.add_argument(
201
- "--output-dir",
202
- default=None,
203
- help="Override output root for models/results/plots.",
204
- )
205
- parser.add_argument(
206
- "--plot-curves",
207
- action="store_true",
208
- help="Enable lift/diagnostic plots after training (config file may also request plotting).",
209
- )
210
- parser.add_argument(
211
- "--ft-as-feature",
212
- action="store_true",
213
- help="Alias for --ft-role embedding (keep tuning, export embeddings; skip FT plots/SHAP).",
214
- )
215
- parser.add_argument(
216
- "--ft-role",
217
- default=None,
218
- choices=["model", "embedding", "unsupervised_embedding"],
219
- help="How to use FT: model (default), embedding (export pooling embeddings), or unsupervised_embedding.",
220
- )
221
- parser.add_argument(
222
- "--ft-feature-prefix",
223
- default="ft_feat",
224
- help="Prefix used for generated FT features (columns: pred_<prefix>_0.. or pred_<prefix>).",
225
- )
226
- parser.add_argument(
227
- "--reuse-best-params",
228
- action="store_true",
229
- help="Skip Optuna and reuse best_params saved in Results/versions or bestparams CSV when available.",
230
- )
231
- return parser.parse_args()
232
-
233
-
234
- def _plot_curves_for_model(model: ropt.BayesOptModel, trained_keys: List[str], cfg: Dict) -> None:
235
- plot_cfg = cfg.get("plot", {})
236
- legacy_lift_flags = {
237
- "glm": cfg.get("plot_lift_glm", False),
238
- "xgb": cfg.get("plot_lift_xgb", False),
239
- "resn": cfg.get("plot_lift_resn", False),
240
- "ft": cfg.get("plot_lift_ft", False),
241
- }
242
- plot_enabled = plot_cfg.get("enable", any(legacy_lift_flags.values()))
243
- if not plot_enabled:
244
- return
245
-
246
- n_bins = int(plot_cfg.get("n_bins", 10))
247
- oneway_enabled = plot_cfg.get("oneway", True)
248
-
249
- available_models = dedupe_preserve_order(
250
- [m for m in trained_keys if m in PLOT_MODEL_LABELS]
251
- )
252
-
253
- lift_models = plot_cfg.get("lift_models")
254
- if lift_models is None:
255
- lift_models = [m for m, enabled in legacy_lift_flags.items() if enabled]
256
- if not lift_models:
257
- lift_models = available_models
258
- lift_models = dedupe_preserve_order(
259
- [m for m in lift_models if m in available_models]
260
- )
261
-
262
- if oneway_enabled:
263
- oneway_pred = bool(plot_cfg.get("oneway_pred", False))
264
- oneway_pred_models = plot_cfg.get("oneway_pred_models")
265
- pred_plotted = False
266
- if oneway_pred:
267
- if oneway_pred_models is None:
268
- oneway_pred_models = lift_models or available_models
269
- oneway_pred_models = dedupe_preserve_order(
270
- [m for m in oneway_pred_models if m in available_models]
271
- )
272
- for model_key in oneway_pred_models:
273
- label, pred_nme = PLOT_MODEL_LABELS[model_key]
274
- if pred_nme not in model.train_data.columns:
275
- print(
276
- f"[Oneway] Missing prediction column '{pred_nme}'; skip.",
277
- flush=True,
278
- )
279
- continue
280
- model.plot_oneway(
281
- n_bins=n_bins,
282
- pred_col=pred_nme,
283
- pred_label=label,
284
- plot_subdir="oneway/post",
285
- )
286
- pred_plotted = True
287
- if not oneway_pred or not pred_plotted:
288
- model.plot_oneway(n_bins=n_bins, plot_subdir="oneway/post")
289
-
290
- if not available_models:
291
- return
292
-
293
- for model_key in lift_models:
294
- label, pred_nme = PLOT_MODEL_LABELS[model_key]
295
- model.plot_lift(model_label=label, pred_nme=pred_nme, n_bins=n_bins)
296
-
297
- if not plot_cfg.get("double_lift", True) or len(available_models) < 2:
298
- return
299
-
300
- raw_pairs = plot_cfg.get("double_lift_pairs")
301
- if raw_pairs:
302
- pairs = [
303
- (a, b)
304
- for a, b in parse_model_pairs(raw_pairs)
305
- if a in available_models and b in available_models and a != b
306
- ]
307
- else:
308
- pairs = [(a, b) for i, a in enumerate(available_models) for b in available_models[i + 1 :]]
309
-
310
- for first, second in pairs:
311
- model.plot_dlift([first, second], n_bins=n_bins)
312
-
313
-
314
- def _plot_loss_curve_for_trainer(model_name: str, trainer) -> None:
315
- model_obj = getattr(trainer, "model", None)
316
- history = None
317
- if model_obj is not None:
318
- history = getattr(model_obj, "training_history", None)
319
- if not history:
320
- history = getattr(trainer, "training_history", None)
321
- if not history:
322
- return
323
- train_hist = list(history.get("train") or [])
324
- val_hist = list(history.get("val") or [])
325
- if not train_hist and not val_hist:
326
- return
327
- try:
328
- plot_dir = trainer.output.plot_path(
329
- f"{model_name}/loss/loss_{model_name}_{trainer.model_name_prefix}.png"
330
- )
331
- except Exception:
332
- default_dir = Path("plot") / model_name / "loss"
333
- default_dir.mkdir(parents=True, exist_ok=True)
334
- plot_dir = str(
335
- default_dir / f"loss_{model_name}_{trainer.model_name_prefix}.png")
336
- if plot_loss_curve_common is not None:
337
- plot_loss_curve_common(
338
- history=history,
339
- title=f"{trainer.model_name_prefix} Loss Curve ({model_name})",
340
- save_path=plot_dir,
341
- show=False,
342
- )
343
- else:
344
- epochs = range(1, max(len(train_hist), len(val_hist)) + 1)
345
- fig, ax = plt.subplots(figsize=(8, 4))
346
- if train_hist:
347
- ax.plot(range(1, len(train_hist) + 1),
348
- train_hist, label="Train Loss", color="tab:blue")
349
- if val_hist:
350
- ax.plot(range(1, len(val_hist) + 1),
351
- val_hist, label="Validation Loss", color="tab:orange")
352
- ax.set_xlabel("Epoch")
353
- ax.set_ylabel("Weighted Loss")
354
- ax.set_title(
355
- f"{trainer.model_name_prefix} Loss Curve ({model_name})")
356
- ax.grid(True, linestyle="--", alpha=0.3)
357
- ax.legend()
358
- plt.tight_layout()
359
- plt.savefig(plot_dir, dpi=300)
360
- plt.close(fig)
361
- print(
362
- f"[Plot] Saved loss curve for {model_name}/{trainer.label} -> {plot_dir}")
363
-
364
-
365
- def train_from_config(args: argparse.Namespace) -> None:
366
- script_dir = Path(__file__).resolve().parent
367
- config_path = resolve_config_path(args.config_json, script_dir)
368
- cfg = load_config_json(
369
- config_path,
370
- required_keys=["data_dir", "model_list", "model_categories", "target", "weight"],
371
- )
372
- cfg = normalize_config_paths(cfg, config_path)
373
-
374
- set_env(cfg.get("env", {}))
375
- plot_requested = bool(args.plot_curves or cfg.get("plot_curves", False))
376
-
377
- def _safe_int_env(key: str, default: int) -> int:
378
- try:
379
- return int(os.environ.get(key, default))
380
- except (TypeError, ValueError):
381
- return default
382
-
383
- dist_world_size = _safe_int_env("WORLD_SIZE", 1)
384
- dist_rank = _safe_int_env("RANK", 0)
385
- dist_active = dist_world_size > 1
386
- def _ddp_barrier(reason: str) -> None:
387
- if not dist_active:
388
- return
389
- torch_mod = getattr(ropt, "torch", None)
390
- dist_mod = getattr(torch_mod, "distributed", None)
391
- if dist_mod is None:
392
- return
393
- try:
394
- if not getattr(dist_mod, "is_available", lambda: False)():
395
- return
396
- if not dist_mod.is_initialized():
397
- ddp_ok, _, _, _ = ropt.DistributedUtils.setup_ddp()
398
- if not ddp_ok or not dist_mod.is_initialized():
399
- return
400
- dist_mod.barrier()
401
- except Exception as exc:
402
- print(f"[DDP] barrier failed during {reason}: {exc}", flush=True)
403
- raise
404
-
405
- data_dir = Path(cfg["data_dir"])
406
- data_dir.mkdir(parents=True, exist_ok=True)
407
-
408
- prop_test = cfg.get("prop_test", 0.25)
409
- rand_seed = cfg.get("rand_seed", 13)
410
- epochs = cfg.get("epochs", 50)
411
- output_dir = args.output_dir or cfg.get("output_dir")
412
- if isinstance(output_dir, str) and output_dir.strip():
413
- resolved = resolve_path(output_dir, config_path.parent)
414
- if resolved is not None:
415
- output_dir = str(resolved)
416
- reuse_best_params = bool(args.reuse_best_params or cfg.get("reuse_best_params", False))
417
- xgb_max_depth_max = int(cfg.get("xgb_max_depth_max", 25))
418
- xgb_n_estimators_max = int(cfg.get("xgb_n_estimators_max", 500))
419
- optuna_storage = cfg.get("optuna_storage")
420
- optuna_study_prefix = cfg.get("optuna_study_prefix")
421
- best_params_files = cfg.get("best_params_files")
422
-
423
- model_names = build_model_names(
424
- cfg["model_list"], cfg["model_categories"])
425
- if not model_names:
426
- raise ValueError(
427
- "No model names generated from model_list/model_categories.")
428
-
429
- results: Dict[str, ropt.BayesOptModel] = {}
430
- trained_keys_by_model: Dict[str, List[str]] = {}
431
-
432
- for model_name in model_names:
433
- # Per-dataset training loop: load data, split train/test, and train requested models.
434
- csv_path = data_dir / f"{model_name}.csv"
435
- if not csv_path.exists():
436
- raise FileNotFoundError(f"Missing dataset: {csv_path}")
437
-
438
- print(f"\n=== Processing model {model_name} ===")
439
- raw = pd.read_csv(csv_path, low_memory=False)
440
- raw = raw.copy()
441
- for col in raw.columns:
442
- s = raw[col]
443
- if pd.api.types.is_numeric_dtype(s):
444
- raw[col] = pd.to_numeric(s, errors="coerce").fillna(0)
445
- else:
446
- raw[col] = s.astype("object").fillna("<NA>")
447
-
448
- train_df, test_df = train_test_split(
449
- raw, test_size=prop_test, random_state=rand_seed
450
- )
451
-
452
- use_resn_dp = args.use_resn_dp or cfg.get(
453
- "use_resn_data_parallel", False)
454
- use_ft_dp = args.use_ft_dp or cfg.get("use_ft_data_parallel", True)
455
- use_resn_ddp = args.use_resn_ddp or cfg.get("use_resn_ddp", False)
456
- use_ft_ddp = args.use_ft_ddp or cfg.get("use_ft_ddp", False)
457
- use_gnn_dp = args.use_gnn_dp or cfg.get("use_gnn_data_parallel", False)
458
- use_gnn_ddp = args.use_gnn_ddp or cfg.get("use_gnn_ddp", False)
459
- gnn_use_ann = cfg.get("gnn_use_approx_knn", True)
460
- if args.gnn_no_ann:
461
- gnn_use_ann = False
462
- gnn_threshold = args.gnn_ann_threshold if args.gnn_ann_threshold is not None else cfg.get(
463
- "gnn_approx_knn_threshold", 50000)
464
- gnn_graph_cache = args.gnn_graph_cache or cfg.get("gnn_graph_cache")
465
- if isinstance(gnn_graph_cache, str) and gnn_graph_cache.strip():
466
- resolved_cache = resolve_path(gnn_graph_cache, config_path.parent)
467
- if resolved_cache is not None:
468
- gnn_graph_cache = str(resolved_cache)
469
- gnn_max_gpu_nodes = args.gnn_max_gpu_nodes if args.gnn_max_gpu_nodes is not None else cfg.get(
470
- "gnn_max_gpu_knn_nodes", 200000)
471
- gnn_gpu_mem_ratio = args.gnn_gpu_mem_ratio if args.gnn_gpu_mem_ratio is not None else cfg.get(
472
- "gnn_knn_gpu_mem_ratio", 0.9)
473
- gnn_gpu_mem_overhead = args.gnn_gpu_mem_overhead if args.gnn_gpu_mem_overhead is not None else cfg.get(
474
- "gnn_knn_gpu_mem_overhead", 2.0)
475
-
476
- binary_target = cfg.get("binary_target") or cfg.get("binary_resp_nme")
477
- feature_list = cfg.get("feature_list")
478
- categorical_features = cfg.get("categorical_features")
479
-
480
- ft_role = args.ft_role or cfg.get("ft_role", "model")
481
- if args.ft_as_feature and args.ft_role is None:
482
- # Keep legacy behavior as a convenience alias only when the config
483
- # didn't already request a non-default FT role.
484
- if str(cfg.get("ft_role", "model")) == "model":
485
- ft_role = "embedding"
486
- ft_feature_prefix = str(cfg.get("ft_feature_prefix", args.ft_feature_prefix))
487
- ft_num_numeric_tokens = cfg.get("ft_num_numeric_tokens")
488
-
489
- model = ropt.BayesOptModel(
490
- train_df,
491
- test_df,
492
- model_name,
493
- cfg["target"],
494
- cfg["weight"],
495
- feature_list,
496
- binary_resp_nme=binary_target,
497
- cate_list=categorical_features,
498
- prop_test=prop_test,
499
- rand_seed=rand_seed,
500
- epochs=epochs,
501
- use_resn_data_parallel=use_resn_dp,
502
- use_ft_data_parallel=use_ft_dp,
503
- use_resn_ddp=use_resn_ddp,
504
- use_ft_ddp=use_ft_ddp,
505
- use_gnn_data_parallel=use_gnn_dp,
506
- use_gnn_ddp=use_gnn_ddp,
507
- output_dir=output_dir,
508
- xgb_max_depth_max=xgb_max_depth_max,
509
- xgb_n_estimators_max=xgb_n_estimators_max,
510
- resn_weight_decay=cfg.get("resn_weight_decay"),
511
- final_ensemble=bool(cfg.get("final_ensemble", False)),
512
- final_ensemble_k=int(cfg.get("final_ensemble_k", 3)),
513
- final_refit=bool(cfg.get("final_refit", True)),
514
- optuna_storage=optuna_storage,
515
- optuna_study_prefix=optuna_study_prefix,
516
- best_params_files=best_params_files,
517
- gnn_use_approx_knn=gnn_use_ann,
518
- gnn_approx_knn_threshold=gnn_threshold,
519
- gnn_graph_cache=gnn_graph_cache,
520
- gnn_max_gpu_knn_nodes=gnn_max_gpu_nodes,
521
- gnn_knn_gpu_mem_ratio=gnn_gpu_mem_ratio,
522
- gnn_knn_gpu_mem_overhead=gnn_gpu_mem_overhead,
523
- ft_role=ft_role,
524
- ft_feature_prefix=ft_feature_prefix,
525
- ft_num_numeric_tokens=ft_num_numeric_tokens,
526
- infer_categorical_max_unique=int(cfg.get("infer_categorical_max_unique", 50)),
527
- infer_categorical_max_ratio=float(cfg.get("infer_categorical_max_ratio", 0.05)),
528
- reuse_best_params=reuse_best_params,
529
- )
530
-
531
- if plot_requested:
532
- plot_cfg = cfg.get("plot", {})
533
- legacy_lift_flags = {
534
- "glm": cfg.get("plot_lift_glm", False),
535
- "xgb": cfg.get("plot_lift_xgb", False),
536
- "resn": cfg.get("plot_lift_resn", False),
537
- "ft": cfg.get("plot_lift_ft", False),
538
- }
539
- plot_enabled = plot_cfg.get("enable", any(legacy_lift_flags.values()))
540
- if plot_enabled and plot_cfg.get("pre_oneway", False) and plot_cfg.get("oneway", True):
541
- n_bins = int(plot_cfg.get("n_bins", 10))
542
- model.plot_oneway(n_bins=n_bins, plot_subdir="oneway/pre")
543
-
544
- if "all" in args.model_keys:
545
- requested_keys = ["glm", "xgb", "resn", "ft", "gnn"]
546
- else:
547
- requested_keys = args.model_keys
548
- requested_keys = dedupe_preserve_order(requested_keys)
549
-
550
- if ft_role != "model":
551
- requested_keys = [k for k in requested_keys if k != "ft"]
552
- if not requested_keys:
553
- stack_keys = args.stack_model_keys or cfg.get("stack_model_keys")
554
- if stack_keys:
555
- if "all" in stack_keys:
556
- requested_keys = ["glm", "xgb", "resn", "gnn"]
557
- else:
558
- requested_keys = [k for k in stack_keys if k != "ft"]
559
- requested_keys = dedupe_preserve_order(requested_keys)
560
- if dist_active:
561
- ft_trainer = model.trainers.get("ft")
562
- if ft_trainer is None:
563
- raise ValueError("FT trainer is not available.")
564
- ft_trainer_uses_ddp = bool(
565
- getattr(ft_trainer, "enable_distributed_optuna", False))
566
- if not ft_trainer_uses_ddp:
567
- raise ValueError(
568
- "FT embedding under torchrun requires enabling FT DDP (use --use-ft-ddp or set use_ft_ddp=true)."
569
- )
570
- missing = [key for key in requested_keys if key not in model.trainers]
571
- if missing:
572
- raise ValueError(
573
- f"Trainer(s) {missing} not available for {model_name}")
574
-
575
- executed_keys: List[str] = []
576
- if ft_role != "model":
577
- print(
578
- f"Optimizing ft as {ft_role} for {model_name} (max_evals={args.max_evals})")
579
- model.optimize_model("ft", max_evals=args.max_evals)
580
- model.trainers["ft"].save()
581
- if getattr(ropt, "torch", None) is not None and ropt.torch.cuda.is_available():
582
- ropt.free_cuda()
583
- for key in requested_keys:
584
- trainer = model.trainers[key]
585
- trainer_uses_ddp = bool(
586
- getattr(trainer, "enable_distributed_optuna", False))
587
- if dist_active and not trainer_uses_ddp:
588
- if dist_rank != 0:
589
- print(
590
- f"[Rank {dist_rank}] Skip {model_name}/{key} because trainer is not DDP-enabled."
591
- )
592
- _ddp_barrier(f"start_non_ddp_{model_name}_{key}")
593
- if dist_rank != 0:
594
- _ddp_barrier(f"finish_non_ddp_{model_name}_{key}")
595
- continue
596
-
597
- print(
598
- f"Optimizing {key} for {model_name} (max_evals={args.max_evals})")
599
- model.optimize_model(key, max_evals=args.max_evals)
600
- model.trainers[key].save()
601
- _plot_loss_curve_for_trainer(model_name, model.trainers[key])
602
- if key in PYTORCH_TRAINERS:
603
- ropt.free_cuda()
604
- if dist_active and not trainer_uses_ddp:
605
- _ddp_barrier(f"finish_non_ddp_{model_name}_{key}")
606
- executed_keys.append(key)
607
-
608
- if not executed_keys:
609
- continue
610
-
611
- results[model_name] = model
612
- trained_keys_by_model[model_name] = executed_keys
613
-
614
- if not plot_requested:
615
- return
616
-
617
- for name, model in results.items():
618
- _plot_curves_for_model(
619
- model,
620
- trained_keys_by_model.get(name, []),
621
- cfg,
622
- )
623
-
624
-
625
- def main() -> None:
626
- if configure_run_logging:
627
- configure_run_logging(prefix="bayesopt_entry")
628
- args = _parse_args()
629
- train_from_config(args)
630
-
631
-
632
- if __name__ == "__main__":
633
- main()
@@ -1,36 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import argparse
4
- from pathlib import Path
5
- from typing import Optional
6
-
7
- try:
8
- from .notebook_utils import run_from_config # type: ignore
9
- except Exception: # pragma: no cover
10
- from notebook_utils import run_from_config # type: ignore
11
-
12
-
13
- def run(config_json: str | Path) -> None:
14
- """Run explain by config.json (runner.mode=explain)."""
15
- run_from_config(config_json)
16
-
17
-
18
- def _build_parser() -> argparse.ArgumentParser:
19
- parser = argparse.ArgumentParser(
20
- description="Explain_Run: run explain by config.json (runner.mode=explain)."
21
- )
22
- parser.add_argument(
23
- "--config-json",
24
- required=True,
25
- help="Path to config.json (relative paths are resolved from ins_pricing/modelling/ when possible).",
26
- )
27
- return parser
28
-
29
-
30
- def main(argv: Optional[list[str]] = None) -> None:
31
- args = _build_parser().parse_args(argv)
32
- run(args.config_json)
33
-
34
-
35
- if __name__ == "__main__":
36
- main()