imt-ring 1.6.24__py3-none-any.whl → 1.6.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: imt-ring
3
- Version: 1.6.24
3
+ Version: 1.6.25
4
4
  Summary: RING: Recurrent Inertial Graph-based Estimator
5
5
  Author-email: Simon Bachhuber <simon.bachhuber@fau.de>
6
6
  Project-URL: Homepage, https://github.com/SimiPixel/ring
@@ -54,7 +54,7 @@ ring/io/xml/to_xml.py,sha256=fohb-jWMf2cxVdT5dmknsGyrNMseICSbKEz_urbaWbQ,3407
54
54
  ring/ml/__init__.py,sha256=nbh48gaswWeY4S4vT1sply_3ROj2DQ7agjoLR4Ho3T8,1517
55
55
  ring/ml/base.py,sha256=lfwEZLBDglOSRWChUHoH1kezefhttPV9TMEpNIqsMNw,9972
56
56
  ring/ml/callbacks.py,sha256=W19QF6_uvaNCjs8ObsjNXD7mv9gFgJBixdRSbB_BynE,13301
57
- ring/ml/ml_utils.py,sha256=xqy9BnLy8IKVqkFS9mlZsGJXSbThI9zZxZ5rhl8LSI8,7144
57
+ ring/ml/ml_utils.py,sha256=uAQ6qXFT2UxILwbKzFNPxaBeY4X56l9pixdv91MKQis,9072
58
58
  ring/ml/optimizer.py,sha256=TZF0_LmnewzmGVso-zIQJtpWguUW0fW3HeRpIdG_qoI,4763
59
59
  ring/ml/ringnet.py,sha256=mef7jyN2QcApJmQGH3HYZyTV-00q8YpsYOKhW0-ku1k,8973
60
60
  ring/ml/rnno_v1.py,sha256=2qE08OIvTJ5PvSxKpYGzGSrvEImWrdAT_qslZ7jP5tA,1372
@@ -86,7 +86,7 @@ ring/utils/randomize_sys.py,sha256=G_vBIo0OwQkXL2u0djwbaoaeb02C4LQCTNNloOYIU2M,3
86
86
  ring/utils/utils.py,sha256=tJaWXLGOTwkxJQj2l23dX97wO3aZYhM2qd7eNuMRs84,6907
87
87
  ring/utils/register_gym_envs/__init__.py,sha256=PtPIRBQJ16339xZ9G9VpvqrvcGbQ_Pk_SUz4tQPa9nQ,94
88
88
  ring/utils/register_gym_envs/saddle.py,sha256=tA5CyW_akSXyDm0xJ83CtOrUMVElH0f9vZtEDDJQalI,4422
89
- imt_ring-1.6.24.dist-info/METADATA,sha256=vaXarRf1r5xZeGK-av_regQ2LgaCTnb0Th43bDLXgN8,4089
90
- imt_ring-1.6.24.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
91
- imt_ring-1.6.24.dist-info/top_level.txt,sha256=EiT790-lAyi8iwTzJArH3f2k77rwhDn00q-4PlmvDQo,5
92
- imt_ring-1.6.24.dist-info/RECORD,,
89
+ imt_ring-1.6.25.dist-info/METADATA,sha256=8-77JWmLIy6E3nJVd2VqfxwoKHt9b26ruipjMKR2K8I,4089
90
+ imt_ring-1.6.25.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
91
+ imt_ring-1.6.25.dist-info/top_level.txt,sha256=EiT790-lAyi8iwTzJArH3f2k77rwhDn00q-4PlmvDQo,5
92
+ imt_ring-1.6.25.dist-info/RECORD,,
ring/ml/ml_utils.py CHANGED
@@ -243,5 +243,60 @@ def save_model_tf(jax_func, path: str, *input, validate: bool = True):
243
243
  )
244
244
 
245
245
 
246
+ def to_onnx(
247
+ fn,
248
+ output_path,
249
+ *args: tuple[np.ndarray],
250
+ in_args_names: Optional[list[str]] = None,
251
+ out_args_names: Optional[list[str]] = None,
252
+ validate: bool = False,
253
+ ):
254
+ import jax.experimental.jax2tf as jax2tf
255
+ import tensorflow as tf
256
+ import tf2onnx
257
+
258
+ tf_fn = tf.function(jax2tf.convert(fn, enable_xla=False))
259
+ tf_args = [tf.TensorSpec(np.shape(x), np.result_type(x)) for x in args]
260
+ tf2onnx.convert.from_function(
261
+ tf_fn, input_signature=tf_args, output_path=output_path
262
+ )
263
+
264
+ if in_args_names is not None or out_args_names is not None:
265
+ import onnx
266
+ from sor4onnx import rename
267
+
268
+ model = onnx.load(output_path)
269
+
270
+ if in_args_names is not None:
271
+ old_names = [inp.name for inp in model.graph.input]
272
+ assert len(old_names) == len(in_args_names)
273
+ for old_name, new_name in zip(old_names, in_args_names):
274
+ model = rename([old_name, new_name], None, model, None, mode="inputs")
275
+
276
+ if out_args_names is not None:
277
+ old_names = [out.name for out in model.graph.output]
278
+ assert len(old_names) == len(out_args_names)
279
+ for old_name, new_name in zip(old_names, out_args_names):
280
+ model = rename([old_name, new_name], None, model, None, mode="outputs")
281
+
282
+ onnx.save(model, output_path)
283
+
284
+ if validate:
285
+ import onnxruntime as ort
286
+
287
+ output_jax = fn(*args)
288
+ session = ort.InferenceSession(output_path)
289
+ input_names = [inp.name for inp in session.get_inputs()]
290
+ output_onnx = session.run(
291
+ None, {name: np.array(arg) for name, arg in zip(input_names, args)}
292
+ )
293
+
294
+ for o1, o2 in zip(output_jax, output_onnx):
295
+ assert np.allclose(o1, o2, atol=1e-5, rtol=1e-5)
296
+
297
+ if out_args_names is not None:
298
+ assert [out.name for out in session.get_outputs()] == out_args_names
299
+
300
+
246
301
  def _unknown_link_names(N: int):
247
302
  return [f"link{i}" for i in range(N)]