imsciences 0.9.6.2__py3-none-any.whl → 0.9.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of imsciences might be problematic. Click here for more details.
- imsciences/pull.py +153 -50
- {imsciences-0.9.6.2.dist-info → imsciences-0.9.6.3.dist-info}/METADATA +1 -1
- imsciences-0.9.6.3.dist-info/PKG-INFO-TomG-HP-290722 +355 -0
- imsciences-0.9.6.3.dist-info/RECORD +12 -0
- imsciences-0.9.6.2.dist-info/RECORD +0 -11
- {imsciences-0.9.6.2.dist-info → imsciences-0.9.6.3.dist-info}/LICENSE.txt +0 -0
- {imsciences-0.9.6.2.dist-info → imsciences-0.9.6.3.dist-info}/WHEEL +0 -0
- {imsciences-0.9.6.2.dist-info → imsciences-0.9.6.3.dist-info}/top_level.txt +0 -0
imsciences/pull.py
CHANGED
|
@@ -1171,20 +1171,22 @@ class datapull:
|
|
|
1171
1171
|
|
|
1172
1172
|
def pull_macro_ons_uk(self, cdid_list=None, week_start_day="mon", sector=None):
|
|
1173
1173
|
"""
|
|
1174
|
-
Fetches time series data for multiple CDIDs from the ONS API, converts it to daily frequency,
|
|
1174
|
+
Fetches time series data for multiple CDIDs from the ONS API, converts it to daily frequency,
|
|
1175
1175
|
aggregates it to weekly averages, and renames variables based on specified rules.
|
|
1176
1176
|
|
|
1177
1177
|
Parameters:
|
|
1178
|
-
cdid_list (list): A list of additional CDIDs to fetch (e.g., ['JP9Z', 'UKPOP']). Defaults to None.
|
|
1179
|
-
week_start_day (str): The day the week starts on (
|
|
1180
|
-
sector (str): The sector for which the standard CDIDs are fetched
|
|
1178
|
+
cdid_list (list, optional): A list of additional CDIDs to fetch (e.g., ['JP9Z', 'UKPOP']). Defaults to None.
|
|
1179
|
+
week_start_day (str, optional): The day the week starts on ('mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'). Defaults to 'mon'.
|
|
1180
|
+
sector (str or list, optional): The sector(s) for which the standard CDIDs are fetched
|
|
1181
|
+
(e.g., 'fast_food', ['fast_food', 'retail']). Defaults to None (only default CDIDs).
|
|
1181
1182
|
|
|
1182
1183
|
Returns:
|
|
1183
|
-
pd.DataFrame: A DataFrame with weekly frequency, containing
|
|
1184
|
-
|
|
1184
|
+
pd.DataFrame: A DataFrame with weekly frequency, containing an 'OBS' column (week commencing date)
|
|
1185
|
+
and all series as renamed columns (e.g., 'macro_retail_sales_uk').
|
|
1186
|
+
Returns an empty DataFrame if no data is fetched or processed.
|
|
1185
1187
|
"""
|
|
1186
1188
|
# Define CDIDs for sectors and defaults
|
|
1187
|
-
|
|
1189
|
+
sector_cdids_map = {
|
|
1188
1190
|
"fast_food": ["L7TD", "L78Q", "DOAD"],
|
|
1189
1191
|
"clothing_footwear": ["D7BW","D7GO","CHBJ"],
|
|
1190
1192
|
"fuel": ["A9FS","L7FP","CHOL"],
|
|
@@ -1192,14 +1194,29 @@ class datapull:
|
|
|
1192
1194
|
"default": ["D7G7", "MGSX", "UKPOP", "IHYQ", "YBEZ", "MS77"],
|
|
1193
1195
|
}
|
|
1194
1196
|
|
|
1195
|
-
default_cdids =
|
|
1196
|
-
sector_specific_cdids =
|
|
1197
|
-
|
|
1197
|
+
default_cdids = sector_cdids_map["default"]
|
|
1198
|
+
sector_specific_cdids = [] # Initialize empty list for sector CDIDs
|
|
1199
|
+
|
|
1200
|
+
if sector: # Check if sector is not None or empty
|
|
1201
|
+
if isinstance(sector, str):
|
|
1202
|
+
# If it's a single string, wrap it in a list
|
|
1203
|
+
sector_list = [sector]
|
|
1204
|
+
elif isinstance(sector, list):
|
|
1205
|
+
# If it's already a list, use it directly
|
|
1206
|
+
sector_list = sector
|
|
1207
|
+
else:
|
|
1208
|
+
raise TypeError("`sector` parameter must be a string or a list of strings.")
|
|
1209
|
+
|
|
1210
|
+
# Iterate through the list of sectors and collect their CDIDs
|
|
1211
|
+
for sec in sector_list:
|
|
1212
|
+
sector_specific_cdids.extend(sector_cdids_map.get(sec, [])) # Use extend to add items from the list
|
|
1213
|
+
|
|
1214
|
+
standard_cdids = list(set(default_cdids + sector_specific_cdids)) # Combine default and selected sector CDIDs, ensure uniqueness
|
|
1198
1215
|
|
|
1199
|
-
# Combine standard CDIDs and additional CDIDs
|
|
1216
|
+
# Combine standard CDIDs and any additional user-provided CDIDs
|
|
1200
1217
|
if cdid_list is None:
|
|
1201
1218
|
cdid_list = []
|
|
1202
|
-
|
|
1219
|
+
final_cdid_list = list(set(standard_cdids + cdid_list)) # Ensure uniqueness in the final list
|
|
1203
1220
|
|
|
1204
1221
|
base_search_url = "https://api.beta.ons.gov.uk/v1/search?content_type=timeseries&cdids="
|
|
1205
1222
|
base_data_url = "https://api.beta.ons.gov.uk/v1/data?uri="
|
|
@@ -1207,41 +1224,57 @@ class datapull:
|
|
|
1207
1224
|
|
|
1208
1225
|
# Map week start day to pandas weekday convention
|
|
1209
1226
|
days_map = {"mon": 0, "tue": 1, "wed": 2, "thu": 3, "fri": 4, "sat": 5, "sun": 6}
|
|
1210
|
-
if week_start_day not in days_map:
|
|
1227
|
+
if week_start_day.lower() not in days_map:
|
|
1211
1228
|
raise ValueError("Invalid week start day. Choose from: " + ", ".join(days_map.keys()))
|
|
1212
|
-
week_start = days_map[week_start_day]
|
|
1229
|
+
week_start = days_map[week_start_day.lower()] # Use lower() for case-insensitivity
|
|
1213
1230
|
|
|
1214
|
-
for cdid in
|
|
1231
|
+
for cdid in final_cdid_list: # Use the final combined list
|
|
1215
1232
|
try:
|
|
1216
1233
|
# Search for the series
|
|
1217
1234
|
search_url = f"{base_search_url}{cdid}"
|
|
1218
|
-
search_response = requests.get(search_url)
|
|
1235
|
+
search_response = requests.get(search_url, timeout=30) # Add timeout
|
|
1219
1236
|
search_response.raise_for_status()
|
|
1220
1237
|
search_data = search_response.json()
|
|
1221
1238
|
|
|
1222
1239
|
items = search_data.get("items", [])
|
|
1223
1240
|
if not items:
|
|
1224
|
-
print(f"No data found for CDID: {cdid}")
|
|
1241
|
+
print(f"Warning: No data found for CDID: {cdid}")
|
|
1225
1242
|
continue
|
|
1226
1243
|
|
|
1227
1244
|
# Extract series name and latest release URI
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
|
|
1245
|
+
# Find the item with the most recent release_date
|
|
1246
|
+
latest_item = None
|
|
1247
|
+
latest_date = None
|
|
1248
|
+
for item in items:
|
|
1249
|
+
if "release_date" in item:
|
|
1250
|
+
try:
|
|
1251
|
+
# Ensure timezone awareness for comparison
|
|
1252
|
+
current_date = datetime.fromisoformat(item["release_date"].replace("Z", "+00:00"))
|
|
1253
|
+
if latest_date is None or current_date > latest_date:
|
|
1254
|
+
latest_date = current_date
|
|
1255
|
+
latest_item = item
|
|
1256
|
+
except ValueError:
|
|
1257
|
+
print(f"Warning: Could not parse release_date '{item['release_date']}' for CDID {cdid}")
|
|
1258
|
+
continue # Skip this item if date is invalid
|
|
1259
|
+
|
|
1260
|
+
if latest_item is None:
|
|
1261
|
+
print(f"Warning: No valid release date found for CDID: {cdid}")
|
|
1262
|
+
continue
|
|
1263
|
+
|
|
1264
|
+
series_name = latest_item.get("title", f"Series_{cdid}") # Use title from the latest item
|
|
1265
|
+
latest_uri = latest_item.get("uri")
|
|
1266
|
+
if not latest_uri:
|
|
1267
|
+
print(f"Warning: No URI found for the latest release of CDID: {cdid}")
|
|
1268
|
+
continue
|
|
1237
1269
|
|
|
1238
1270
|
# Fetch the dataset
|
|
1239
1271
|
data_url = f"{base_data_url}{latest_uri}"
|
|
1240
|
-
data_response = requests.get(data_url)
|
|
1272
|
+
data_response = requests.get(data_url, timeout=30) # Add timeout
|
|
1241
1273
|
data_response.raise_for_status()
|
|
1242
1274
|
data_json = data_response.json()
|
|
1243
1275
|
|
|
1244
1276
|
# Detect the frequency and process accordingly
|
|
1277
|
+
frequency_key = None
|
|
1245
1278
|
if "months" in data_json and data_json["months"]:
|
|
1246
1279
|
frequency_key = "months"
|
|
1247
1280
|
elif "quarters" in data_json and data_json["quarters"]:
|
|
@@ -1249,72 +1282,142 @@ class datapull:
|
|
|
1249
1282
|
elif "years" in data_json and data_json["years"]:
|
|
1250
1283
|
frequency_key = "years"
|
|
1251
1284
|
else:
|
|
1252
|
-
print(f"Unsupported frequency or no data for CDID: {cdid}")
|
|
1285
|
+
print(f"Warning: Unsupported frequency or no data values found for CDID: {cdid} at URI {latest_uri}")
|
|
1253
1286
|
continue
|
|
1254
1287
|
|
|
1255
1288
|
# Prepare the DataFrame
|
|
1289
|
+
if not data_json[frequency_key]: # Check if the list of values is empty
|
|
1290
|
+
print(f"Warning: Empty data list for frequency '{frequency_key}' for CDID: {cdid}")
|
|
1291
|
+
continue
|
|
1292
|
+
|
|
1256
1293
|
df = pd.DataFrame(data_json[frequency_key])
|
|
1257
1294
|
|
|
1258
|
-
#
|
|
1259
|
-
if
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
def parse_quarter(quarter_str):
|
|
1263
|
-
year, qtr = quarter_str.split(" Q")
|
|
1264
|
-
month = {"1": 1, "2": 4, "3": 7, "4": 10}[qtr]
|
|
1265
|
-
return datetime(int(year), month, 1)
|
|
1266
|
-
df["date"] = df["date"].apply(parse_quarter)
|
|
1267
|
-
elif frequency_key == "years":
|
|
1268
|
-
df["date"] = pd.to_datetime(df["date"], format="%Y", errors="coerce")
|
|
1295
|
+
# Check if essential columns exist
|
|
1296
|
+
if "date" not in df.columns or "value" not in df.columns:
|
|
1297
|
+
print(f"Warning: Missing 'date' or 'value' column for CDID: {cdid}")
|
|
1298
|
+
continue
|
|
1269
1299
|
|
|
1300
|
+
# Parse the 'date' field based on frequency
|
|
1301
|
+
try:
|
|
1302
|
+
if frequency_key == "months":
|
|
1303
|
+
# Handles "YYYY Mon" format (e.g., "2023 FEB") - adjust if format differs
|
|
1304
|
+
df["date"] = pd.to_datetime(df["date"], format="%Y %b", errors="coerce")
|
|
1305
|
+
elif frequency_key == "quarters":
|
|
1306
|
+
def parse_quarter(quarter_str):
|
|
1307
|
+
try:
|
|
1308
|
+
year, qtr = quarter_str.split(" Q")
|
|
1309
|
+
month = {"1": 1, "2": 4, "3": 7, "4": 10}[qtr]
|
|
1310
|
+
return datetime(int(year), month, 1)
|
|
1311
|
+
except (ValueError, KeyError):
|
|
1312
|
+
return pd.NaT # Return Not a Time for parsing errors
|
|
1313
|
+
df["date"] = df["date"].apply(parse_quarter)
|
|
1314
|
+
elif frequency_key == "years":
|
|
1315
|
+
df["date"] = pd.to_datetime(df["date"], format="%Y", errors="coerce")
|
|
1316
|
+
except Exception as e:
|
|
1317
|
+
print(f"Error parsing date for CDID {cdid} with frequency {frequency_key}: {e}")
|
|
1318
|
+
continue # Skip this series if date parsing fails
|
|
1319
|
+
|
|
1320
|
+
# Coerce value to numeric, handle potential errors
|
|
1270
1321
|
df["value"] = pd.to_numeric(df["value"], errors="coerce")
|
|
1322
|
+
|
|
1323
|
+
# Drop rows where date or value parsing failed
|
|
1324
|
+
df.dropna(subset=["date", "value"], inplace=True)
|
|
1325
|
+
|
|
1326
|
+
if df.empty:
|
|
1327
|
+
print(f"Warning: No valid data points after processing for CDID: {cdid}")
|
|
1328
|
+
continue
|
|
1329
|
+
|
|
1271
1330
|
df.rename(columns={"value": series_name}, inplace=True)
|
|
1272
1331
|
|
|
1273
1332
|
# Combine data
|
|
1274
|
-
|
|
1333
|
+
df_subset = df.loc[:, ["date", series_name]].reset_index(drop=True) # Explicitly select columns
|
|
1275
1334
|
if combined_df.empty:
|
|
1276
|
-
combined_df =
|
|
1335
|
+
combined_df = df_subset
|
|
1277
1336
|
else:
|
|
1278
|
-
|
|
1337
|
+
# Use outer merge to keep all dates, sort afterwards
|
|
1338
|
+
combined_df = pd.merge(combined_df, df_subset, on="date", how="outer")
|
|
1279
1339
|
|
|
1280
1340
|
except requests.exceptions.RequestException as e:
|
|
1281
1341
|
print(f"Error fetching data for CDID {cdid}: {e}")
|
|
1282
|
-
except (KeyError, ValueError) as e:
|
|
1342
|
+
except (KeyError, ValueError, TypeError) as e: # Added TypeError
|
|
1283
1343
|
print(f"Error processing data for CDID {cdid}: {e}")
|
|
1344
|
+
except Exception as e: # Catch unexpected errors
|
|
1345
|
+
print(f"An unexpected error occurred for CDID {cdid}: {e}")
|
|
1346
|
+
|
|
1284
1347
|
|
|
1285
1348
|
if not combined_df.empty:
|
|
1349
|
+
# Sort by date after merging to ensure correct forward fill
|
|
1350
|
+
combined_df.sort_values(by="date", inplace=True)
|
|
1351
|
+
combined_df.reset_index(drop=True, inplace=True)
|
|
1352
|
+
|
|
1353
|
+
# Create a complete daily date range
|
|
1286
1354
|
min_date = combined_df["date"].min()
|
|
1287
|
-
max_date
|
|
1355
|
+
# Ensure max_date is timezone-naive if min_date is, or consistent otherwise
|
|
1356
|
+
max_date = pd.Timestamp(datetime.today().date()) # Use today's date, timezone-naive
|
|
1357
|
+
|
|
1358
|
+
if pd.isna(min_date):
|
|
1359
|
+
print("Error: Minimum date is NaT, cannot create date range.")
|
|
1360
|
+
return pd.DataFrame()
|
|
1361
|
+
|
|
1362
|
+
# Make sure min_date is not NaT before creating the range
|
|
1288
1363
|
date_range = pd.date_range(start=min_date, end=max_date, freq='D')
|
|
1289
1364
|
daily_df = pd.DataFrame(date_range, columns=['date'])
|
|
1365
|
+
|
|
1366
|
+
# Merge with original data and forward fill
|
|
1290
1367
|
daily_df = pd.merge(daily_df, combined_df, on="date", how="left")
|
|
1291
1368
|
daily_df = daily_df.ffill()
|
|
1292
1369
|
|
|
1370
|
+
# Drop rows before the first valid data point after ffill
|
|
1371
|
+
first_valid_index = daily_df.dropna(subset=daily_df.columns.difference(['date'])).index.min()
|
|
1372
|
+
if pd.notna(first_valid_index):
|
|
1373
|
+
daily_df = daily_df.loc[first_valid_index:]
|
|
1374
|
+
else:
|
|
1375
|
+
print("Warning: No valid data points found after forward filling.")
|
|
1376
|
+
return pd.DataFrame() # Return empty if ffill results in no data
|
|
1377
|
+
|
|
1378
|
+
|
|
1293
1379
|
# Aggregate to weekly frequency
|
|
1294
|
-
|
|
1380
|
+
# Ensure 'date' column is datetime type before dt accessor
|
|
1381
|
+
daily_df['date'] = pd.to_datetime(daily_df['date'])
|
|
1382
|
+
daily_df["week_commencing"] = daily_df["date"] - pd.to_timedelta((daily_df["date"].dt.weekday - week_start + 7) % 7, unit='D') # Corrected logic for week start
|
|
1383
|
+
# Group by week_commencing and calculate mean for numeric columns only
|
|
1295
1384
|
weekly_df = daily_df.groupby("week_commencing").mean(numeric_only=True).reset_index()
|
|
1296
1385
|
|
|
1386
|
+
|
|
1297
1387
|
def clean_column_name(name):
|
|
1388
|
+
# Remove content within parentheses (e.g., CPI INDEX 00: ALL ITEMS 2015=100)
|
|
1298
1389
|
name = re.sub(r"\(.*?\)", "", name)
|
|
1390
|
+
# Take only the part before the first colon if present
|
|
1299
1391
|
name = re.split(r":", name)[0]
|
|
1300
|
-
|
|
1392
|
+
# Remove digits
|
|
1393
|
+
#name = re.sub(r"\d+", "", name) # Reconsider removing all digits, might be needed for some series
|
|
1394
|
+
# Remove specific words like 'annual', 'rate' case-insensitively
|
|
1301
1395
|
name = re.sub(r"\b(annual|rate)\b", "", name, flags=re.IGNORECASE)
|
|
1396
|
+
# Remove non-alphanumeric characters (except underscore and space)
|
|
1302
1397
|
name = re.sub(r"[^\w\s]", "", name)
|
|
1398
|
+
# Replace spaces with underscores
|
|
1399
|
+
name = name.strip() # Remove leading/trailing whitespace
|
|
1303
1400
|
name = name.replace(" ", "_")
|
|
1401
|
+
# Replace multiple underscores with a single one
|
|
1304
1402
|
name = re.sub(r"_+", "_", name)
|
|
1403
|
+
# Remove trailing underscores
|
|
1305
1404
|
name = name.rstrip("_")
|
|
1405
|
+
# Add prefix and suffix
|
|
1306
1406
|
return f"macro_{name.lower()}_uk"
|
|
1307
1407
|
|
|
1408
|
+
# Apply cleaning function to relevant columns
|
|
1308
1409
|
weekly_df.columns = [clean_column_name(col) if col != "week_commencing" else col for col in weekly_df.columns]
|
|
1309
|
-
weekly_df.rename(columns={"week_commencing": "OBS"}, inplace=True)
|
|
1410
|
+
weekly_df.rename(columns={"week_commencing": "OBS"}, inplace=True) # Rename week commencing col
|
|
1310
1411
|
|
|
1311
|
-
|
|
1412
|
+
# Optional: Fill remaining NaNs (e.g., at the beginning if ffill didn't cover) with 0
|
|
1413
|
+
# Consider if 0 is the appropriate fill value for your use case
|
|
1414
|
+
# weekly_df = weekly_df.fillna(0)
|
|
1312
1415
|
|
|
1313
1416
|
return weekly_df
|
|
1314
1417
|
else:
|
|
1315
|
-
print("No data
|
|
1418
|
+
print("No data successfully fetched or processed.")
|
|
1316
1419
|
return pd.DataFrame()
|
|
1317
|
-
|
|
1420
|
+
|
|
1318
1421
|
def pull_yfinance(self, tickers=None, week_start_day="mon"):
|
|
1319
1422
|
"""
|
|
1320
1423
|
Fetches stock data for multiple tickers from Yahoo Finance, converts it to daily frequency,
|
|
@@ -0,0 +1,355 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: imsciences
|
|
3
|
+
Version: 0.9.6.3
|
|
4
|
+
Summary: IMS Data Processing Package
|
|
5
|
+
Author: IMS
|
|
6
|
+
Author-email: cam@im-sciences.com
|
|
7
|
+
Keywords: data processing,apis,data analysis,data visualization,machine learning
|
|
8
|
+
Classifier: Development Status :: 3 - Alpha
|
|
9
|
+
Classifier: Intended Audience :: Developers
|
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
|
11
|
+
Classifier: Operating System :: Unix
|
|
12
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
|
13
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
14
|
+
Description-Content-Type: text/markdown
|
|
15
|
+
License-File: LICENSE.txt
|
|
16
|
+
Requires-Dist: pandas
|
|
17
|
+
Requires-Dist: plotly
|
|
18
|
+
Requires-Dist: numpy
|
|
19
|
+
Requires-Dist: fredapi
|
|
20
|
+
Requires-Dist: xgboost
|
|
21
|
+
Requires-Dist: scikit-learn
|
|
22
|
+
Requires-Dist: bs4
|
|
23
|
+
Requires-Dist: yfinance
|
|
24
|
+
Requires-Dist: holidays
|
|
25
|
+
Requires-Dist: google-analytics-data
|
|
26
|
+
Requires-Dist: geopandas
|
|
27
|
+
Requires-Dist: geopy
|
|
28
|
+
|
|
29
|
+
# IMS Package Documentation
|
|
30
|
+
|
|
31
|
+
The **Independent Marketing Sciences** package is a Python library designed to process incoming data into a format tailored for projects, particularly those utilising weekly time series data. This package offers a suite of functions for efficient data collection, manipulation, visualisation and analysis.
|
|
32
|
+
|
|
33
|
+
---
|
|
34
|
+
|
|
35
|
+
## Key Features
|
|
36
|
+
- Seamless data processing for time series workflows.
|
|
37
|
+
- Aggregation, filtering, and transformation of time series data.
|
|
38
|
+
- Visualising Data
|
|
39
|
+
- Integration with external data sources like FRED, Bank of England and ONS.
|
|
40
|
+
|
|
41
|
+
---
|
|
42
|
+
|
|
43
|
+
Table of Contents
|
|
44
|
+
=================
|
|
45
|
+
|
|
46
|
+
1. [Usage](#usage)
|
|
47
|
+
2. [Data Processing for Time Series](#data-processing-for-time-series)
|
|
48
|
+
3. [Data Processing for Incrementality Testing](#data-processing-for-incrementality-testing)
|
|
49
|
+
4. [Data Visualisations](#data-visualisations)
|
|
50
|
+
5. [Data Pulling](#data-pulling)
|
|
51
|
+
6. [Installation](#installation)
|
|
52
|
+
7. [License](#license)
|
|
53
|
+
8. [Roadmap](#roadmap)
|
|
54
|
+
|
|
55
|
+
---
|
|
56
|
+
|
|
57
|
+
## Usage
|
|
58
|
+
|
|
59
|
+
```bash
|
|
60
|
+
from imsciences import dataprocessing, geoprocessing, datapull, datavis
|
|
61
|
+
ims_proc = dataprocessing()
|
|
62
|
+
ims_geo = geoprocessing()
|
|
63
|
+
ims_pull = datapull()
|
|
64
|
+
ims_vis = datavis()
|
|
65
|
+
```
|
|
66
|
+
|
|
67
|
+
## Data Processing for Time Series
|
|
68
|
+
|
|
69
|
+
## 1. `get_wd_levels`
|
|
70
|
+
- **Description**: Get the working directory with the option of moving up parents.
|
|
71
|
+
- **Usage**: `get_wd_levels(levels)`
|
|
72
|
+
- **Example**: `get_wd_levels(0)`
|
|
73
|
+
|
|
74
|
+
## 2. `aggregate_daily_to_wc_long`
|
|
75
|
+
- **Description**: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week.
|
|
76
|
+
- **Usage**: `aggregate_daily_to_wc_long(df, date_column, group_columns, sum_columns, wc, aggregation='sum')`
|
|
77
|
+
- **Example**: `aggregate_daily_to_wc_long(df, 'date', ['platform'], ['cost', 'impressions', 'clicks'], 'mon', 'average')`
|
|
78
|
+
|
|
79
|
+
## 3. `convert_monthly_to_daily`
|
|
80
|
+
- **Description**: Converts monthly data in a DataFrame to daily data by expanding and dividing the numeric values.
|
|
81
|
+
- **Usage**: `convert_monthly_to_daily(df, date_column, divide=True)`
|
|
82
|
+
- **Example**: `convert_monthly_to_daily(df, 'date')`
|
|
83
|
+
|
|
84
|
+
## 4. `week_of_year_mapping`
|
|
85
|
+
- **Description**: Converts a week column in 'yyyy-Www' or 'yyyy-ww' format to week commencing date.
|
|
86
|
+
- **Usage**: `week_of_year_mapping(df, week_col, start_day_str)`
|
|
87
|
+
- **Example**: `week_of_year_mapping(df, 'week', 'mon')`
|
|
88
|
+
|
|
89
|
+
## 5. `rename_cols`
|
|
90
|
+
- **Description**: Renames columns in a pandas DataFrame with a specified prefix or format.
|
|
91
|
+
- **Usage**: `rename_cols(df, name='ame_')`
|
|
92
|
+
- **Example**: `rename_cols(df, 'ame_facebook')`
|
|
93
|
+
|
|
94
|
+
## 6. `merge_new_and_old`
|
|
95
|
+
- **Description**: Creates a new DataFrame by merging old and new dataframes based on a cutoff date.
|
|
96
|
+
- **Usage**: `merge_new_and_old(old_df, old_col, new_df, new_col, cutoff_date, date_col_name='OBS')`
|
|
97
|
+
- **Example**: `merge_new_and_old(df1, 'old_col', df2, 'new_col', '2023-01-15')`
|
|
98
|
+
|
|
99
|
+
## 7. `merge_dataframes_on_column`
|
|
100
|
+
- **Description**: Merge a list of DataFrames on a common column.
|
|
101
|
+
- **Usage**: `merge_dataframes_on_column(dataframes, common_column='OBS', merge_how='outer')`
|
|
102
|
+
- **Example**: `merge_dataframes_on_column([df1, df2, df3], common_column='OBS', merge_how='outer')`
|
|
103
|
+
|
|
104
|
+
## 8. `merge_and_update_dfs`
|
|
105
|
+
- **Description**: Merges two dataframes, updating columns from the second dataframe where values are available.
|
|
106
|
+
- **Usage**: `merge_and_update_dfs(df1, df2, key_column)`
|
|
107
|
+
- **Example**: `merge_and_update_dfs(processed_facebook, finalised_meta, 'OBS')`
|
|
108
|
+
|
|
109
|
+
## 9. `convert_us_to_uk_dates`
|
|
110
|
+
- **Description**: Convert a DataFrame column with mixed US and UK date formats to datetime.
|
|
111
|
+
- **Usage**: `convert_us_to_uk_dates(df, date_col)`
|
|
112
|
+
- **Example**: `convert_us_to_uk_dates(df, 'date')`
|
|
113
|
+
|
|
114
|
+
## 10. `combine_sheets`
|
|
115
|
+
- **Description**: Combines multiple DataFrames from a dictionary into a single DataFrame.
|
|
116
|
+
- **Usage**: `combine_sheets(all_sheets)`
|
|
117
|
+
- **Example**: `combine_sheets({'Sheet1': df1, 'Sheet2': df2})`
|
|
118
|
+
|
|
119
|
+
## 11. `pivot_table`
|
|
120
|
+
- **Description**: Dynamically pivots a DataFrame based on specified columns.
|
|
121
|
+
- **Usage**: `pivot_table(df, index_col, columns, values_col, filters_dict=None, fill_value=0, aggfunc='sum', margins=False, margins_name='Total', datetime_trans_needed=True, reverse_header_order=False, fill_missing_weekly_dates=False, week_commencing='W-MON')`
|
|
122
|
+
- **Example**: `pivot_table(df, 'OBS', 'Channel Short Names', 'Value', filters_dict={'Master Include': ' == 1'}, fill_value=0)`
|
|
123
|
+
|
|
124
|
+
## 12. `apply_lookup_table_for_columns`
|
|
125
|
+
- **Description**: Maps substrings in columns to new values based on a dictionary.
|
|
126
|
+
- **Usage**: `apply_lookup_table_for_columns(df, col_names, to_find_dict, if_not_in_dict='Other', new_column_name='Mapping')`
|
|
127
|
+
- **Example**: `apply_lookup_table_for_columns(df, col_names, {'spend': 'spd'}, if_not_in_dict='Other', new_column_name='Metrics Short')`
|
|
128
|
+
|
|
129
|
+
## 13. `aggregate_daily_to_wc_wide`
|
|
130
|
+
- **Description**: Aggregates daily data into weekly data and pivots it to wide format.
|
|
131
|
+
- **Usage**: `aggregate_daily_to_wc_wide(df, date_column, group_columns, sum_columns, wc='sun', aggregation='sum', include_totals=False)`
|
|
132
|
+
- **Example**: `aggregate_daily_to_wc_wide(df, 'date', ['platform'], ['cost', 'impressions'], 'mon', 'average', True)`
|
|
133
|
+
|
|
134
|
+
## 14. `merge_cols_with_seperator`
|
|
135
|
+
- **Description**: Merges multiple columns in a DataFrame into one column with a specified separator.
|
|
136
|
+
- **Usage**: `merge_cols_with_seperator(df, col_names, separator='_', output_column_name='Merged')`
|
|
137
|
+
- **Example**: `merge_cols_with_seperator(df, ['Campaign', 'Product'], separator='|', output_column_name='Merged Columns')`
|
|
138
|
+
|
|
139
|
+
## 15. `check_sum_of_df_cols_are_equal`
|
|
140
|
+
- **Description**: Checks if the sum of two columns in two DataFrames are equal and provides the difference.
|
|
141
|
+
- **Usage**: `check_sum_of_df_cols_are_equal(df_1, df_2, cols_1, cols_2)`
|
|
142
|
+
- **Example**: `check_sum_of_df_cols_are_equal(df_1, df_2, 'Media Cost', 'Spend')`
|
|
143
|
+
|
|
144
|
+
## 16. `convert_2_df_cols_to_dict`
|
|
145
|
+
- **Description**: Creates a dictionary from two DataFrame columns.
|
|
146
|
+
- **Usage**: `convert_2_df_cols_to_dict(df, key_col, value_col)`
|
|
147
|
+
- **Example**: `convert_2_df_cols_to_dict(df, 'Campaign', 'Channel')`
|
|
148
|
+
|
|
149
|
+
## 17. `create_FY_and_H_columns`
|
|
150
|
+
- **Description**: Adds financial year and half-year columns to a DataFrame based on a start date.
|
|
151
|
+
- **Usage**: `create_FY_and_H_columns(df, index_col, start_date, starting_FY, short_format='No', half_years='No', combined_FY_and_H='No')`
|
|
152
|
+
- **Example**: `create_FY_and_H_columns(df, 'Week', '2022-10-03', 'FY2023', short_format='Yes')`
|
|
153
|
+
|
|
154
|
+
## 18. `keyword_lookup_replacement`
|
|
155
|
+
- **Description**: Updates values in a column based on a lookup dictionary with conditional logic.
|
|
156
|
+
- **Usage**: `keyword_lookup_replacement(df, col, replacement_rows, cols_to_merge, replacement_lookup_dict, output_column_name='Updated Column')`
|
|
157
|
+
- **Example**: `keyword_lookup_replacement(df, 'channel', 'Paid Search Generic', ['channel', 'segment'], lookup_dict, output_column_name='Channel New')`
|
|
158
|
+
|
|
159
|
+
## 19. `create_new_version_of_col_using_LUT`
|
|
160
|
+
- **Description**: Creates a new column based on a lookup table applied to an existing column.
|
|
161
|
+
- **Usage**: `create_new_version_of_col_using_LUT(df, keys_col, value_col, dict_for_specific_changes, new_col_name='New Version of Old Col')`
|
|
162
|
+
- **Example**: `create_new_version_of_col_using_LUT(df, 'Campaign Name', 'Campaign Type', lookup_dict)`
|
|
163
|
+
|
|
164
|
+
## 20. `convert_df_wide_2_long`
|
|
165
|
+
- **Description**: Converts a wide-format DataFrame into a long-format DataFrame.
|
|
166
|
+
- **Usage**: `convert_df_wide_2_long(df, value_cols, variable_col_name='Stacked', value_col_name='Value')`
|
|
167
|
+
- **Example**: `convert_df_wide_2_long(df, ['col1', 'col2'], variable_col_name='Var', value_col_name='Val')`
|
|
168
|
+
|
|
169
|
+
## 21. `manually_edit_data`
|
|
170
|
+
- **Description**: Manually updates specified cells in a DataFrame based on filters.
|
|
171
|
+
- **Usage**: `manually_edit_data(df, filters_dict, col_to_change, new_value, change_in_existing_df_col='No', new_col_to_change_name='New', manual_edit_col_name=None, add_notes='No', existing_note_col_name=None, note=None)`
|
|
172
|
+
- **Example**: `manually_edit_data(df, {'col1': '== 1'}, 'col2', 'new_val', add_notes='Yes', note='Manual Update')`
|
|
173
|
+
|
|
174
|
+
## 22. `format_numbers_with_commas`
|
|
175
|
+
- **Description**: Formats numerical columns with commas and a specified number of decimal places.
|
|
176
|
+
- **Usage**: `format_numbers_with_commas(df, decimal_length_chosen=2)`
|
|
177
|
+
- **Example**: `format_numbers_with_commas(df, decimal_length_chosen=1)`
|
|
178
|
+
|
|
179
|
+
## 23. `filter_df_on_multiple_conditions`
|
|
180
|
+
- **Description**: Filters a DataFrame based on multiple column conditions.
|
|
181
|
+
- **Usage**: `filter_df_on_multiple_conditions(df, filters_dict)`
|
|
182
|
+
- **Example**: `filter_df_on_multiple_conditions(df, {'col1': '>= 5', 'col2': '== 'val''})`
|
|
183
|
+
|
|
184
|
+
## 24. `read_and_concatenate_files`
|
|
185
|
+
- **Description**: Reads and concatenates files from a specified folder into a single DataFrame.
|
|
186
|
+
- **Usage**: `read_and_concatenate_files(folder_path, file_type='csv')`
|
|
187
|
+
- **Example**: `read_and_concatenate_files('/path/to/files', file_type='xlsx')`
|
|
188
|
+
|
|
189
|
+
## 25. `upgrade_outdated_packages`
|
|
190
|
+
- **Description**: Upgrades all outdated Python packages except specified ones.
|
|
191
|
+
- **Usage**: `upgrade_outdated_packages(exclude_packages=['twine'])`
|
|
192
|
+
- **Example**: `upgrade_outdated_packages(exclude_packages=['pip', 'setuptools'])`
|
|
193
|
+
|
|
194
|
+
## 26. `convert_mixed_formats_dates`
|
|
195
|
+
- **Description**: Converts mixed-format date columns into standardized datetime format.
|
|
196
|
+
- **Usage**: `convert_mixed_formats_dates(df, column_name)`
|
|
197
|
+
- **Example**: `convert_mixed_formats_dates(df, 'date_col')`
|
|
198
|
+
|
|
199
|
+
## 27. `fill_weekly_date_range`
|
|
200
|
+
- **Description**: Fills in missing weekly dates in a DataFrame with a specified frequency.
|
|
201
|
+
- **Usage**: `fill_weekly_date_range(df, date_column, freq='W-MON')`
|
|
202
|
+
- **Example**: `fill_weekly_date_range(df, 'date_col')`
|
|
203
|
+
|
|
204
|
+
## 28. `add_prefix_and_suffix`
|
|
205
|
+
- **Description**: Adds prefixes and/or suffixes to column names, with an option to exclude a date column.
|
|
206
|
+
- **Usage**: `add_prefix_and_suffix(df, prefix='', suffix='', date_col=None)`
|
|
207
|
+
- **Example**: `add_prefix_and_suffix(df, prefix='pre_', suffix='_suf', date_col='date_col')`
|
|
208
|
+
|
|
209
|
+
## 29. `create_dummies`
|
|
210
|
+
- **Description**: Creates dummy variables for columns, with an option to add a total dummy column.
|
|
211
|
+
- **Usage**: `create_dummies(df, date_col=None, dummy_threshold=0, add_total_dummy_col='No', total_col_name='total')`
|
|
212
|
+
- **Example**: `create_dummies(df, date_col='date_col', dummy_threshold=1)`
|
|
213
|
+
|
|
214
|
+
## 30. `replace_substrings`
|
|
215
|
+
- **Description**: Replaces substrings in a column based on a dictionary, with options for case conversion and new column creation.
|
|
216
|
+
- **Usage**: `replace_substrings(df, column, replacements, to_lower=False, new_column=None)`
|
|
217
|
+
- **Example**: `replace_substrings(df, 'text_col', {'old': 'new'}, to_lower=True, new_column='updated_text')`
|
|
218
|
+
|
|
219
|
+
## 31. `add_total_column`
|
|
220
|
+
- **Description**: Adds a total column to a DataFrame by summing values across columns, optionally excluding one.
|
|
221
|
+
- **Usage**: `add_total_column(df, exclude_col=None, total_col_name='Total')`
|
|
222
|
+
- **Example**: `add_total_column(df, exclude_col='date_col')`
|
|
223
|
+
|
|
224
|
+
## 32. `apply_lookup_table_based_on_substring`
|
|
225
|
+
- **Description**: Categorizes text in a column using a lookup table based on substrings.
|
|
226
|
+
- **Usage**: `apply_lookup_table_based_on_substring(df, column_name, category_dict, new_col_name='Category', other_label='Other')`
|
|
227
|
+
- **Example**: `apply_lookup_table_based_on_substring(df, 'text_col', {'sub1': 'cat1', 'sub2': 'cat2'})`
|
|
228
|
+
|
|
229
|
+
## 33. `compare_overlap`
|
|
230
|
+
- **Description**: Compares overlapping periods between two DataFrames and summarizes differences.
|
|
231
|
+
- **Usage**: `compare_overlap(df1, df2, date_col)`
|
|
232
|
+
- **Example**: `compare_overlap(df1, df2, 'date_col')`
|
|
233
|
+
|
|
234
|
+
## 34. `week_commencing_2_week_commencing_conversion_isoweekday`
|
|
235
|
+
- **Description**: Maps dates to the start of the current ISO week based on a specified weekday.
|
|
236
|
+
- **Usage**: `week_commencing_2_week_commencing_conversion_isoweekday(df, date_col, week_commencing='mon')`
|
|
237
|
+
- **Example**: `week_commencing_2_week_commencing_conversion_isoweekday(df, 'date_col', week_commencing='fri')`
|
|
238
|
+
|
|
239
|
+
## 35. `seasonality_feature_extraction`
|
|
240
|
+
- **Description**: Splits data into train/test sets, trains XGBoost and Random Forest on all features, extracts top features based on feature importance, merges them, optionally retrains models on top and combined features, and returns a dict of results.
|
|
241
|
+
- **Usage**: `seasonality_feature_extraction(df, kpi_var, n_features=10, test_size=0.1, random_state=42, shuffle=False)`
|
|
242
|
+
- **Example**: `seasonality_feature_extraction(df, 'kpi_total_sales', n_features=5, test_size=0.2, random_state=123, shuffle=True)`
|
|
243
|
+
|
|
244
|
+
---
|
|
245
|
+
|
|
246
|
+
## Data Processing for Incrementality Testing
|
|
247
|
+
|
|
248
|
+
## 1. `pull_ga`
|
|
249
|
+
- **Description**: Pull in GA4 data for geo experiments.
|
|
250
|
+
- **Usage**: `pull_ga(credentials_file, property_id, start_date, country, metrics)`
|
|
251
|
+
- **Example**: `pull_ga('GeoExperiment-31c5f5db2c39.json', '111111111', '2023-10-15', 'United Kingdom', ['totalUsers', 'newUsers'])`
|
|
252
|
+
|
|
253
|
+
## 2. `process_itv_analysis`
|
|
254
|
+
- **Description**: Processes region-level data for geo experiments by mapping ITV regions, grouping selected metrics, merging with media spend data, and saving the result.
|
|
255
|
+
- **Usage**: `process_itv_analysis(self, raw_df, itv_path, cities_path, media_spend_path, output_path, test_group, control_group, columns_to_aggregate, aggregator_list)`
|
|
256
|
+
- **Example**: `process_itv_analysis(df, 'itv regional mapping.csv', 'Geo_Mappings_with_Coordinates.xlsx', 'IMS.xlsx', 'itv_for_test_analysis_itvx.csv', ['West', 'Westcountry', 'Tyne Tees'], ['Central Scotland', 'North Scotland'], ['newUsers', 'transactions'], ['sum', 'sum'])`
|
|
257
|
+
|
|
258
|
+
## 3. `process_city_analysis`
|
|
259
|
+
- **Description**: Processes city-level data for geo experiments by grouping selected metrics, merging with media spend data, and saving the result.
|
|
260
|
+
- **Usage**: `process_city_analysis(raw_df, spend_df, output_path, test_group, control_group, columns_to_aggregate, aggregator_list)`
|
|
261
|
+
- **Example**: `process_city_analysis(df, spend, output, ['Barnsley'], ['Aberdeen'], ['newUsers', 'transactions'], ['sum', 'sum'])`
|
|
262
|
+
|
|
263
|
+
---
|
|
264
|
+
|
|
265
|
+
## Data Visualisations
|
|
266
|
+
|
|
267
|
+
## 1. `plot_one`
|
|
268
|
+
- **Description**: Plots a specified column from a DataFrame with white background and black axes.
|
|
269
|
+
- **Usage**: `plot_one(df1, col1, date_column)`
|
|
270
|
+
- **Example**: `plot_one(df, 'sales', 'date')`
|
|
271
|
+
|
|
272
|
+
## 2. `plot_two`
|
|
273
|
+
- **Description**: Plots specified columns from two DataFrames, optionally on the same or separate y-axes.
|
|
274
|
+
- **Usage**: `plot_two(df1, col1, df2, col2, date_column, same_axis=True)`
|
|
275
|
+
- **Example**: `plot_two(df1, 'sales', df2, 'revenue', 'date', same_axis=False)`
|
|
276
|
+
|
|
277
|
+
## 3. `plot_chart`
|
|
278
|
+
- **Description**: Plots various chart types using Plotly, including line, bar, scatter, area, pie, etc.
|
|
279
|
+
- **Usage**: `plot_chart(df, date_col, value_cols, chart_type='line', title='Chart', x_title='Date', y_title='Values')`
|
|
280
|
+
- **Example**: `plot_chart(df, 'date', ['sales', 'revenue'], chart_type='line', title='Sales and Revenue')`
|
|
281
|
+
|
|
282
|
+
---
|
|
283
|
+
|
|
284
|
+
## Data Pulling
|
|
285
|
+
|
|
286
|
+
## 1. `pull_fred_data`
|
|
287
|
+
- **Description**: Fetch data from FRED using series ID tokens.
|
|
288
|
+
- **Usage**: `pull_fred_data(week_commencing, series_id_list)`
|
|
289
|
+
- **Example**: `pull_fred_data('mon', ['GPDIC1', 'Y057RX1Q020SBEA', 'GCEC1', 'ND000333Q', 'Y006RX1Q020SBEA'])`
|
|
290
|
+
|
|
291
|
+
## 2. `pull_boe_data`
|
|
292
|
+
- **Description**: Fetch and process Bank of England interest rate data.
|
|
293
|
+
- **Usage**: `pull_boe_data(week_commencing)`
|
|
294
|
+
- **Example**: `pull_boe_data('mon')`
|
|
295
|
+
|
|
296
|
+
## 3. `pull_oecd`
|
|
297
|
+
- **Description**: Fetch macroeconomic data from OECD for a specified country.
|
|
298
|
+
- **Usage**: `pull_oecd(country='GBR', week_commencing='mon', start_date='2020-01-01')`
|
|
299
|
+
- **Example**: `pull_oecd('GBR', 'mon', '2000-01-01')`
|
|
300
|
+
|
|
301
|
+
## 4. `get_google_mobility_data`
|
|
302
|
+
- **Description**: Fetch Google Mobility data for the specified country.
|
|
303
|
+
- **Usage**: `get_google_mobility_data(country, wc)`
|
|
304
|
+
- **Example**: `get_google_mobility_data('United Kingdom', 'mon')`
|
|
305
|
+
|
|
306
|
+
## 5. `pull_seasonality`
|
|
307
|
+
- **Description**: Generate combined dummy variables for seasonality, trends, and COVID lockdowns.
|
|
308
|
+
- **Usage**: `pull_seasonality(week_commencing, start_date, countries)`
|
|
309
|
+
- **Example**: `pull_seasonality('mon', '2020-01-01', ['US', 'GB'])`
|
|
310
|
+
|
|
311
|
+
## 6. `pull_weather`
|
|
312
|
+
- **Description**: Fetch and process historical weather data for the specified country.
|
|
313
|
+
- **Usage**: `pull_weather(week_commencing, start_date, country)`
|
|
314
|
+
- **Example**: `pull_weather('mon', '2020-01-01', 'GBR')`
|
|
315
|
+
|
|
316
|
+
## 7. `pull_macro_ons_uk`
|
|
317
|
+
- **Description**: Fetch and process time series data from the Beta ONS API.
|
|
318
|
+
- **Usage**: `pull_macro_ons_uk(additional_list, week_commencing, sector)`
|
|
319
|
+
- **Example**: `pull_macro_ons_uk(['HBOI'], 'mon', 'fast_food')`
|
|
320
|
+
|
|
321
|
+
## 8. `pull_yfinance`
|
|
322
|
+
- **Description**: Fetch and process time series data from Yahoo Finance.
|
|
323
|
+
- **Usage**: `pull_yfinance(tickers, week_start_day)`
|
|
324
|
+
- **Example**: `pull_yfinance(['^FTMC', '^IXIC'], 'mon')`
|
|
325
|
+
|
|
326
|
+
## 9. `pull_sports_events`
|
|
327
|
+
- **Description**: Pull a veriety of sports events primaraly football and rugby.
|
|
328
|
+
- **Usage**: `pull_sports_events(start_date, week_commencing)`
|
|
329
|
+
- **Example**: `pull_sports_events('2020-01-01', 'mon')`
|
|
330
|
+
|
|
331
|
+
---
|
|
332
|
+
|
|
333
|
+
## Installation
|
|
334
|
+
|
|
335
|
+
Install the IMS package via pip:
|
|
336
|
+
|
|
337
|
+
```bash
|
|
338
|
+
pip install imsciences
|
|
339
|
+
```
|
|
340
|
+
|
|
341
|
+
---
|
|
342
|
+
|
|
343
|
+
## License
|
|
344
|
+
|
|
345
|
+
This project is licensed under the MIT License. 
|
|
346
|
+
|
|
347
|
+
---
|
|
348
|
+
|
|
349
|
+
## Roadmap
|
|
350
|
+
|
|
351
|
+
- [Fixes]: Naming conventions are inconsistent/ have changed from previous seasonality tools (eg. 'seas_nyd' is named 'seas_new_years_day', 'week_1' is named 'seas_1')
|
|
352
|
+
- [Fixes]: Naming conventions can be inconsistent within the data pull (suffix on some var is 'gb' on some it is 'uk' and for others there is no suffix) - furthermore, there is a lack of consistency for global holidays/events (Christmas, Easter, Halloween, etc) - some have regional suffix and others don't.
|
|
353
|
+
- [Additions]: Need to add new data pulls for more macro and seasonal varibles
|
|
354
|
+
|
|
355
|
+
---
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
imsciences/__init__.py,sha256=_HuYeLbDMTdt7GpKI4r6-d7yRPZgcAQ7yOW0-ydR2Yo,117
|
|
2
|
+
imsciences/geo.py,sha256=eenng7_BP_E2WD5Wt1G_oNxQS8W3t6lycRwJ91ngysY,15808
|
|
3
|
+
imsciences/mmm.py,sha256=qMh0ccOepehfCcux7EeG8cq6piSEoFEz5iiJbDBWOS4,82214
|
|
4
|
+
imsciences/pull.py,sha256=F83xlklM_lyPffMMZasHWLxDaeUHtOnUQGAUsiV7ves,88073
|
|
5
|
+
imsciences/unittesting.py,sha256=U177_Txg0Lqn49zYRu5bl9OVe_X7MkNJ6V_Zd6DHOsU,45656
|
|
6
|
+
imsciences/vis.py,sha256=2izdHQhmWEReerRqIxhY4Ai10VjL7xoUqyWyZC7-2XI,8931
|
|
7
|
+
imsciences-0.9.6.3.dist-info/LICENSE.txt,sha256=lVq2QwcExPX4Kl2DHeEkRrikuItcDB1Pr7yF7FQ8_z8,1108
|
|
8
|
+
imsciences-0.9.6.3.dist-info/METADATA,sha256=RMcthCSyWmU6IBsXGL-nYqw0RP06pzjPKK3dzOQcU-8,18846
|
|
9
|
+
imsciences-0.9.6.3.dist-info/PKG-INFO-TomG-HP-290722,sha256=RMcthCSyWmU6IBsXGL-nYqw0RP06pzjPKK3dzOQcU-8,18846
|
|
10
|
+
imsciences-0.9.6.3.dist-info/WHEEL,sha256=ixB2d4u7mugx_bCBycvM9OzZ5yD7NmPXFRtKlORZS2Y,91
|
|
11
|
+
imsciences-0.9.6.3.dist-info/top_level.txt,sha256=hsENS-AlDVRh8tQJ6-426iUQlla9bPcGc0-UlFF0_iU,11
|
|
12
|
+
imsciences-0.9.6.3.dist-info/RECORD,,
|
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
imsciences/__init__.py,sha256=_HuYeLbDMTdt7GpKI4r6-d7yRPZgcAQ7yOW0-ydR2Yo,117
|
|
2
|
-
imsciences/geo.py,sha256=eenng7_BP_E2WD5Wt1G_oNxQS8W3t6lycRwJ91ngysY,15808
|
|
3
|
-
imsciences/mmm.py,sha256=qMh0ccOepehfCcux7EeG8cq6piSEoFEz5iiJbDBWOS4,82214
|
|
4
|
-
imsciences/pull.py,sha256=B05cjuWCihFfZp8pyO118QYHJiASsWn94s1o5hd1n1Q,81788
|
|
5
|
-
imsciences/unittesting.py,sha256=U177_Txg0Lqn49zYRu5bl9OVe_X7MkNJ6V_Zd6DHOsU,45656
|
|
6
|
-
imsciences/vis.py,sha256=2izdHQhmWEReerRqIxhY4Ai10VjL7xoUqyWyZC7-2XI,8931
|
|
7
|
-
imsciences-0.9.6.2.dist-info/LICENSE.txt,sha256=lVq2QwcExPX4Kl2DHeEkRrikuItcDB1Pr7yF7FQ8_z8,1108
|
|
8
|
-
imsciences-0.9.6.2.dist-info/METADATA,sha256=drCtpoSAwiPEhSY4ju2k3VyBoqJszlURge3xvXCPFxo,18846
|
|
9
|
-
imsciences-0.9.6.2.dist-info/WHEEL,sha256=ixB2d4u7mugx_bCBycvM9OzZ5yD7NmPXFRtKlORZS2Y,91
|
|
10
|
-
imsciences-0.9.6.2.dist-info/top_level.txt,sha256=hsENS-AlDVRh8tQJ6-426iUQlla9bPcGc0-UlFF0_iU,11
|
|
11
|
-
imsciences-0.9.6.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|