imsciences 0.9.5.3__py3-none-any.whl → 0.9.5.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of imsciences might be problematic. Click here for more details.

imsciences/unittesting.py CHANGED
@@ -3,7 +3,6 @@ import pandas as pd
3
3
  import numpy as np
4
4
  import os
5
5
  from mmm import dataprocessing
6
- import plotly.graph_objects as go
7
6
 
8
7
  class TestDataProcessor(unittest.TestCase):
9
8
 
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: imsciences
3
- Version: 0.9.5.3
3
+ Version: 0.9.5.5
4
4
  Summary: IMS Data Processing Package
5
5
  Author: IMS
6
6
  Author-email: cam@im-sciences.com
7
- Keywords: python,data processing,apis
7
+ Keywords: data processing,apis,data analysis,data visualization,machine learning
8
8
  Classifier: Development Status :: 3 - Alpha
9
9
  Classifier: Intended Audience :: Developers
10
10
  Classifier: Programming Language :: Python :: 3
@@ -17,6 +17,8 @@ Requires-Dist: pandas
17
17
  Requires-Dist: plotly
18
18
  Requires-Dist: numpy
19
19
  Requires-Dist: fredapi
20
+ Requires-Dist: xgboost
21
+ Requires-Dist: scikit-learn
20
22
  Requires-Dist: bs4
21
23
  Requires-Dist: yfinance
22
24
  Requires-Dist: holidays
@@ -33,23 +35,33 @@ The **Independent Marketing Sciences** package is a Python library designed to p
33
35
  - Seamless data processing for time series workflows.
34
36
  - Aggregation, filtering, and transformation of time series data.
35
37
  - Visualising Data
36
- - Integration with external data sources like FRED, Bank of England, ONS and OECD.
38
+ - Integration with external data sources like FRED, Bank of England and ONS.
37
39
 
38
40
  ---
39
41
 
40
42
  Table of Contents
41
43
  =================
42
44
 
43
- 1. [Data Processing for Time Series](#data-processing-for-time-series)
44
- 2. [Data Processing for Incrementality Testing](#data-processing-for-incrementality-testing)
45
- 3. [Data Visualisations](#data-visualisations)
46
- 4. [Data Pulling](#data-pulling)
47
- 5. [Installation](#installation)
48
- 6. [Usage](#usage)
45
+ 1. [Usage](#usage)
46
+ 2. [Data Processing for Time Series](#data-processing-for-time-series)
47
+ 3. [Data Processing for Incrementality Testing](#data-processing-for-incrementality-testing)
48
+ 4. [Data Visualisations](#data-visualisations)
49
+ 5. [Data Pulling](#data-pulling)
50
+ 6. [Installation](#installation)
49
51
  7. [License](#license)
50
52
 
51
53
  ---
52
54
 
55
+ ## Usage
56
+
57
+ ```bash
58
+ from imsciences import dataprocessing, geoprocessing, datapull, datavis
59
+ ims_proc = dataprocessing()
60
+ ims_geo = geoprocessing()
61
+ ims_pull = datapull()
62
+ ims_vis = datavis()
63
+ ```
64
+
53
65
  ## Data Processing for Time Series
54
66
 
55
67
  ## 1. `get_wd_levels`
@@ -222,6 +234,11 @@ Table of Contents
222
234
  - **Usage**: `week_commencing_2_week_commencing_conversion_isoweekday(df, date_col, week_commencing='mon')`
223
235
  - **Example**: `week_commencing_2_week_commencing_conversion_isoweekday(df, 'date_col', week_commencing='fri')`
224
236
 
237
+ ## 35. `seasonality_feature_extraction`
238
+ - **Description**: Splits data into train/test sets, trains XGBoost and Random Forest on all features, extracts top features based on feature importance, merges them, optionally retrains models on top and combined features, and returns a dict of results.
239
+ - **Usage**: `seasonality_feature_extraction(df, kpi_var, n_features=10, test_size=0.1, random_state=42, shuffle=False)`
240
+ - **Example**: `seasonality_feature_extraction(df, 'kpi_total_sales', n_features=5, test_size=0.2, random_state=123, shuffle=True)`
241
+
225
242
  ---
226
243
 
227
244
  ## Data Processing for Incrementality Testing
@@ -291,8 +308,8 @@ Table of Contents
291
308
 
292
309
  ## 6. `pull_weather`
293
310
  - **Description**: Fetch and process historical weather data for the specified country.
294
- - **Usage**: `pull_weather(week_commencing, country)`
295
- - **Example**: `pull_weather('mon', 'GBR')`
311
+ - **Usage**: `pull_weather(week_commencing, start_date, country)`
312
+ - **Example**: `pull_weather('mon', '2020-01-01', 'GBR')`
296
313
 
297
314
  ## 7. `pull_macro_ons_uk`
298
315
  - **Description**: Fetch and process time series data from the Beta ONS API.
@@ -304,6 +321,11 @@ Table of Contents
304
321
  - **Usage**: `pull_yfinance(tickers, week_start_day)`
305
322
  - **Example**: `pull_yfinance(['^FTMC', '^IXIC'], 'mon')`
306
323
 
324
+ ## 9. `pull_sports_events`
325
+ - **Description**: Pull a veriety of sports events primaraly football and rugby.
326
+ - **Usage**: `pull_sports_events(start_date, week_commencing)`
327
+ - **Example**: `pull_sports_events('2020-01-01', 'mon')`
328
+
307
329
  ---
308
330
 
309
331
  ## Installation
@@ -316,18 +338,6 @@ pip install imsciences
316
338
 
317
339
  ---
318
340
 
319
- ## Usage
320
-
321
- ```bash
322
- from imsciences import *
323
- ims_proc = dataprocessing()
324
- ims_geo = geoprocessing()
325
- ims_pull = datapull()
326
- ims_vis = datavis()
327
- ```
328
-
329
- ---
330
-
331
341
  ## License
332
342
 
333
343
  This project is licensed under the MIT License. ![License](https://img.shields.io/badge/license-MIT-blue.svg)
@@ -6,17 +6,17 @@ imsciences/datafunctions-IMS-24Ltp-3.py,sha256=3Snv-0iE_03StmyjtT-riOU9f4v8TaJWL
6
6
  imsciences/datafunctions.py,sha256=WZrXNLO-SYrCuFt0pAbha74psMOZPY7meWJ7yWEbRpk,169953
7
7
  imsciences/datapull.py,sha256=TPY0LDgOkcKTBk8OekbD0Grg5x0SomAK2dZ7MuT6X1E,19000
8
8
  imsciences/geo.py,sha256=J8AkLk1Nyty3VBkPFqcseXjtlSvXVNkHW_nymERz3nA,13472
9
- imsciences/mmm.py,sha256=W7e46fw0c2V9n_-fU3O6F0X1P5tbC2dkMrqnDLJH28g,74230
10
- imsciences/pull.py,sha256=bGz8B7bBQ5b9hrx3ipCFTWl_eebEb7rPL4dANKiVWTY,74015
11
- imsciences/unittesting.py,sha256=DYGqVCsZHrs_tZ-EXDW8q8CdlcsTnG8HsnmWjEE521c,45691
9
+ imsciences/mmm.py,sha256=w2A90eJPvMH0Mp3jh8booKaLGm0BKFqW-H92FR4OpV8,80490
10
+ imsciences/pull.py,sha256=8j4k9hnQ9IuxY8W_PvO6afutPm4Pz_SJRjZfU47qxX0,81654
11
+ imsciences/unittesting.py,sha256=U177_Txg0Lqn49zYRu5bl9OVe_X7MkNJ6V_Zd6DHOsU,45656
12
12
  imsciences/vis.py,sha256=2izdHQhmWEReerRqIxhY4Ai10VjL7xoUqyWyZC7-2XI,8931
13
13
  imsciencesdataprocessing/__init__.py,sha256=quSwsLs6IuLoA5Rzi0ZD40xZaQudwDteF7_ai9JfTPk,32
14
14
  imsciencesdataprocessing/datafunctions.py,sha256=vE1vsZ8xOSbR9Bwlp9SWXwEHXQ0nFydwGkvzHXf2f1Y,41
15
15
  imsdataprocessing/__init__.py,sha256=quSwsLs6IuLoA5Rzi0ZD40xZaQudwDteF7_ai9JfTPk,32
16
16
  imsdataprocessing/datafunctions.py,sha256=vE1vsZ8xOSbR9Bwlp9SWXwEHXQ0nFydwGkvzHXf2f1Y,41
17
- imsciences-0.9.5.3.dist-info/LICENSE.txt,sha256=lVq2QwcExPX4Kl2DHeEkRrikuItcDB1Pr7yF7FQ8_z8,1108
18
- imsciences-0.9.5.3.dist-info/METADATA,sha256=J6mScUPG8way2ZfnDauRvqqKDUSriU3dZ1POLQuJmno,16994
19
- imsciences-0.9.5.3.dist-info/PKG-INFO-IMS-24Ltp-3,sha256=yqZbigwHjnYoqyI81PGz_AeofRFfOrwH_Vyawyef-mg,854
20
- imsciences-0.9.5.3.dist-info/WHEEL,sha256=ixB2d4u7mugx_bCBycvM9OzZ5yD7NmPXFRtKlORZS2Y,91
21
- imsciences-0.9.5.3.dist-info/top_level.txt,sha256=hsENS-AlDVRh8tQJ6-426iUQlla9bPcGc0-UlFF0_iU,11
22
- imsciences-0.9.5.3.dist-info/RECORD,,
17
+ imsciences-0.9.5.5.dist-info/LICENSE.txt,sha256=lVq2QwcExPX4Kl2DHeEkRrikuItcDB1Pr7yF7FQ8_z8,1108
18
+ imsciences-0.9.5.5.dist-info/METADATA,sha256=Vkj32g_Kv3Gfd7O6HJ_wr-Dbq51F7oIH7uBYs5h8lN8,17937
19
+ imsciences-0.9.5.5.dist-info/PKG-INFO-IMS-24Ltp-3,sha256=yqZbigwHjnYoqyI81PGz_AeofRFfOrwH_Vyawyef-mg,854
20
+ imsciences-0.9.5.5.dist-info/WHEEL,sha256=ixB2d4u7mugx_bCBycvM9OzZ5yD7NmPXFRtKlORZS2Y,91
21
+ imsciences-0.9.5.5.dist-info/top_level.txt,sha256=hsENS-AlDVRh8tQJ6-426iUQlla9bPcGc0-UlFF0_iU,11
22
+ imsciences-0.9.5.5.dist-info/RECORD,,