imops 0.8.8__cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- _build_utils.py +113 -0
- imops/__init__.py +10 -0
- imops/__version__.py +1 -0
- imops/_configs.py +29 -0
- imops/backend.py +95 -0
- imops/box.py +74 -0
- imops/cpp/cpp_modules.cpython-38-i386-linux-gnu.so +0 -0
- imops/cpp/interp2d/delaunator/delaunator-header-only.hpp +33 -0
- imops/cpp/interp2d/delaunator/delaunator.cpp +645 -0
- imops/cpp/interp2d/delaunator/delaunator.hpp +170 -0
- imops/cpp/interp2d/interpolator.h +52 -0
- imops/cpp/interp2d/triangulator.h +198 -0
- imops/cpp/interp2d/utils.h +63 -0
- imops/cpp/main.cpp +13 -0
- imops/crop.py +120 -0
- imops/interp1d.py +207 -0
- imops/interp2d.py +120 -0
- imops/measure.py +228 -0
- imops/morphology.py +525 -0
- imops/numeric.py +384 -0
- imops/pad.py +253 -0
- imops/py.typed +0 -0
- imops/radon.py +247 -0
- imops/src/__init__.py +0 -0
- imops/src/_backprojection.c +27339 -0
- imops/src/_backprojection.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_fast_backprojection.c +27339 -0
- imops/src/_fast_backprojection.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_fast_measure.c +33810 -0
- imops/src/_fast_measure.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_fast_morphology.c +26089 -0
- imops/src/_fast_morphology.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_fast_numeric.c +48651 -0
- imops/src/_fast_numeric.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_fast_radon.c +30714 -0
- imops/src/_fast_radon.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_fast_zoom.c +57203 -0
- imops/src/_fast_zoom.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_measure.c +33810 -0
- imops/src/_measure.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_morphology.c +26089 -0
- imops/src/_morphology.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_numba_zoom.py +503 -0
- imops/src/_numeric.c +48651 -0
- imops/src/_numeric.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_radon.c +30714 -0
- imops/src/_radon.cpython-38-i386-linux-gnu.so +0 -0
- imops/src/_zoom.c +57203 -0
- imops/src/_zoom.cpython-38-i386-linux-gnu.so +0 -0
- imops/testing.py +57 -0
- imops/utils.py +205 -0
- imops/zoom.py +297 -0
- imops-0.8.8.dist-info/LICENSE +21 -0
- imops-0.8.8.dist-info/METADATA +218 -0
- imops-0.8.8.dist-info/RECORD +58 -0
- imops-0.8.8.dist-info/WHEEL +6 -0
- imops-0.8.8.dist-info/top_level.txt +2 -0
- imops.libs/libgomp-65f46eca.so.1.0.0 +0 -0
|
Binary file
|
imops/src/_numba_zoom.py
ADDED
|
@@ -0,0 +1,503 @@
|
|
|
1
|
+
from typing import Union
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from numba import njit, prange
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
float_or_int = Union[float, int]
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def _interp1d(
|
|
11
|
+
input: np.ndarray,
|
|
12
|
+
old_locations: np.ndarray,
|
|
13
|
+
new_locations: np.ndarray,
|
|
14
|
+
bounds_error: bool,
|
|
15
|
+
fill_value: float,
|
|
16
|
+
extrapolate: bool,
|
|
17
|
+
assume_sorted: bool,
|
|
18
|
+
) -> np.ndarray:
|
|
19
|
+
rows, cols, dims = input.shape[0], input.shape[1], len(new_locations)
|
|
20
|
+
contiguous_input = np.ascontiguousarray(input)
|
|
21
|
+
|
|
22
|
+
dtype = input.dtype
|
|
23
|
+
interpolated = np.zeros((rows, cols, dims), dtype=dtype)
|
|
24
|
+
dd = np.zeros(dims)
|
|
25
|
+
|
|
26
|
+
old_dims = len(old_locations)
|
|
27
|
+
sort_permutation = np.arange(old_dims) if assume_sorted else np.argsort(old_locations)
|
|
28
|
+
max_idxs = np.searchsorted(old_locations[sort_permutation], new_locations)
|
|
29
|
+
|
|
30
|
+
extr = np.zeros(dims, dtype=np.int8)
|
|
31
|
+
|
|
32
|
+
for k in prange(dims):
|
|
33
|
+
if max_idxs[k] == 0:
|
|
34
|
+
if new_locations[k] < old_locations[sort_permutation[max_idxs[k]]]:
|
|
35
|
+
extr[k] = -1
|
|
36
|
+
else:
|
|
37
|
+
max_idxs[k] = 1
|
|
38
|
+
|
|
39
|
+
if max_idxs[k] >= old_dims:
|
|
40
|
+
extr[k] = 1
|
|
41
|
+
|
|
42
|
+
if extr[k] == 0:
|
|
43
|
+
dd[k] = (new_locations[k] - old_locations[sort_permutation[max_idxs[k] - 1]]) / (
|
|
44
|
+
old_locations[sort_permutation[max_idxs[k]]] - old_locations[sort_permutation[max_idxs[k] - 1]]
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
if bounds_error and np.any(extr):
|
|
48
|
+
raise ValueError('A value in x_new is out of the interpolation range.')
|
|
49
|
+
|
|
50
|
+
if np.any(extr) and extrapolate:
|
|
51
|
+
slope_left = np.zeros((rows, cols))
|
|
52
|
+
slope_right = np.zeros((rows, cols))
|
|
53
|
+
bias_left = np.zeros((rows, cols))
|
|
54
|
+
bias_right = np.zeros((rows, cols))
|
|
55
|
+
|
|
56
|
+
slope_left = get_slope(
|
|
57
|
+
old_locations[sort_permutation[0]],
|
|
58
|
+
contiguous_input[..., sort_permutation[0]],
|
|
59
|
+
old_locations[sort_permutation[1]],
|
|
60
|
+
contiguous_input[..., sort_permutation[1]],
|
|
61
|
+
)
|
|
62
|
+
slope_right = get_slope(
|
|
63
|
+
old_locations[sort_permutation[old_dims - 1]],
|
|
64
|
+
contiguous_input[..., sort_permutation[old_dims - 1]],
|
|
65
|
+
old_locations[sort_permutation[old_dims - 2]],
|
|
66
|
+
contiguous_input[..., sort_permutation[old_dims - 2]],
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
bias_left = contiguous_input[..., sort_permutation[0]] - slope_left * old_locations[sort_permutation[0]]
|
|
70
|
+
bias_right = (
|
|
71
|
+
contiguous_input[..., sort_permutation[old_dims - 1]]
|
|
72
|
+
- slope_right * old_locations[sort_permutation[old_dims - 1]]
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
for i in prange(rows):
|
|
76
|
+
for j in prange(cols):
|
|
77
|
+
for k in prange(dims):
|
|
78
|
+
if extr[k] == 0:
|
|
79
|
+
interpolated[i, j, k] = (
|
|
80
|
+
contiguous_input[i, j, sort_permutation[max_idxs[k] - 1]] * (1 - dd[k])
|
|
81
|
+
+ contiguous_input[i, j, sort_permutation[max_idxs[k]]] * dd[k]
|
|
82
|
+
)
|
|
83
|
+
elif extrapolate:
|
|
84
|
+
if extr[k] == 1:
|
|
85
|
+
interpolated[i, j, k] = slope_right[i, j] * new_locations[k] + bias_right[i, j]
|
|
86
|
+
else:
|
|
87
|
+
interpolated[i, j, k] = slope_left[i, j] * new_locations[k] + bias_left[i, j]
|
|
88
|
+
else:
|
|
89
|
+
interpolated[i, j, k] = fill_value
|
|
90
|
+
|
|
91
|
+
return interpolated
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
@njit(nogil=True)
|
|
95
|
+
def get_slope(x1: np.ndarray, y1: np.ndarray, x2: np.ndarray, y2: np.ndarray) -> np.ndarray:
|
|
96
|
+
return (y2 - y1) / (x2 - x1)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
@njit(nogil=True)
|
|
100
|
+
def get_pixel3d(
|
|
101
|
+
input: np.ndarray, rows: int, cols: int, dims: int, r: int, c: int, d: int, cval: float_or_int
|
|
102
|
+
) -> float_or_int:
|
|
103
|
+
if 0 <= r < rows and 0 <= c < cols and 0 <= d < dims:
|
|
104
|
+
return input[r, c, d]
|
|
105
|
+
|
|
106
|
+
return cval
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@njit(nogil=True)
|
|
110
|
+
def get_pixel4d(
|
|
111
|
+
input: np.ndarray,
|
|
112
|
+
dim1: int,
|
|
113
|
+
dim2: int,
|
|
114
|
+
dim3: int,
|
|
115
|
+
dim4: int,
|
|
116
|
+
c1: int,
|
|
117
|
+
c2: int,
|
|
118
|
+
c3: int,
|
|
119
|
+
c4: int,
|
|
120
|
+
cval: float_or_int,
|
|
121
|
+
) -> float_or_int:
|
|
122
|
+
if 0 <= c1 < dim1 and 0 <= c2 < dim2 and 0 <= c3 < dim3 and 0 <= c4 < dim4:
|
|
123
|
+
return input[c1, c2, c3, c4]
|
|
124
|
+
|
|
125
|
+
return cval
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
@njit(nogil=True)
|
|
129
|
+
def adjusted_coef(old_n: int, new_n: int) -> float:
|
|
130
|
+
if new_n == 1:
|
|
131
|
+
return old_n
|
|
132
|
+
return (np.float64(old_n) - 1) / (np.float64(new_n) - 1)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
@njit(nogil=True)
|
|
136
|
+
def distance3d(x1: float, y1: float, z1: float, x2: float, y2: float, z2: float) -> float:
|
|
137
|
+
return ((x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2) ** 0.5
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
@njit(nogil=True)
|
|
141
|
+
def distance4d(x1: float, y1: float, z1: float, d1: float, x2: float, y2: float, z2: float, d2: float) -> float:
|
|
142
|
+
return ((x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2 + (d1 - d2) ** 2) ** 0.5
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
@njit(nogil=True)
|
|
146
|
+
def interpolate3d_linear(
|
|
147
|
+
input: np.ndarray, rows: int, cols: int, dims: int, r: float, c: float, d: float, cval: float
|
|
148
|
+
) -> float:
|
|
149
|
+
minr = int(r)
|
|
150
|
+
minc = int(c)
|
|
151
|
+
mind = int(d)
|
|
152
|
+
maxr = minr + 1
|
|
153
|
+
maxc = minc + 1
|
|
154
|
+
maxd = mind + 1
|
|
155
|
+
|
|
156
|
+
dr = r - minr
|
|
157
|
+
dc = c - minc
|
|
158
|
+
dd = d - mind
|
|
159
|
+
|
|
160
|
+
c000 = get_pixel3d(input, rows, cols, dims, minr, minc, mind, cval)
|
|
161
|
+
c001 = get_pixel3d(input, rows, cols, dims, minr, minc, maxd, cval)
|
|
162
|
+
c010 = get_pixel3d(input, rows, cols, dims, minr, maxc, mind, cval)
|
|
163
|
+
c011 = get_pixel3d(input, rows, cols, dims, minr, maxc, maxd, cval)
|
|
164
|
+
c100 = get_pixel3d(input, rows, cols, dims, maxr, minc, mind, cval)
|
|
165
|
+
c101 = get_pixel3d(input, rows, cols, dims, maxr, minc, maxd, cval)
|
|
166
|
+
c110 = get_pixel3d(input, rows, cols, dims, maxr, maxc, mind, cval)
|
|
167
|
+
c111 = get_pixel3d(input, rows, cols, dims, maxr, maxc, maxd, cval)
|
|
168
|
+
|
|
169
|
+
c00 = c000 * (1 - dr) + c100 * dr
|
|
170
|
+
c01 = c001 * (1 - dr) + c101 * dr
|
|
171
|
+
c10 = c010 * (1 - dr) + c110 * dr
|
|
172
|
+
c11 = c011 * (1 - dr) + c111 * dr
|
|
173
|
+
|
|
174
|
+
c0 = c00 * (1 - dc) + c10 * dc
|
|
175
|
+
c1 = c01 * (1 - dc) + c11 * dc
|
|
176
|
+
|
|
177
|
+
return c0 * (1 - dd) + c1 * dd
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
@njit(nogil=True)
|
|
181
|
+
def interpolate3d_nearest(
|
|
182
|
+
input: np.ndarray, rows: int, cols: int, dims: int, r: float, c: float, d: float, cval: float_or_int
|
|
183
|
+
) -> float_or_int:
|
|
184
|
+
min_distance = 3.0
|
|
185
|
+
i_nearest, j_nearest, k_nearest = -1, -1, -1
|
|
186
|
+
|
|
187
|
+
minr = int(r)
|
|
188
|
+
minc = int(c)
|
|
189
|
+
mind = int(d)
|
|
190
|
+
maxr = minr + 1
|
|
191
|
+
maxc = minc + 1
|
|
192
|
+
maxd = mind + 1
|
|
193
|
+
|
|
194
|
+
for i in range(2):
|
|
195
|
+
curr = maxr if i else minr
|
|
196
|
+
if curr >= rows:
|
|
197
|
+
continue
|
|
198
|
+
for j in range(2):
|
|
199
|
+
curc = maxc if j else minc
|
|
200
|
+
if curc >= cols:
|
|
201
|
+
continue
|
|
202
|
+
for k in range(2):
|
|
203
|
+
curd = maxd if k else mind
|
|
204
|
+
if curd >= dims:
|
|
205
|
+
continue
|
|
206
|
+
|
|
207
|
+
distance = distance3d(r, c, d, curr, curc, curd)
|
|
208
|
+
|
|
209
|
+
if distance <= min_distance:
|
|
210
|
+
i_nearest = i
|
|
211
|
+
j_nearest = j
|
|
212
|
+
k_nearest = k
|
|
213
|
+
min_distance = distance
|
|
214
|
+
|
|
215
|
+
if i_nearest == -1 or j_nearest == -1 or k_nearest == -1:
|
|
216
|
+
return cval
|
|
217
|
+
|
|
218
|
+
return get_pixel3d(
|
|
219
|
+
input,
|
|
220
|
+
rows,
|
|
221
|
+
cols,
|
|
222
|
+
dims,
|
|
223
|
+
maxr if i_nearest else minr,
|
|
224
|
+
maxc if j_nearest else minc,
|
|
225
|
+
maxd if k_nearest else mind,
|
|
226
|
+
cval,
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
@njit(nogil=True)
|
|
231
|
+
def interpolate4d_linear(
|
|
232
|
+
input: np.ndarray,
|
|
233
|
+
dim1: int,
|
|
234
|
+
dim2: int,
|
|
235
|
+
dim3: int,
|
|
236
|
+
dim4: int,
|
|
237
|
+
c1: int,
|
|
238
|
+
c2: int,
|
|
239
|
+
c3: int,
|
|
240
|
+
c4: int,
|
|
241
|
+
cval: float,
|
|
242
|
+
) -> float:
|
|
243
|
+
minc1 = int(c1)
|
|
244
|
+
minc2 = int(c2)
|
|
245
|
+
minc3 = int(c3)
|
|
246
|
+
minc4 = int(c4)
|
|
247
|
+
maxc1 = minc1 + 1
|
|
248
|
+
maxc2 = minc2 + 1
|
|
249
|
+
maxc3 = minc3 + 1
|
|
250
|
+
maxc4 = minc4 + 1
|
|
251
|
+
|
|
252
|
+
dc1 = c1 - minc1
|
|
253
|
+
dc2 = c2 - minc2
|
|
254
|
+
dc3 = c3 - minc3
|
|
255
|
+
dc4 = c4 - minc4
|
|
256
|
+
|
|
257
|
+
c0000 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, minc2, minc3, minc4, cval)
|
|
258
|
+
c0001 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, minc2, minc3, maxc4, cval)
|
|
259
|
+
c0010 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, minc2, maxc3, minc4, cval)
|
|
260
|
+
c0011 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, minc2, maxc3, maxc4, cval)
|
|
261
|
+
c0100 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, maxc2, minc3, minc4, cval)
|
|
262
|
+
c0101 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, maxc2, minc3, maxc4, cval)
|
|
263
|
+
c0110 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, maxc2, maxc3, minc4, cval)
|
|
264
|
+
c0111 = get_pixel4d(input, dim1, dim2, dim3, dim4, minc1, maxc2, maxc3, maxc4, cval)
|
|
265
|
+
c1000 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, minc2, minc3, minc4, cval)
|
|
266
|
+
c1001 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, minc2, minc3, maxc4, cval)
|
|
267
|
+
c1010 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, minc2, maxc3, minc4, cval)
|
|
268
|
+
c1011 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, minc2, maxc3, maxc4, cval)
|
|
269
|
+
c1100 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, maxc2, minc3, minc4, cval)
|
|
270
|
+
c1101 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, maxc2, minc3, maxc4, cval)
|
|
271
|
+
c1110 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, maxc2, maxc3, minc4, cval)
|
|
272
|
+
c1111 = get_pixel4d(input, dim1, dim2, dim3, dim4, maxc1, maxc2, maxc3, maxc4, cval)
|
|
273
|
+
|
|
274
|
+
c000 = c0000 * (1 - dc1) + c1000 * dc1
|
|
275
|
+
c001 = c0001 * (1 - dc1) + c1001 * dc1
|
|
276
|
+
c010 = c0010 * (1 - dc1) + c1010 * dc1
|
|
277
|
+
c011 = c0011 * (1 - dc1) + c1011 * dc1
|
|
278
|
+
c100 = c0100 * (1 - dc1) + c1100 * dc1
|
|
279
|
+
c101 = c0101 * (1 - dc1) + c1101 * dc1
|
|
280
|
+
c110 = c0110 * (1 - dc1) + c1110 * dc1
|
|
281
|
+
c111 = c0111 * (1 - dc1) + c1111 * dc1
|
|
282
|
+
|
|
283
|
+
c00 = c000 * (1 - dc2) + c100 * dc2
|
|
284
|
+
c01 = c001 * (1 - dc2) + c101 * dc2
|
|
285
|
+
c10 = c010 * (1 - dc2) + c110 * dc2
|
|
286
|
+
c11 = c011 * (1 - dc2) + c111 * dc2
|
|
287
|
+
|
|
288
|
+
c0_ = c00 * (1 - dc3) + c10 * dc3
|
|
289
|
+
c1_ = c01 * (1 - dc3) + c11 * dc3
|
|
290
|
+
|
|
291
|
+
return c0_ * (1 - dc4) + c1_ * dc4
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
@njit(nogil=True)
|
|
295
|
+
def interpolate4d_nearest(
|
|
296
|
+
input: np.ndarray,
|
|
297
|
+
dim1: int,
|
|
298
|
+
dim2: int,
|
|
299
|
+
dim3: int,
|
|
300
|
+
dim4: int,
|
|
301
|
+
c1: float,
|
|
302
|
+
c2: float,
|
|
303
|
+
c3: float,
|
|
304
|
+
c4: float,
|
|
305
|
+
cval: float_or_int,
|
|
306
|
+
) -> float_or_int:
|
|
307
|
+
min_distance = 3.0
|
|
308
|
+
i1_nearest, i2_nearest, i3_nearest, i4_nearest = -1, -1, -1, -1
|
|
309
|
+
minc1 = int(c1)
|
|
310
|
+
minc2 = int(c2)
|
|
311
|
+
minc3 = int(c3)
|
|
312
|
+
minc4 = int(c4)
|
|
313
|
+
maxc1 = minc1 + 1
|
|
314
|
+
maxc2 = minc2 + 1
|
|
315
|
+
maxc3 = minc3 + 1
|
|
316
|
+
maxc4 = minc4 + 1
|
|
317
|
+
|
|
318
|
+
for i1 in range(2):
|
|
319
|
+
curc1 = maxc1 if i1 else minc1
|
|
320
|
+
if curc1 >= dim1:
|
|
321
|
+
continue
|
|
322
|
+
for i2 in range(2):
|
|
323
|
+
curc2 = maxc2 if i2 else minc2
|
|
324
|
+
if curc2 >= dim2:
|
|
325
|
+
continue
|
|
326
|
+
for i3 in range(2):
|
|
327
|
+
curc3 = maxc3 if i3 else minc3
|
|
328
|
+
if curc3 >= dim3:
|
|
329
|
+
continue
|
|
330
|
+
for i4 in range(2):
|
|
331
|
+
curc4 = maxc4 if i4 else minc4
|
|
332
|
+
if curc4 >= dim4:
|
|
333
|
+
continue
|
|
334
|
+
|
|
335
|
+
distance = distance4d(c1, c2, c3, c4, curc1, curc2, curc3, curc4)
|
|
336
|
+
if distance <= min_distance:
|
|
337
|
+
i1_nearest = i1
|
|
338
|
+
i2_nearest = i2
|
|
339
|
+
i3_nearest = i3
|
|
340
|
+
i4_nearest = i4
|
|
341
|
+
min_distance = distance
|
|
342
|
+
|
|
343
|
+
if i1_nearest == -1 or i2_nearest == -1 or i3_nearest == -1 or i4_nearest == -1:
|
|
344
|
+
return cval
|
|
345
|
+
|
|
346
|
+
return get_pixel4d(
|
|
347
|
+
input,
|
|
348
|
+
dim1,
|
|
349
|
+
dim2,
|
|
350
|
+
dim3,
|
|
351
|
+
dim4,
|
|
352
|
+
maxc1 if i1_nearest else minc1,
|
|
353
|
+
maxc2 if i2_nearest else minc2,
|
|
354
|
+
maxc3 if i3_nearest else minc3,
|
|
355
|
+
maxc4 if i4_nearest else minc4,
|
|
356
|
+
cval,
|
|
357
|
+
)
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
def _zoom3d_linear(input: np.ndarray, zoom: np.ndarray, cval: float) -> np.ndarray:
|
|
361
|
+
contiguous_input = np.ascontiguousarray(input)
|
|
362
|
+
|
|
363
|
+
old_rows, old_cols, old_dims = input.shape
|
|
364
|
+
row_coef, col_coef, dim_coef = zoom
|
|
365
|
+
|
|
366
|
+
new_shape = (round(old_rows * row_coef), round(old_cols * col_coef), round(old_dims * dim_coef))
|
|
367
|
+
new_rows, new_cols, new_dims = new_shape
|
|
368
|
+
|
|
369
|
+
zoomed = np.zeros(new_shape, dtype=input.dtype)
|
|
370
|
+
|
|
371
|
+
adjusted_row_coef = adjusted_coef(old_rows, new_rows)
|
|
372
|
+
adjusted_col_coef = adjusted_coef(old_cols, new_cols)
|
|
373
|
+
adjusted_dim_coef = adjusted_coef(old_dims, new_dims)
|
|
374
|
+
|
|
375
|
+
for i in prange(new_rows):
|
|
376
|
+
for j in prange(new_cols):
|
|
377
|
+
for k in prange(new_dims):
|
|
378
|
+
zoomed[i, j, k] = interpolate3d_linear(
|
|
379
|
+
contiguous_input,
|
|
380
|
+
old_rows,
|
|
381
|
+
old_cols,
|
|
382
|
+
old_dims,
|
|
383
|
+
i * adjusted_row_coef,
|
|
384
|
+
j * adjusted_col_coef,
|
|
385
|
+
k * adjusted_dim_coef,
|
|
386
|
+
cval,
|
|
387
|
+
)
|
|
388
|
+
|
|
389
|
+
return zoomed
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
def _zoom3d_nearest(input: np.ndarray, zoom: np.ndarray, cval: float_or_int) -> np.ndarray:
|
|
393
|
+
contiguous_input = np.ascontiguousarray(input)
|
|
394
|
+
|
|
395
|
+
old_rows, old_cols, old_dims = input.shape
|
|
396
|
+
row_coef, col_coef, dim_coef = zoom
|
|
397
|
+
|
|
398
|
+
new_shape = (round(old_rows * row_coef), round(old_cols * col_coef), round(old_dims * dim_coef))
|
|
399
|
+
new_rows, new_cols, new_dims = new_shape
|
|
400
|
+
|
|
401
|
+
zoomed = np.zeros(new_shape, dtype=input.dtype)
|
|
402
|
+
|
|
403
|
+
adjusted_row_coef = adjusted_coef(old_rows, new_rows)
|
|
404
|
+
adjusted_col_coef = adjusted_coef(old_cols, new_cols)
|
|
405
|
+
adjusted_dim_coef = adjusted_coef(old_dims, new_dims)
|
|
406
|
+
|
|
407
|
+
for i in prange(new_rows):
|
|
408
|
+
for j in prange(new_cols):
|
|
409
|
+
for k in prange(new_dims):
|
|
410
|
+
zoomed[i, j, k] = interpolate3d_nearest(
|
|
411
|
+
contiguous_input,
|
|
412
|
+
old_rows,
|
|
413
|
+
old_cols,
|
|
414
|
+
old_dims,
|
|
415
|
+
i * adjusted_row_coef,
|
|
416
|
+
j * adjusted_col_coef,
|
|
417
|
+
k * adjusted_dim_coef,
|
|
418
|
+
cval,
|
|
419
|
+
)
|
|
420
|
+
|
|
421
|
+
return zoomed
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
def _zoom4d_linear(input: np.ndarray, zoom: np.ndarray, cval: float) -> np.ndarray:
|
|
425
|
+
contiguous_input = np.ascontiguousarray(input)
|
|
426
|
+
|
|
427
|
+
old_dim1, old_dim2, old_dim3, old_dim4 = input.shape
|
|
428
|
+
dim1_coef, dim2_coef, dim3_coef, dim4_coef = zoom
|
|
429
|
+
|
|
430
|
+
new_shape = (
|
|
431
|
+
round(old_dim1 * dim1_coef),
|
|
432
|
+
round(old_dim2 * dim2_coef),
|
|
433
|
+
round(old_dim3 * dim3_coef),
|
|
434
|
+
round(old_dim4 * dim4_coef),
|
|
435
|
+
)
|
|
436
|
+
new_dim1, new_dim2, new_dim3, new_dim4 = new_shape
|
|
437
|
+
|
|
438
|
+
zoomed = np.zeros(new_shape, dtype=input.dtype)
|
|
439
|
+
|
|
440
|
+
adjusted_dim1_coef = adjusted_coef(old_dim1, new_dim1)
|
|
441
|
+
adjusted_dim2_coef = adjusted_coef(old_dim2, new_dim2)
|
|
442
|
+
adjusted_dim3_coef = adjusted_coef(old_dim3, new_dim3)
|
|
443
|
+
adjusted_dim4_coef = adjusted_coef(old_dim4, new_dim4)
|
|
444
|
+
|
|
445
|
+
for i1 in prange(new_dim1):
|
|
446
|
+
for i2 in prange(new_dim2):
|
|
447
|
+
for i3 in prange(new_dim3):
|
|
448
|
+
for i4 in prange(new_dim4):
|
|
449
|
+
zoomed[i1, i2, i3, i4] = interpolate4d_linear(
|
|
450
|
+
contiguous_input,
|
|
451
|
+
old_dim1,
|
|
452
|
+
old_dim2,
|
|
453
|
+
old_dim3,
|
|
454
|
+
old_dim4,
|
|
455
|
+
i1 * adjusted_dim1_coef,
|
|
456
|
+
i2 * adjusted_dim2_coef,
|
|
457
|
+
i3 * adjusted_dim3_coef,
|
|
458
|
+
i4 * adjusted_dim4_coef,
|
|
459
|
+
cval,
|
|
460
|
+
)
|
|
461
|
+
|
|
462
|
+
return zoomed
|
|
463
|
+
|
|
464
|
+
|
|
465
|
+
def _zoom4d_nearest(input: np.ndarray, zoom: np.ndarray, cval: float_or_int) -> np.ndarray:
|
|
466
|
+
contiguous_input = np.ascontiguousarray(input)
|
|
467
|
+
|
|
468
|
+
old_dim1, old_dim2, old_dim3, old_dim4 = input.shape
|
|
469
|
+
dim1_coef, dim2_coef, dim3_coef, dim4_coef = zoom
|
|
470
|
+
|
|
471
|
+
new_shape = (
|
|
472
|
+
round(old_dim1 * dim1_coef),
|
|
473
|
+
round(old_dim2 * dim2_coef),
|
|
474
|
+
round(old_dim3 * dim3_coef),
|
|
475
|
+
round(old_dim4 * dim4_coef),
|
|
476
|
+
)
|
|
477
|
+
new_dim1, new_dim2, new_dim3, new_dim4 = new_shape
|
|
478
|
+
|
|
479
|
+
zoomed = np.zeros(new_shape, dtype=input.dtype)
|
|
480
|
+
|
|
481
|
+
adjusted_dim1_coef = adjusted_coef(old_dim1, new_dim1)
|
|
482
|
+
adjusted_dim2_coef = adjusted_coef(old_dim2, new_dim2)
|
|
483
|
+
adjusted_dim3_coef = adjusted_coef(old_dim3, new_dim3)
|
|
484
|
+
adjusted_dim4_coef = adjusted_coef(old_dim4, new_dim4)
|
|
485
|
+
|
|
486
|
+
for i1 in prange(new_dim1):
|
|
487
|
+
for i2 in prange(new_dim2):
|
|
488
|
+
for i3 in prange(new_dim3):
|
|
489
|
+
for i4 in prange(new_dim4):
|
|
490
|
+
zoomed[i1, i2, i3, i4] = interpolate4d_nearest(
|
|
491
|
+
contiguous_input,
|
|
492
|
+
old_dim1,
|
|
493
|
+
old_dim2,
|
|
494
|
+
old_dim3,
|
|
495
|
+
old_dim4,
|
|
496
|
+
i1 * adjusted_dim1_coef,
|
|
497
|
+
i2 * adjusted_dim2_coef,
|
|
498
|
+
i3 * adjusted_dim3_coef,
|
|
499
|
+
i4 * adjusted_dim4_coef,
|
|
500
|
+
cval,
|
|
501
|
+
)
|
|
502
|
+
|
|
503
|
+
return zoomed
|