imops 0.8.2__cp39-cp39-win32.whl → 0.8.3__cp39-cp39-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of imops might be problematic. Click here for more details.

Files changed (48) hide show
  1. _build_utils.py +87 -0
  2. imops/__init__.py +1 -0
  3. imops/__version__.py +1 -1
  4. imops/backend.py +14 -10
  5. imops/crop.py +18 -2
  6. imops/interp1d.py +7 -4
  7. imops/measure.py +7 -7
  8. imops/morphology.py +6 -5
  9. imops/numeric.py +376 -0
  10. imops/pad.py +41 -5
  11. imops/radon.py +7 -5
  12. imops/src/_backprojection.c +83 -83
  13. imops/src/_backprojection.cp39-win32.pyd +0 -0
  14. imops/src/_fast_backprojection.c +96 -96
  15. imops/src/_fast_backprojection.cp39-win32.pyd +0 -0
  16. imops/src/_fast_measure.c +96 -96
  17. imops/src/_fast_measure.cp39-win32.pyd +0 -0
  18. imops/src/_fast_morphology.c +96 -96
  19. imops/src/_fast_morphology.cp39-win32.pyd +0 -0
  20. imops/src/_fast_numeric.c +20545 -4996
  21. imops/src/_fast_numeric.cp39-win32.pyd +0 -0
  22. imops/src/_fast_numeric.pyx +208 -30
  23. imops/src/_fast_radon.c +96 -96
  24. imops/src/_fast_radon.cp39-win32.pyd +0 -0
  25. imops/src/_fast_zoom.c +96 -96
  26. imops/src/_fast_zoom.cp39-win32.pyd +0 -0
  27. imops/src/_measure.c +83 -83
  28. imops/src/_measure.cp39-win32.pyd +0 -0
  29. imops/src/_morphology.c +83 -83
  30. imops/src/_morphology.cp39-win32.pyd +0 -0
  31. imops/src/_numeric.c +20532 -4983
  32. imops/src/_numeric.cp39-win32.pyd +0 -0
  33. imops/src/_numeric.pyx +208 -30
  34. imops/src/_radon.c +83 -83
  35. imops/src/_radon.cp39-win32.pyd +0 -0
  36. imops/src/_zoom.c +83 -83
  37. imops/src/_zoom.cp39-win32.pyd +0 -0
  38. imops/utils.py +65 -12
  39. imops/zoom.py +2 -2
  40. {imops-0.8.2.dist-info → imops-0.8.3.dist-info}/METADATA +3 -2
  41. imops-0.8.3.dist-info/RECORD +60 -0
  42. {imops-0.8.2.dist-info → imops-0.8.3.dist-info}/WHEEL +1 -1
  43. imops-0.8.3.dist-info/top_level.txt +2 -0
  44. _pyproject_build.py +0 -61
  45. imops/_numeric.py +0 -124
  46. imops-0.8.2.dist-info/RECORD +0 -60
  47. imops-0.8.2.dist-info/top_level.txt +0 -2
  48. {imops-0.8.2.dist-info → imops-0.8.3.dist-info}/LICENSE +0 -0
Binary file
@@ -8,10 +8,19 @@
8
8
  import numpy as np
9
9
 
10
10
  cimport numpy as np
11
+ from libc.stdint cimport uint16_t
11
12
 
12
13
  from cython.parallel import prange
13
14
 
14
15
 
16
+ # https://stackoverflow.com/questions/47421443/using-half-precision-numpy-floats-in-cython
17
+ cdef extern from "numpy/halffloat.h":
18
+ ctypedef uint16_t npy_half
19
+
20
+ float npy_half_to_float(npy_half h) nogil
21
+ npy_half npy_float_to_half(float f) nogil
22
+
23
+
15
24
  ctypedef fused NUM:
16
25
  short
17
26
  int
@@ -20,45 +29,214 @@ ctypedef fused NUM:
20
29
  double
21
30
 
22
31
 
23
- def _parallel_sum(NUM[:] nums, Py_ssize_t num_threads) -> NUM:
24
- cdef NUM res = 0
25
- cdef Py_ssize_t i, len_nums = len(nums)
32
+ ctypedef fused NUM_AND_NPY_HALF:
33
+ NUM
34
+ npy_half
26
35
 
27
- for i in prange(len_nums, num_threads=num_threads, nogil=True):
28
- res += nums[i]
29
36
 
30
- return res
31
-
32
-
33
- def _parallel_pointwise_mul(
37
+ # TODO: Generalize code below to n-d
38
+ def _pointwise_add_array_3d(
34
39
  NUM[:, :, :] nums1,
35
40
  NUM[:, :, :] nums2,
36
- Py_ssize_t[:] res_shape,
37
- Py_ssize_t num_threads
41
+ NUM[:, :, :] out,
42
+ Py_ssize_t num_threads,
38
43
  ) -> np.ndarray:
39
- cdef NUM[:, :, ::1] contiguous_nums1 = np.ascontiguousarray(nums1), contiguous_nums2 = np.ascontiguousarray(nums2)
40
- cdef Py_ssize_t rows = res_shape[0], cols = res_shape[1], dims = res_shape[2]
44
+ cdef Py_ssize_t rows = out.shape[0], cols = out.shape[1], dims = out.shape[2]
45
+ cdef Py_ssize_t i, j, k
46
+
47
+ for i in prange(rows, nogil=True, num_threads=num_threads):
48
+ for j in prange(cols):
49
+ for k in prange(dims):
50
+ out[i, j, k] = nums1[i, j, k] + nums2[i, j, k]
51
+
52
+ return np.asarray(out)
41
53
 
42
- cdef char[:] broadcast_mask1 = np.array([x == y for x, y in zip(res_shape, nums1.shape)], dtype=np.int8)
43
- cdef char[:] broadcast_mask2 = np.array([x == y for x, y in zip(res_shape, nums2.shape)], dtype=np.int8)
44
54
 
45
- cdef NUM[:, :, ::1] mul = np.empty_like(nums1, shape=res_shape)
55
+ def _pointwise_add_array_4d(
56
+ NUM[:, :, :, :] nums1,
57
+ NUM[:, :, :, :] nums2,
58
+ NUM[:, :, :, :] out,
59
+ Py_ssize_t num_threads,
60
+ ) -> np.ndarray:
61
+ cdef Py_ssize_t dim1 = out.shape[0], dim2 = out.shape[1], dim3 = out.shape[2], dim4 = out.shape[3]
62
+ cdef Py_ssize_t i1, i2, i3, i4
63
+
64
+ for i1 in prange(dim1, nogil=True, num_threads=num_threads):
65
+ for i2 in prange(dim2):
66
+ for i3 in prange(dim3):
67
+ for i4 in prange(dim4):
68
+ out[i1, i2, i3, i4] = nums1[i1, i2, i3, i4] + nums2[i1, i2, i3, i4]
69
+
70
+ return np.asarray(out)
71
+
72
+
73
+ def _pointwise_add_value_3d(
74
+ NUM[:, :, :] nums,
75
+ NUM value,
76
+ NUM[:, :, :] out,
77
+ Py_ssize_t num_threads,
78
+ ) -> np.ndarray:
79
+ cdef Py_ssize_t rows = out.shape[0], cols = out.shape[1], dims = out.shape[2]
46
80
  cdef Py_ssize_t i, j, k
47
81
 
48
82
  for i in prange(rows, nogil=True, num_threads=num_threads):
49
83
  for j in prange(cols):
50
84
  for k in prange(dims):
51
- mul[i, j, k] = (
52
- contiguous_nums1[
53
- i * broadcast_mask1[0],
54
- j * broadcast_mask1[1],
55
- k * broadcast_mask1[2]
56
- ] *
57
- contiguous_nums2[
58
- i * broadcast_mask2[0],
59
- j * broadcast_mask2[1],
60
- k * broadcast_mask2[2]
61
- ]
62
- )
63
-
64
- return np.asarray(mul)
85
+ out[i, j, k] = nums[i, j, k] + value
86
+
87
+ return np.asarray(out)
88
+
89
+
90
+ def _pointwise_add_value_4d(
91
+ NUM[:, :, :, :] nums,
92
+ NUM value,
93
+ NUM[:, :, :, :] out,
94
+ Py_ssize_t num_threads,
95
+ ) -> np.ndarray:
96
+ cdef Py_ssize_t dim1 = out.shape[0], dim2 = out.shape[1], dim3 = out.shape[2], dim4 = out.shape[3]
97
+ cdef Py_ssize_t i1, i2, i3, i4
98
+
99
+ for i1 in prange(dim1, nogil=True, num_threads=num_threads):
100
+ for i2 in prange(dim2):
101
+ for i3 in prange(dim3):
102
+ for i4 in prange(dim4):
103
+ out[i1, i2, i3, i4] = nums[i1, i2, i3, i4] + value
104
+
105
+ return np.asarray(out)
106
+
107
+
108
+ def _pointwise_add_array_3d_fp16(
109
+ npy_half[:, :, :] nums1,
110
+ npy_half[:, :, :] nums2,
111
+ npy_half[:, :, :] out,
112
+ Py_ssize_t num_threads,
113
+ ) -> np.ndarray:
114
+ cdef Py_ssize_t rows = out.shape[0], cols = out.shape[1], dims = out.shape[2]
115
+ cdef Py_ssize_t i, j, k
116
+
117
+ for i in prange(rows, nogil=True, num_threads=num_threads):
118
+ for j in prange(cols):
119
+ for k in prange(dims):
120
+ out[i, j, k] = (npy_float_to_half(npy_half_to_float(nums1[i, j, k]) +
121
+ npy_half_to_float(nums2[i, j, k])))
122
+
123
+ return np.asarray(out)
124
+
125
+
126
+ def _pointwise_add_array_4d_fp16(
127
+ npy_half[:, :, :, :] nums1,
128
+ npy_half[:, :, :, :] nums2,
129
+ npy_half[:, :, :, :] out,
130
+ Py_ssize_t num_threads,
131
+ ) -> np.ndarray:
132
+ cdef Py_ssize_t dim1 = out.shape[0], dim2 = out.shape[1], dim3 = out.shape[2], dim4 = out.shape[3]
133
+ cdef Py_ssize_t i1, i2, i3, i4
134
+
135
+ for i1 in prange(dim1, nogil=True, num_threads=num_threads):
136
+ for i2 in prange(dim2):
137
+ for i3 in prange(dim3):
138
+ for i4 in prange(dim4):
139
+ out[i1, i2, i3, i4] = (npy_float_to_half(npy_half_to_float(nums1[i1, i2, i3, i4]) +
140
+ npy_half_to_float(nums2[i1, i2, i3, i4])))
141
+
142
+ return np.asarray(out)
143
+
144
+
145
+ def _pointwise_add_value_3d_fp16(
146
+ npy_half[:, :, :] nums,
147
+ npy_half value,
148
+ npy_half[:, :, :] out,
149
+ Py_ssize_t num_threads,
150
+ ) -> np.ndarray:
151
+ cdef Py_ssize_t rows = out.shape[0], cols = out.shape[1], dims = out.shape[2]
152
+ cdef Py_ssize_t i, j, k
153
+
154
+ for i in prange(rows, nogil=True, num_threads=num_threads):
155
+ for j in prange(cols):
156
+ for k in prange(dims):
157
+ out[i, j, k] = npy_float_to_half(npy_half_to_float(nums[i, j, k]) + npy_half_to_float(value))
158
+
159
+ return np.asarray(out)
160
+
161
+
162
+ def _pointwise_add_value_4d_fp16(
163
+ npy_half[:, :, :, :] nums,
164
+ npy_half value,
165
+ npy_half[:, :, :, :] out,
166
+ Py_ssize_t num_threads,
167
+ ) -> np.ndarray:
168
+ cdef Py_ssize_t dim1 = out.shape[0], dim2 = out.shape[1], dim3 = out.shape[2], dim4 = out.shape[3]
169
+ cdef Py_ssize_t i1, i2, i3, i4
170
+
171
+ for i1 in prange(dim1, nogil=True, num_threads=num_threads):
172
+ for i2 in prange(dim2):
173
+ for i3 in prange(dim3):
174
+ for i4 in prange(dim4):
175
+ out[i1, i2, i3, i4] = (npy_float_to_half(npy_half_to_float(nums[i1, i2, i3, i4]) +
176
+ npy_half_to_float(value)))
177
+
178
+ return np.asarray(out)
179
+
180
+
181
+ def _fill_3d(NUM_AND_NPY_HALF[:, :, :] nums, NUM_AND_NPY_HALF value, Py_ssize_t num_threads) -> None:
182
+ cdef Py_ssize_t rows = nums.shape[0], cols = nums.shape[1], dims = nums.shape[2]
183
+ cdef Py_ssize_t i, j, k
184
+
185
+ for i in prange(rows, nogil=True, num_threads=num_threads):
186
+ for j in prange(cols):
187
+ for k in prange(dims):
188
+ nums[i, j, k] = value
189
+
190
+
191
+ def _fill_4d(NUM_AND_NPY_HALF[:, :, :, :] nums, NUM_AND_NPY_HALF value, Py_ssize_t num_threads) -> None:
192
+ cdef Py_ssize_t dim1 = nums.shape[0], dim2 = nums.shape[1], dim3 = nums.shape[2], dim4 = nums.shape[3]
193
+ cdef Py_ssize_t i1, i2, i3, i4
194
+
195
+ for i1 in prange(dim1, nogil=True, num_threads=num_threads):
196
+ for i2 in prange(dim2):
197
+ for i3 in prange(dim3):
198
+ for i4 in prange(dim4):
199
+ nums[i1, i2, i3, i4] = value
200
+
201
+
202
+ # FIXME: somehow `const NUM_AND_NPY_HALF` is not working
203
+ cpdef void _copy_3d(const NUM[:, :, :] nums1, NUM[:, :, :] nums2, Py_ssize_t num_threads):
204
+ cdef Py_ssize_t rows = nums1.shape[0], cols = nums1.shape[1], dims = nums1.shape[2]
205
+ cdef Py_ssize_t i, j, k
206
+
207
+ for i in prange(rows, nogil=True, num_threads=num_threads):
208
+ for j in prange(cols):
209
+ for k in prange(dims):
210
+ nums2[i, j, k] = nums1[i, j, k]
211
+
212
+
213
+ cpdef void _copy_4d(const NUM[:, :, :, :] nums1, NUM[:, :, :, :] nums2, Py_ssize_t num_threads):
214
+ cdef Py_ssize_t dim1 = nums1.shape[0], dim2 = nums1.shape[1], dim3 = nums1.shape[2], dim4 = nums1.shape[3]
215
+ cdef Py_ssize_t i1, i2, i3, i4
216
+
217
+ for i1 in prange(dim1, nogil=True, num_threads=num_threads):
218
+ for i2 in prange(dim2):
219
+ for i3 in prange(dim3):
220
+ for i4 in prange(dim4):
221
+ nums2[i1, i2, i3, i4] = nums1[i1, i2, i3, i4]
222
+
223
+
224
+ cpdef void _copy_3d_fp16(const npy_half[:, :, :] nums1, npy_half[:, :, :] nums2, Py_ssize_t num_threads):
225
+ cdef Py_ssize_t rows = nums1.shape[0], cols = nums1.shape[1], dims = nums1.shape[2]
226
+ cdef Py_ssize_t i, j, k
227
+
228
+ for i in prange(rows, nogil=True, num_threads=num_threads):
229
+ for j in prange(cols):
230
+ for k in prange(dims):
231
+ nums2[i, j, k] = nums1[i, j, k]
232
+
233
+
234
+ cpdef void _copy_4d_fp16(const npy_half[:, :, :, :] nums1, npy_half[:, :, :, :] nums2, Py_ssize_t num_threads):
235
+ cdef Py_ssize_t dim1 = nums1.shape[0], dim2 = nums1.shape[1], dim3 = nums1.shape[2], dim4 = nums1.shape[3]
236
+ cdef Py_ssize_t i1, i2, i3, i4
237
+
238
+ for i1 in prange(dim1, nogil=True, num_threads=num_threads):
239
+ for i2 in prange(dim2):
240
+ for i3 in prange(dim3):
241
+ for i4 in prange(dim4):
242
+ nums2[i1, i2, i3, i4] = nums1[i1, i2, i3, i4]