imicpe 0.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
imicpe/__init__.py ADDED
File without changes
@@ -0,0 +1,8 @@
1
+ from .metrics import mse, snr
2
+ from .operators import Id, D, Dt, L, Lt, generateDiff3D, generatePSF, A, At, S, St, opNorm, matNorm
3
+ from .pnnDataset import BSDSDataset, NoisyDataset
4
+ from .pnnTrainer import Trainer, Metrics
5
+ from .pnnUtils import chooseDevice, torchImg2Numpy, getData
6
+
7
+ import os
8
+ cameraman = os.path.join(os.path.dirname(__file__), 'cameraman.tif')
@@ -0,0 +1,9 @@
1
+ import numpy as np
2
+ import torch
3
+
4
+ def mse(I,ref):
5
+ return np.round(np.sum((I-ref)**2)/I.size,2)
6
+
7
+ def snr(I,ref):
8
+ return np.round(10* np.log10(np.sum(ref**2)/np.sum((I-ref)**2)),2)
9
+
@@ -0,0 +1,369 @@
1
+
2
+ import numpy as np
3
+ from scipy import ndimage
4
+ import igl
5
+
6
+ ############################################################
7
+ ## identity operator
8
+ ############################################################
9
+ def Id(x):
10
+ """
11
+ Id Opérateur identité
12
+
13
+ Args:
14
+ X (numpy.ndarray) signal 1D
15
+ ou: image non vectorisée 2D
16
+
17
+ Returns:
18
+ (numpy.ndarray) X
19
+ """
20
+
21
+ return x
22
+
23
+
24
+ ############################################################
25
+ ## differential forward and backward operators
26
+ ############################################################
27
+ # gradient
28
+ def D(x):
29
+ """
30
+ D Calcule le gradient par différences finies à droite.
31
+ Autrement dit, D(x) calcule le produit matriciel Dx.
32
+
33
+ Args:
34
+ X (numpy.ndarray) signal 1D
35
+ ou: image non vectorisée 2D
36
+
37
+ Returns:
38
+ (numpy.ndarray) Gradient de X
39
+ """
40
+
41
+ if x.ndim == 1:
42
+ grad = np.concatenate((x[1:] - x[:-1], [0]))/2.
43
+
44
+ elif x.ndim == 2:
45
+ sz = x.shape
46
+ Dx_im = np.concatenate(( x[:,1:] - x[:,:-1] , np.zeros((sz[0],1)) ), axis=1)/ 2.
47
+ Dy_im = np.concatenate(( x[1:,:] - x[:-1,:] , np.zeros((1,sz[1])) ), axis=0)/ 2.
48
+
49
+ grad = np.array([Dx_im,Dy_im])
50
+ return grad
51
+
52
+ def Dt(x):
53
+ """
54
+ Dt Calcule l’adjoint gradient par différences finies à droite.
55
+ Autrement dit, Dt(x) calcule le produit matriciel D'x.
56
+
57
+ Args:
58
+ X (numpy.ndarray) signal 1D
59
+ ou: image non vectorisée 2D
60
+
61
+ Returns:
62
+ (numpy.ndarray) Divergence de X
63
+ """
64
+
65
+ if x.ndim == 1:
66
+ div = - np.concatenate(([x[0]], x[1:-1] - x[:-2], [-x[-2]])) /2.
67
+
68
+ elif x.ndim == 3:
69
+ x1 = x[0]
70
+ x2 = x[1]
71
+ div = - np.concatenate((x1[:,[0]], x1[:,1:-1] - x1[:,:-2], -x1[:,[-2]]), axis=1) /2. \
72
+ - np.concatenate((x2[[0],:], x2[1:-1,:] - x2[:-2,:], -x2[[-2],:]), axis=0) /2.
73
+ return div
74
+
75
+ # laplacian
76
+ def L(x):
77
+ """
78
+ L Calcule la dérivée seconde d’un signal, ou le laplacien dans le cas d’une image.
79
+ Autrement dit, L(x) calcule le produit matriciel Lx.
80
+
81
+ Args:
82
+ X (numpy.ndarray) signal 1D
83
+ ou: image non vectorisée 2D
84
+
85
+ Returns:
86
+ (numpy.ndarray) Laplacien de X
87
+ """
88
+
89
+ if x.ndim == 1:
90
+ ker = np.array([1, -2, 1])
91
+ #lap = np.convolve(x,ker,'same')
92
+ lap = ndimage.convolve1d(x,ker,mode='nearest')
93
+ elif x.ndim == 2:
94
+ ker = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) # V4
95
+ #ker = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]]) # V8
96
+ lap = ndimage.convolve(x,ker,mode='nearest')
97
+ return lap
98
+
99
+ def Lt(x):
100
+ """
101
+ Lt Calcule l’adjoint du laplacien.
102
+ Autrement dit, Lt(x) calcule le produit matriciel L'x.
103
+
104
+ Args:
105
+ X (numpy.ndarray) signal 1D
106
+ ou: image non vectorisée 2D
107
+
108
+ Returns:
109
+ (numpy.ndarray) Adjoint du Laplacien de X
110
+ """
111
+
112
+ if x.ndim == 1:
113
+ ker = np.array([1, -2, 1])
114
+ #lap = np.correlate(x,ker,'same')
115
+ lap = ndimage.correlate1d(x,ker,mode='nearest')
116
+ elif x.ndim == 2:
117
+ ker = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) # V4
118
+ #ker = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]]) # V8
119
+ lap = ndimage.correlate(x,ker,mode='nearest')
120
+ return lap
121
+
122
+ def generateDiff3D(vert, faces, dtype):
123
+ """
124
+ generateDiff3D Génère la matrice de différentiation de type DTYPE (ordre 1 ou 2) en 3D
125
+
126
+ Args:
127
+ VERT (numpy.ndarray) matrice Nx3 dont la i-ème ligne correspond au vecteur
128
+ de coordonnées (X,Y,Z) du i-ème point du maillage
129
+ FACES (numpy.ndarray) matrice Nx3 dont la i-ème ligne donne les numéros des
130
+ 3 points composant un triangle du maillage
131
+ DTYPE(str) 'gradient', 'laplacian'
132
+
133
+ Returns:
134
+ (numpy.ndarray) matrice 3D de différentiation de type DTYPE
135
+ """
136
+
137
+ if dtype == 'gradient':
138
+ matG = igl.grad(vert, faces)
139
+ elif dtype == 'laplacien':
140
+ matG = igl.cotmatrix(vert, faces)
141
+
142
+ return (matG/np.amax(matG)).toarray()
143
+
144
+
145
+
146
+ ############################################################
147
+ ## blurring operators
148
+ ############################################################
149
+ def generatePSF(dim,blurtype,kernelSize):
150
+ """
151
+ generatePSF Génère le noyau de convolution d’un flou de dimension DIM, de type BLURTYPE,
152
+ et de taille KERNELSIZE.
153
+
154
+ Args:
155
+ DIM (str) ’1D’ ou ’2D’
156
+ BLURTYPE (str) ’none’, ’gaussian’ ou ’uniform’
157
+ KERNELSIZE (int) entier impair
158
+
159
+ Returns:
160
+ (numpy.ndarray) Noyau de convolution
161
+
162
+ -> voir les fonctions A(x,h) et At(x,h).
163
+ """
164
+
165
+ # compute kernel
166
+ if blurtype == 'none':
167
+ h = np.array([1.])
168
+
169
+ elif blurtype == 'gaussian':
170
+ std = kernelSize/6
171
+ x = np.linspace(-(kernelSize-1)/2, (kernelSize-1)/2, kernelSize)
172
+ arg = -x**2/(2*std**2)
173
+ h = np.exp(arg)
174
+
175
+ elif blurtype == 'uniform':
176
+ h = np.ones(kernelSize)
177
+
178
+ # kernel normalization
179
+ h = h/sum(h)
180
+
181
+ # return kernel
182
+ if dim == '1D':
183
+ ker = h
184
+ elif dim == '2D':
185
+ ker = np.tensordot(h,h, axes=0)
186
+
187
+ return ker
188
+
189
+ def A(x,psf):
190
+ """
191
+ A Permet de flouter l’image X par un flou de noyau PSF.
192
+ Autrement dit, A(x,h) calcule le produit de convolution h*x, ou de manière équivalente, calcule
193
+ le produit matriciel Hx.
194
+
195
+ Args:
196
+ X (numpy.ndarray) signal 1D
197
+ ou: image non vectorisée 2D
198
+ PSF (numpy.ndarray) doit être générée à partir de la fonction generatePSF
199
+
200
+ Returns:
201
+ (numpy.ndarray) Convolution de X par le noyau PSF
202
+ """
203
+
204
+ if x.ndim == 1:
205
+ b = np.convolve(x,psf,'same')
206
+ elif x.ndim == 2:
207
+ b = ndimage.convolve(x,psf,mode='nearest')
208
+
209
+ return b
210
+
211
+ def At(x,psf):
212
+ """
213
+ At Permet de flouter l’image X par un flou de noyau la transposée de PSF.
214
+ Autrement dit, A(x,h) calcule le produit de convolution h'*x, ou de manière équivalente, calcule
215
+ le produit matriciel H'x.
216
+
217
+ Args:
218
+ X (numpy.ndarray) signal 1D
219
+ ou: image non vectorisée 2D
220
+ PSF (numpy.ndarray) doit être générée à partir de la fonction generatePSF
221
+
222
+ Returns:
223
+ (numpy.ndarray) Correlation de X par le noyau PSF
224
+ """
225
+
226
+ if x.ndim == 1:
227
+ b = np.correlate(x,psf,'same')
228
+ elif x.ndim == 2:
229
+ b = ndimage.correlate(x,psf,mode='nearest')
230
+
231
+ return b
232
+
233
+
234
+
235
+ ############################################################
236
+ ## TP3 - cartoon + texture decomposition operators (only 2D)
237
+ ############################################################
238
+ def S(x):
239
+ """
240
+ S Convolue X avec un noyau KER.
241
+
242
+ Args:
243
+ X (numpy.ndarray) image non vectorisée 2D
244
+
245
+ Returns:
246
+ (numpy.ndarray) Convolution de X par le noyau KER
247
+ """
248
+
249
+ h,w = x.shape
250
+
251
+ ox = np.linspace(-w/2+1/2, w/2-1/2, w)
252
+ oy = np.linspace(-h/2+1/2, h/2-1/2, h)
253
+ X,Y = np.meshgrid(ox, oy)
254
+ dist = np.sqrt(X**2/w**2 + Y**2/h**2); # anisotropic distance
255
+ n = 5
256
+ fc = 1/3 # in [0,1] since dist is normalized
257
+ ker = 1./(1 + (dist/fc)**(2*n))
258
+
259
+ imf = np.real(np.fft.ifft2(np.fft.ifftshift(ker*np.fft.fftshift(np.fft.fft2(x)))))
260
+
261
+ return imf
262
+
263
+ def St(x):
264
+ """
265
+ S Corrèle X avec un noyau KER.
266
+
267
+ Args:
268
+ X (numpy.ndarray) image non vectorisée 2D
269
+
270
+ Returns:
271
+ (numpy.ndarray) Correlation de X par le noyau KER
272
+ """
273
+
274
+ h,w = x.shape
275
+
276
+ ox = np.linspace(-w/2+1/2, w/2-1/2, w)
277
+ oy = np.linspace(-h/2+1/2, h/2-1/2, h)
278
+ X,Y = np.meshgrid(ox, oy)
279
+ dist = np.sqrt(X**2/w**2 + Y**2/h**2); # anisotropic distance
280
+ n = 5
281
+ fc = 1/3 # in [0,1] since dist is normalized
282
+ ker = 1./(1 + (dist/fc)**(2*n))
283
+
284
+ imf = np.real(np.fft.ifft2(np.fft.ifftshift(np.conj(ker)*np.fft.fftshift(np.fft.fft2(x)))))
285
+
286
+ return imf
287
+
288
+
289
+
290
+ ############################################################
291
+ ## Operator and matrix norm
292
+ ############################################################
293
+ def opNorm(op,opt,dim):
294
+ """
295
+ opNorm Calcule la norme de l'opérateur OP, dont
296
+ l'opérateur transposé est OPT, en dimension DIM
297
+
298
+ Args:
299
+ OP (function) opérateur direct
300
+ OPT (function) opérateur adjoint
301
+ DIM (str) '1D', '2D'
302
+
303
+ Returns:
304
+ (float) norme de l'opérateur OP
305
+ """
306
+
307
+ def T(x):
308
+ return opt(op(x))
309
+
310
+ if dim == '1D':
311
+ xn = np.random.standard_normal((64))
312
+ elif dim == '2D':
313
+ xn = np.random.standard_normal((64,64))
314
+
315
+ xnn = xn
316
+
317
+ n = np.zeros((1000,),float)
318
+ n[1] = 1
319
+ tol = 1e-4
320
+ rhon = n[1]+2*tol
321
+
322
+ k = 1
323
+ while abs(n[k]-rhon)/n[k] >= tol:
324
+ xn = T(xnn)
325
+ xnn = T(xn)
326
+
327
+ rhon = n[k]
328
+ n[k+1] = np.sum(xnn**2)/np.sum(xn**2)
329
+
330
+ k = k+1
331
+
332
+ N = n[k-1] + 1e-16
333
+ return 1.01* N**(.25) # sqrt(L) gives |||T|||=|||D'D||| ie |||D|||^2
334
+
335
+
336
+ def matNorm(M):
337
+ """
338
+ matNorm Calcule la norme de la matrice M
339
+
340
+ Args:
341
+ M (numpy.ndarray) matrice dont on souhaite calculer la norme
342
+
343
+ Returns:
344
+ (float) norme de la matrice M
345
+ """
346
+
347
+ def T(x):
348
+ return np.dot(M.T, np.dot(M,x))
349
+
350
+ xn = np.random.standard_normal((M.shape[1]))
351
+ xnn = xn
352
+
353
+ n = np.zeros((1000,),float)
354
+ n[1] = 1
355
+ tol = 1e-4
356
+ rhon = n[1]+2*tol
357
+
358
+ k = 1
359
+ while abs(n[k]-rhon)/n[k] >= tol:
360
+ xn = T(xnn)
361
+ xnn = T(xn)
362
+
363
+ rhon = n[k]
364
+ n[k+1] = np.sum(xnn**2)/np.sum(xn**2)
365
+
366
+ k = k+1
367
+
368
+ N = n[k-1] + 1e-16
369
+ return 1.01* N**(.25) # sqrt(L) gives |||T|||=|||D'D||| ie |||D|||^2
@@ -0,0 +1,122 @@
1
+ import torch
2
+ from torch import Generator
3
+ from torch.utils.data import Dataset, TensorDataset
4
+ from torchvision.transforms import ToTensor
5
+
6
+ from PIL import Image
7
+
8
+ from pathlib import Path
9
+
10
+
11
+
12
+ """ dataset classes """
13
+ class BSDSDataset(Dataset):
14
+ def __init__(self, root_dir="data/bsds500", mode="train",
15
+ image_size=(256, 256), image_cnt=None,
16
+ gray=False, device="cpu"):
17
+ """ BSDS500 Dataset construction
18
+
19
+ Parameters
20
+ ----------
21
+ root_dir: str or Path object
22
+ Local path to the dataset
23
+ mode: str
24
+ Dataset type: "train", "val" or "test"
25
+ image_size: tuple of int
26
+ Crop the image to the given size
27
+ image_cnt: int
28
+ If specified, extract at most the given number of images
29
+ gray: bool
30
+ If True, convert images to grayscale
31
+ device: str or torch.device
32
+ Device where the dataset is created
33
+ """
34
+
35
+ # Properties
36
+ self.root_dir = Path(root_dir)
37
+ self.mode = mode
38
+ self.image_size = image_size
39
+ self.gray = gray
40
+ self.device = device
41
+
42
+ # Create the list of corresponding images (sorted for reprocibility purpose)
43
+ self.image_list = sorted((self.root_dir / self.mode).glob("*.jpg"))
44
+ if image_cnt is not None:
45
+ self.image_list = self.image_list[:image_cnt]
46
+
47
+ def __repr__(self):
48
+ """ Nice representation when displaying the variable """
49
+ return f"BSDSDataset(mode={self.mode}, image_size={self.image_size})"
50
+
51
+ def __len__(self):
52
+ """ Number of samples """
53
+ return len(self.image_list)
54
+
55
+ def __getitem__(self, idx):
56
+ """ Reading a sample """
57
+
58
+ # set image path and id
59
+ image_path = self.image_list[idx]
60
+ image_id = int(image_path.stem)
61
+
62
+ # load and crop clean image
63
+ clean_image = Image.open(image_path).convert('RGB')
64
+ i = max(0, (clean_image.size[0] - self.image_size[0]) // 2)
65
+ j = max(0, (clean_image.size[1] - self.image_size[1]) // 2)
66
+ clean_image = clean_image.crop([
67
+ i, j,
68
+ min(clean_image.size[0], i + self.image_size[0]),
69
+ min(clean_image.size[1], j + self.image_size[1]),
70
+ ])
71
+ clean_image = ToTensor()(clean_image).to(self.device) # move to the requested device
72
+
73
+ # optional conversion to grayscale
74
+ if self.gray:
75
+ clean_image = clean_image.mean(-3, keepdim=True)
76
+
77
+ return clean_image, image_id
78
+
79
+
80
+ class NoisyDataset(Dataset):
81
+ def __init__(self, dataset, degradation_model, sigma=0.1, seed=None):
82
+ """ Noisy Dataset construction
83
+
84
+ Parameters
85
+ ----------
86
+ dataset: torch.utils.data.Dataset
87
+ Original BSDS dataset
88
+ degradation_model: function handle
89
+ Function modeling the degradation model
90
+ sigma: float
91
+ Standard deviation of the noise (default: 0.1)
92
+ seed: int
93
+ If specified, the whole dataset is reproductible with given seed.
94
+ """
95
+ self.dataset = dataset
96
+ self.degradation_model = degradation_model
97
+ self.sigma = sigma
98
+ self.seed = seed if seed is not None else Generator().seed()
99
+
100
+ def __repr__(self):
101
+ return f"NoisyDataset(dataset={self.dataset}, sigma={self.sigma})"
102
+
103
+ def __len__(self):
104
+ return len(self.dataset)
105
+
106
+ def __getitem__(self, idx):
107
+ clean_image, image_id = self.dataset[idx]
108
+
109
+ # generate noisy image
110
+ noisy_image = self.degradation_model(clean_image, self.sigma, seed=self.seed)
111
+
112
+ return noisy_image, clean_image, int(image_id)
113
+
114
+
115
+ def toTensorDataset(self):
116
+ """ Store the whole dataset in memory """
117
+ noised_images, clean_images, images_id = zip(*self)
118
+ return TensorDataset(
119
+ torch.stack(noised_images),
120
+ torch.stack(clean_images),
121
+ torch.tensor(images_id),
122
+ )
@@ -0,0 +1,137 @@
1
+ import torch
2
+ from torch.utils.data import DataLoader
3
+
4
+ from tqdm.notebook import tqdm
5
+ import time
6
+
7
+
8
+ """ Trainer class """
9
+ class Trainer():
10
+ def __init__(self,
11
+ model, optimizer, loss,
12
+ batch_size,
13
+ train_dataset, val_dataset=None,
14
+ check_val_every_n_epoch=1):
15
+
16
+ self.model = model
17
+ self.optimizer = optimizer
18
+ self.loss = loss
19
+ self.batch_size = batch_size
20
+ self.train_dataloader = train_dataset
21
+ self.val_dataloader = val_dataset
22
+ self.check_val_every_n_epoch = check_val_every_n_epoch
23
+ self.metrics = Metrics()
24
+ self.history = {}
25
+ self.epoch = 0
26
+
27
+ # dataloaders
28
+ self.train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
29
+ if self.val_dataloader is None:
30
+ self.val_dataloader = None
31
+ else:
32
+ self.val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
33
+
34
+ def run(self, num_epoch):
35
+ """ Run training until the given number of epochs is reached """
36
+ try:
37
+ # progress bar
38
+ training_pbar = tqdm(
39
+ iterable=range(self.epoch, num_epoch),
40
+ initial=self.epoch,
41
+ total=num_epoch,
42
+ desc="Training",
43
+ unit="epoch"
44
+ )
45
+
46
+ for _ in training_pbar:
47
+ self.training_epoch()
48
+ training_pbar.set_postfix(self.history["Training"][-1][1])
49
+ if self.epoch % self.check_val_every_n_epoch == 0:
50
+ self.validation_epoch()
51
+ epoch, metrics = self.history["Validation"][-1]
52
+ print(f"Validation epoch {epoch:4d} | " + " | ".join((f"{k}: {v:.2e}" for k, v in metrics.items())))
53
+
54
+
55
+ except KeyboardInterrupt:
56
+ """ Stop training if Ctrl-C is pressed """
57
+ pass
58
+
59
+ def training_epoch(self):
60
+ """ Train for one epoch """
61
+ device = self.device
62
+ self.metrics.init()
63
+ for x, target, *_ in self.train_dataloader:
64
+ x = x.to(device)
65
+ target = target.to(device)
66
+
67
+ y = self.model(x)
68
+ loss = self.loss(y, target)
69
+ self.optimizer.zero_grad()
70
+ loss.backward()
71
+ self.optimizer.step()
72
+
73
+ self.metrics.accumulate(loss, x, y, target)
74
+
75
+ self.epoch += 1
76
+ self.log("Training", self.epoch, self.metrics.summarize())
77
+
78
+
79
+ def validation_epoch(self):
80
+ """ Run a validation step """
81
+ if self.val_dataloader is None:
82
+ return
83
+
84
+ device = self.device
85
+ self.metrics.init()
86
+ with torch.no_grad():
87
+ for x, target, *_ in self.val_dataloader:
88
+ x = x.to(device)
89
+ target = target.to(device)
90
+
91
+ y = self.model(x)
92
+ loss = self.loss(y, target)
93
+
94
+ self.metrics.accumulate(loss, x, y, target)
95
+
96
+ self.log("Validation", self.epoch, self.metrics.summarize())
97
+
98
+ def log(self, mode, epoch, metrics):
99
+ history = self.history.setdefault(mode, [])
100
+ history.append((epoch, metrics))
101
+ #print(f"{mode} epoch {epoch:4d} | " + " | ".join((f"{k}: {v:.2e}" for k, v in metrics.items())))
102
+
103
+ @property
104
+ def device(self):
105
+ """ Training device defined from the device of the first parameter of the model """
106
+ return next(self.model.parameters()).device
107
+
108
+
109
+
110
+
111
+ class Metrics:
112
+ """ Compute metrics from training and validation steps """
113
+ def init(self):
114
+ self.metrics = dict()
115
+ self.cnt = 0
116
+ self.tic = time.perf_counter()
117
+
118
+ def accumulate(self, loss, x, y, target):
119
+ with torch.no_grad():
120
+ self.metrics["Loss"] = self.metrics.get("Loss", 0) + loss.item()
121
+ self.metrics["PSNR"] = self.metrics.get("PSNR", 0) + self.__PSNR__(y, target).mean().item()
122
+ self.cnt += 1
123
+
124
+ def summarize(self):
125
+ self.toc = time.perf_counter()
126
+ metrics = {k: v / self.cnt for k, v in self.metrics.items()}
127
+ metrics["Wall time"] = self.toc - self.tic
128
+ return metrics
129
+
130
+ def __PSNR__(self, img1, img2):
131
+ # optional: get last 3 dimensions (CxNxM) to ensure compatibility with a single sample
132
+ dims = list(range(max(0, img1.ndim - 3), img1.ndim))
133
+ # otherwise:
134
+ #dims = list(range(1, img1.ndim))
135
+
136
+ # necessity to take the mean along only the last 3 dimensions
137
+ return 10 * torch.log10(1. / (img1 - img2).pow(2).mean(dims))
@@ -0,0 +1,52 @@
1
+ import torch
2
+
3
+
4
+ def chooseDevice(device=None):
5
+ if device == None:
6
+ # setting device on GPU if available, else MPS (Apple M1) or CPU
7
+ if torch.cuda.is_available():
8
+ device = torch.device('cuda') # CUDA backend for NVIDIA or AMD graphic cards
9
+ else:
10
+ try:
11
+ if torch.backends.mps.is_available():
12
+ device = torch.device('mps') # MPS for Apple M# processors
13
+ else:
14
+ device = torch.device('cpu')
15
+ except AttributeError:
16
+ device = torch.device('cpu')
17
+ else:
18
+ device = torch.device(device)
19
+
20
+ print('Using device:', device)
21
+ print()
22
+
23
+ # additional info when using cuda
24
+ if device.type == 'cuda':
25
+ print(torch.cuda.get_device_name(0))
26
+ print('Memory Usage:')
27
+ print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
28
+ print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
29
+
30
+ return device
31
+
32
+
33
+
34
+ def torchImg2Numpy(image):
35
+ # reorder dimensions (C, N, M) -> (M, N, C) and move to CPU
36
+ image = torch.moveaxis(image, [0, 1, 2], [2, 0, 1]).to('cpu')
37
+
38
+ if image.shape[-1] == 1:
39
+ image = image[..., 0]
40
+
41
+ return image.numpy()
42
+
43
+
44
+ def getData(trainer, mode):
45
+ data = dict()
46
+ for epoch, record in trainer.history[mode]:
47
+ data.setdefault("epoch", []).append(epoch)
48
+ for metric, value in record.items():
49
+ data.setdefault(metric, []).append(value)
50
+
51
+ return data
52
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) [year] [fullname]
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,44 @@
1
+ Metadata-Version: 2.1
2
+ Name: imicpe
3
+ Version: 0.0.9
4
+ Summary: Toolbox for Maths,Signal,Image Teaching @ CPE
5
+ Author-email: Marion Foare <marion.foare@cpe.fr>, Eric Van Reeth <eric.vanreeth@cpe.fr>, Arthur Gautheron <arthur.gautheron@cpe.fr>
6
+ License: MIT License
7
+ Project-URL: Homepage, https://www.cpe.fr
8
+ Project-URL: Documentation, https://toolbox-imi-cpe-msi-1bcfcdd75992c038486502447f7f6937f3492f60127.pages.in2p3.fr/
9
+ Classifier: Programming Language :: Python :: 3
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Operating System :: OS Independent
12
+ Requires-Python: >=3.8
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
15
+
16
+
17
+ A toolbox used for practical sessions at [CPE Lyon](https://www.cpe.fr/).
18
+ Developped and maintained for teaching usage only!
19
+
20
+ # Installation
21
+
22
+ ## In a Jupyter Notebook
23
+
24
+ ```!pip install -i https://test.pypi.org/simple/ -U imicpe```
25
+
26
+ ## In a local environment
27
+
28
+ ```pip install -i https://test.pypi.org/simple/ -U imicpe```
29
+
30
+ # Usage example
31
+
32
+ The example below uses the kurtosis method available in the `tsa` subpackage of `msicpe`.
33
+ It requires `numpy.randn` to generate a gaussian distribution of N points.
34
+
35
+ ```python
36
+ import numpy as np
37
+ from msicpe.tsa import kurtosis
38
+ N=10000
39
+
40
+ x=np.randn(1,N)
41
+ kurt=kurtosis(x)
42
+
43
+ print(kurt)
44
+ ```
@@ -0,0 +1,12 @@
1
+ imicpe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ imicpe/optim/__init__.py,sha256=m3A1xTbMnHMqOx8EFWi71BRyVmlCdVL4qtNYWct0rjQ,360
3
+ imicpe/optim/metrics.py,sha256=AHqudKDch1_jc7X2_9hz30RamEqfQ132GXr3qW81VPY,187
4
+ imicpe/optim/operators.py,sha256=xYhXc4CSA6MN1mlsaS3LnvIIOBIu-OjY3uVA8liuTgc,10859
5
+ imicpe/optim/pnnDataset.py,sha256=PFh5u0SXx761O6N6vVfWfEDmzmCm87eYzAL7mWHBRrw,3971
6
+ imicpe/optim/pnnTrainer.py,sha256=3ygh9XwFJN7jMPsEG3LHLa8sgBbDd9Yu_QWg4ZtM_DM,4571
7
+ imicpe/optim/pnnUtils.py,sha256=LXU7wRfuEi6t-2VG2NStPAOzu19OKTxzNNnbHESpC2U,1523
8
+ imicpe-0.0.9.dist-info/LICENSE,sha256=ACwmltkrXIz5VsEQcrqljq-fat6ZXAMepjXGoe40KtE,1069
9
+ imicpe-0.0.9.dist-info/METADATA,sha256=05KEy34rdvtqfn10vIYHe7wc9Aq-eP8G3hX3EImLN6M,1272
10
+ imicpe-0.0.9.dist-info/WHEEL,sha256=uCRv0ZEik_232NlR4YDw4Pv3Ajt5bKvMH13NUU7hFuI,91
11
+ imicpe-0.0.9.dist-info/top_level.txt,sha256=6_gSXCYolzjXHaIDeAsZ_M3nLXdqrMKt48XCz3reJc0,7
12
+ imicpe-0.0.9.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (74.1.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ imicpe