imap-processing 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- imap_processing/_version.py +2 -2
- imap_processing/cdf/config/imap_codice_global_cdf_attrs.yaml +18 -0
- imap_processing/cdf/config/imap_codice_l1a_variable_attrs.yaml +101 -258
- imap_processing/cdf/config/imap_enamaps_l2-common_variable_attrs.yaml +1 -1
- imap_processing/cdf/config/imap_hi_variable_attrs.yaml +12 -2
- imap_processing/cdf/config/imap_idex_global_cdf_attrs.yaml +1 -8
- imap_processing/cdf/config/imap_idex_l1b_variable_attrs.yaml +16 -5
- imap_processing/cdf/config/imap_idex_l2a_variable_attrs.yaml +27 -25
- imap_processing/cdf/config/imap_idex_l2b_variable_attrs.yaml +16 -16
- imap_processing/cdf/config/imap_idex_l2c_variable_attrs.yaml +2 -2
- imap_processing/cdf/config/imap_swapi_variable_attrs.yaml +2 -13
- imap_processing/cdf/config/imap_ultra_l1c_variable_attrs.yaml +12 -0
- imap_processing/cdf/utils.py +2 -2
- imap_processing/cli.py +4 -16
- imap_processing/codice/codice_l1a_lo_angular.py +362 -0
- imap_processing/codice/codice_l1a_lo_species.py +282 -0
- imap_processing/codice/codice_l1b.py +80 -97
- imap_processing/codice/codice_l2.py +270 -103
- imap_processing/codice/codice_new_l1a.py +64 -0
- imap_processing/codice/constants.py +37 -2
- imap_processing/codice/utils.py +270 -0
- imap_processing/ena_maps/ena_maps.py +51 -39
- imap_processing/ena_maps/utils/corrections.py +196 -14
- imap_processing/ena_maps/utils/naming.py +3 -1
- imap_processing/hi/hi_l1c.py +57 -19
- imap_processing/hi/hi_l2.py +89 -36
- imap_processing/ialirt/calculate_ingest.py +19 -1
- imap_processing/ialirt/constants.py +12 -6
- imap_processing/ialirt/generate_coverage.py +6 -1
- imap_processing/ialirt/l0/parse_mag.py +1 -0
- imap_processing/ialirt/l0/process_hit.py +1 -0
- imap_processing/ialirt/l0/process_swapi.py +1 -0
- imap_processing/ialirt/l0/process_swe.py +2 -0
- imap_processing/ialirt/process_ephemeris.py +6 -2
- imap_processing/ialirt/utils/create_xarray.py +3 -2
- imap_processing/lo/l1b/lo_l1b.py +12 -2
- imap_processing/lo/l1c/lo_l1c.py +4 -4
- imap_processing/lo/l2/lo_l2.py +101 -8
- imap_processing/quality_flags.py +1 -0
- imap_processing/swapi/constants.py +4 -0
- imap_processing/swapi/l1/swapi_l1.py +47 -20
- imap_processing/swapi/l2/swapi_l2.py +17 -3
- imap_processing/ultra/l1a/ultra_l1a.py +121 -72
- imap_processing/ultra/l1b/de.py +57 -1
- imap_processing/ultra/l1b/ultra_l1b_annotated.py +0 -1
- imap_processing/ultra/l1b/ultra_l1b_extended.py +24 -11
- imap_processing/ultra/l1c/helio_pset.py +34 -8
- imap_processing/ultra/l1c/l1c_lookup_utils.py +4 -2
- imap_processing/ultra/l1c/spacecraft_pset.py +13 -7
- imap_processing/ultra/l1c/ultra_l1c.py +6 -6
- imap_processing/ultra/l1c/ultra_l1c_pset_bins.py +79 -20
- imap_processing/ultra/l2/ultra_l2.py +2 -2
- imap_processing/ultra/utils/ultra_l1_utils.py +6 -0
- {imap_processing-1.0.1.dist-info → imap_processing-1.0.3.dist-info}/METADATA +1 -1
- {imap_processing-1.0.1.dist-info → imap_processing-1.0.3.dist-info}/RECORD +58 -54
- {imap_processing-1.0.1.dist-info → imap_processing-1.0.3.dist-info}/LICENSE +0 -0
- {imap_processing-1.0.1.dist-info → imap_processing-1.0.3.dist-info}/WHEEL +0 -0
- {imap_processing-1.0.1.dist-info → imap_processing-1.0.3.dist-info}/entry_points.txt +0 -0
|
@@ -1,6 +1,8 @@
|
|
|
1
1
|
"""L2 corrections common to multiple IMAP ENA instruments."""
|
|
2
2
|
|
|
3
|
+
import logging
|
|
3
4
|
from pathlib import Path
|
|
5
|
+
from typing import TypeVar
|
|
4
6
|
|
|
5
7
|
import numpy as np
|
|
6
8
|
import pandas as pd
|
|
@@ -8,11 +10,23 @@ import xarray as xr
|
|
|
8
10
|
from numpy.polynomial import Polynomial
|
|
9
11
|
from scipy.constants import electron_volt, erg, proton_mass
|
|
10
12
|
|
|
11
|
-
from imap_processing.ena_maps.ena_maps import
|
|
13
|
+
from imap_processing.ena_maps.ena_maps import (
|
|
14
|
+
LoHiBasePointingSet,
|
|
15
|
+
)
|
|
12
16
|
from imap_processing.ena_maps.utils.coordinates import CoordNames
|
|
13
17
|
from imap_processing.spice import geometry
|
|
14
18
|
from imap_processing.spice.time import ttj2000ns_to_et
|
|
15
19
|
|
|
20
|
+
logger = logging.getLogger(__name__)
|
|
21
|
+
|
|
22
|
+
# Tell ruff to ignore ambiguous Greek letters in formulas in this file
|
|
23
|
+
# ruff: noqa: RUF003
|
|
24
|
+
|
|
25
|
+
# Create a TypeVar to represent the specific class being passed in
|
|
26
|
+
# Bound to LoHiBasePointingSet, meaning it must be LoHiBasePointingSet
|
|
27
|
+
# or a subclass of it
|
|
28
|
+
LoHiBasePsetSubclass = TypeVar("LoHiBasePsetSubclass", bound=LoHiBasePointingSet)
|
|
29
|
+
|
|
16
30
|
# Physical constants for Compton-Getting correction
|
|
17
31
|
# Units: electron_volt = [J / eV]
|
|
18
32
|
# erg = [J / erg]
|
|
@@ -307,7 +321,9 @@ class PowerLawFluxCorrector:
|
|
|
307
321
|
return corrected_flux, corrected_flux_stat_unc
|
|
308
322
|
|
|
309
323
|
|
|
310
|
-
def _add_spacecraft_velocity_to_pset(
|
|
324
|
+
def _add_spacecraft_velocity_to_pset(
|
|
325
|
+
pset: LoHiBasePsetSubclass,
|
|
326
|
+
) -> LoHiBasePsetSubclass:
|
|
311
327
|
"""
|
|
312
328
|
Calculate and add spacecraft velocity data to pointing set.
|
|
313
329
|
|
|
@@ -316,6 +332,11 @@ def _add_spacecraft_velocity_to_pset(pset: LoHiBasePointingSet) -> None:
|
|
|
316
332
|
pset : LoHiBasePointingSet
|
|
317
333
|
Pointing set object to be updated.
|
|
318
334
|
|
|
335
|
+
Returns
|
|
336
|
+
-------
|
|
337
|
+
pset : LoHiBasePointingSet
|
|
338
|
+
Pointing set object with spacecraft velocity data added.
|
|
339
|
+
|
|
319
340
|
Notes
|
|
320
341
|
-----
|
|
321
342
|
Adds the following DataArrays to pset.data:
|
|
@@ -342,8 +363,10 @@ def _add_spacecraft_velocity_to_pset(pset: LoHiBasePointingSet) -> None:
|
|
|
342
363
|
)
|
|
343
364
|
pset.data["sc_direction_vector"] = pset.data["sc_velocity"] / sc_velocity_km_per_sec
|
|
344
365
|
|
|
366
|
+
return pset
|
|
367
|
+
|
|
345
368
|
|
|
346
|
-
def _add_cartesian_look_direction(pset:
|
|
369
|
+
def _add_cartesian_look_direction(pset: LoHiBasePsetSubclass) -> LoHiBasePsetSubclass:
|
|
347
370
|
"""
|
|
348
371
|
Calculate and add look direction vectors to pointing set.
|
|
349
372
|
|
|
@@ -352,6 +375,11 @@ def _add_cartesian_look_direction(pset: LoHiBasePointingSet) -> None:
|
|
|
352
375
|
pset : LoHiBasePointingSet
|
|
353
376
|
Pointing set object to be updated.
|
|
354
377
|
|
|
378
|
+
Returns
|
|
379
|
+
-------
|
|
380
|
+
pset : LoHiBasePointingSet
|
|
381
|
+
Pointing set object with look direction vectors added.
|
|
382
|
+
|
|
355
383
|
Notes
|
|
356
384
|
-----
|
|
357
385
|
Adds the following DataArray to pset.data:
|
|
@@ -376,11 +404,13 @@ def _add_cartesian_look_direction(pset: LoHiBasePointingSet) -> None:
|
|
|
376
404
|
dims=[*longitudes.dims, CoordNames.CARTESIAN_VECTOR.value],
|
|
377
405
|
)
|
|
378
406
|
|
|
407
|
+
return pset
|
|
408
|
+
|
|
379
409
|
|
|
380
410
|
def _calculate_compton_getting_transform(
|
|
381
|
-
pset:
|
|
411
|
+
pset: LoHiBasePsetSubclass,
|
|
382
412
|
energy_hf: xr.DataArray,
|
|
383
|
-
) ->
|
|
413
|
+
) -> LoHiBasePsetSubclass:
|
|
384
414
|
"""
|
|
385
415
|
Apply Compton-Getting transformation to compute ENA source directions.
|
|
386
416
|
|
|
@@ -400,14 +430,24 @@ def _calculate_compton_getting_transform(
|
|
|
400
430
|
energy_hf : xr.DataArray
|
|
401
431
|
ENA energies in the heliosphere frame in eV.
|
|
402
432
|
|
|
433
|
+
Returns
|
|
434
|
+
-------
|
|
435
|
+
pset : LoHiBasePointingSet
|
|
436
|
+
Pointing set object with Compton-Getting related variables added and
|
|
437
|
+
updated az_el_points.
|
|
438
|
+
|
|
403
439
|
Notes
|
|
404
440
|
-----
|
|
405
441
|
The algorithm is based on the "Appendix A. The IMAP-Lo Mapping Algorithms"
|
|
406
442
|
document.
|
|
407
443
|
Adds the following DataArrays to pset.data:
|
|
408
444
|
- "energy_sc": ENA energies in spacecraft frame (eV)
|
|
409
|
-
- "
|
|
410
|
-
- "
|
|
445
|
+
- "energy_hf": ENA energies in the heliosphere frame (eV)
|
|
446
|
+
- "ram_mask": Mask indicating whether ENA source direction is from the ram
|
|
447
|
+
direction.
|
|
448
|
+
Updates the following DataArrays in pset.data:
|
|
449
|
+
- "hae_longitude": ENA source longitudes in heliosphere frame (degrees)
|
|
450
|
+
- "hae_latitude": ENA source latitudes in heliosphere frame (degrees)
|
|
411
451
|
"""
|
|
412
452
|
# Store heliosphere frame energies
|
|
413
453
|
pset.data["energy_hf"] = energy_hf
|
|
@@ -455,6 +495,8 @@ def _calculate_compton_getting_transform(
|
|
|
455
495
|
# Velocity magnitude factor calculation (Equation 62)
|
|
456
496
|
# x_k = (êₛ · û_sc) + sqrt(y² + (êₛ · û_sc)² - 1)
|
|
457
497
|
x = dot_product + np.sqrt(y**2 + dot_product**2 - 1)
|
|
498
|
+
# Get the dimensions in the right order so that spatial is last
|
|
499
|
+
x = x.transpose(dot_product.dims[0], y.dims[0], dot_product.dims[1])
|
|
458
500
|
|
|
459
501
|
# Calculate ENA speed in the spacecraft frame
|
|
460
502
|
# |v⃗_sc| = x_k * U_sc
|
|
@@ -504,11 +546,13 @@ def _calculate_compton_getting_transform(
|
|
|
504
546
|
dims=velocity_vector_helio.dims[:-1],
|
|
505
547
|
)
|
|
506
548
|
|
|
549
|
+
return pset
|
|
550
|
+
|
|
507
551
|
|
|
508
552
|
def apply_compton_getting_correction(
|
|
509
|
-
pset:
|
|
553
|
+
pset: LoHiBasePsetSubclass,
|
|
510
554
|
energy_hf: xr.DataArray,
|
|
511
|
-
) ->
|
|
555
|
+
) -> LoHiBasePsetSubclass:
|
|
512
556
|
"""
|
|
513
557
|
Apply Compton-Getting correction to a pointing set and update coordinates.
|
|
514
558
|
|
|
@@ -532,6 +576,11 @@ def apply_compton_getting_correction(
|
|
|
532
576
|
ENA energies in the heliosphere frame in eV. Must be 1D with an
|
|
533
577
|
energy dimension.
|
|
534
578
|
|
|
579
|
+
Returns
|
|
580
|
+
-------
|
|
581
|
+
pset : LoHiBasePointingSet
|
|
582
|
+
Updated pointing set object with Compton-Getting related variables added.
|
|
583
|
+
|
|
535
584
|
Notes
|
|
536
585
|
-----
|
|
537
586
|
This function adds the following variables to the pointing set dataset:
|
|
@@ -540,20 +589,153 @@ def apply_compton_getting_correction(
|
|
|
540
589
|
- "look_direction": Cartesian unit vectors of observation directions
|
|
541
590
|
- "energy_hf": ENA energies in heliosphere frame (eV)
|
|
542
591
|
- "energy_sc": ENA energies in spacecraft frame (eV)
|
|
543
|
-
|
|
544
|
-
- "
|
|
592
|
+
This function modifies the following variables in the pointing set dataset:
|
|
593
|
+
- "hae_longitude": ENA source longitudes in heliosphere frame (degrees)
|
|
594
|
+
- "hae_latitude": ENA source latitudes in heliosphere frame (degrees)
|
|
545
595
|
|
|
546
596
|
The az_el_points attribute is updated to use the corrected coordinates,
|
|
547
597
|
which will be used for subsequent binning operations.
|
|
548
598
|
"""
|
|
549
599
|
# Step 1: Add spacecraft velocity and direction to pset
|
|
550
|
-
_add_spacecraft_velocity_to_pset(pset)
|
|
600
|
+
pset = _add_spacecraft_velocity_to_pset(pset)
|
|
551
601
|
|
|
552
602
|
# Step 2: Calculate and add look direction vectors to pset
|
|
553
|
-
_add_cartesian_look_direction(pset)
|
|
603
|
+
pset = _add_cartesian_look_direction(pset)
|
|
554
604
|
|
|
555
605
|
# Step 3: Apply Compton-Getting transformation
|
|
556
|
-
_calculate_compton_getting_transform(pset, energy_hf)
|
|
606
|
+
pset = _calculate_compton_getting_transform(pset, energy_hf)
|
|
557
607
|
|
|
558
608
|
# Step 4: Update az_el_points to use the corrected coordinates
|
|
559
609
|
pset.update_az_el_points()
|
|
610
|
+
|
|
611
|
+
return pset
|
|
612
|
+
|
|
613
|
+
|
|
614
|
+
def interpolate_map_flux_to_helio_frame(
|
|
615
|
+
map_ds: xr.Dataset,
|
|
616
|
+
esa_energies_ev: xr.DataArray,
|
|
617
|
+
helio_energies_ev: xr.DataArray,
|
|
618
|
+
) -> xr.Dataset:
|
|
619
|
+
"""
|
|
620
|
+
Interpolate flux from spacecraft frame to heliocentric frame energies.
|
|
621
|
+
|
|
622
|
+
This implements the Compton-Getting interpolation step that transforms
|
|
623
|
+
flux measurements from the spacecraft frame to the heliocentric frame.
|
|
624
|
+
The algorithm follows these steps:
|
|
625
|
+
1. For each spatial pixel and energy step, get the spacecraft energy
|
|
626
|
+
2. Find bounding ESA energy channels for interpolation
|
|
627
|
+
3. Perform power-law interpolation between bounding channels to spacecraft energy
|
|
628
|
+
4. Apply energy scaling transformation to heliocentric frame
|
|
629
|
+
|
|
630
|
+
Parameters
|
|
631
|
+
----------
|
|
632
|
+
map_ds : xarray.Dataset
|
|
633
|
+
Map dataset with `energy_sc` data variable containing the spacecraft
|
|
634
|
+
frame energies for each spatial pixel and ESA energy step.
|
|
635
|
+
esa_energies_ev : xarray.DataArray
|
|
636
|
+
The ESA nominal central energies (in eV).
|
|
637
|
+
helio_energies_ev : xarray.DataArray
|
|
638
|
+
The heliocentric frame energies to interpolate to (in eV).
|
|
639
|
+
In practice, these are the same as esa_energies_ev.
|
|
640
|
+
|
|
641
|
+
Returns
|
|
642
|
+
-------
|
|
643
|
+
map_ds : xarray.Dataset
|
|
644
|
+
Updated map dataset with interpolated heliocentric frame fluxes.
|
|
645
|
+
"""
|
|
646
|
+
logger.info("Performing Compton-Getting interpolation to heliocentric frame")
|
|
647
|
+
|
|
648
|
+
# Work with xarray DataArrays to handle arbitrary spatial dimensions
|
|
649
|
+
energy_sc = map_ds["energy_sc"]
|
|
650
|
+
intensity = map_ds["ena_intensity"]
|
|
651
|
+
stat_unc = map_ds["ena_intensity_stat_uncert"]
|
|
652
|
+
sys_err = map_ds["ena_intensity_sys_err"]
|
|
653
|
+
|
|
654
|
+
# Step 1: Find bounding ESA energy indices for each position
|
|
655
|
+
# Use np.searchsorted on flattened array, then reshape back
|
|
656
|
+
esa_energy_vals = esa_energies_ev.values
|
|
657
|
+
energy_sc_flat = energy_sc.values.ravel()
|
|
658
|
+
|
|
659
|
+
# Find right bound index for each element (vectorized)
|
|
660
|
+
right_idx_flat = np.searchsorted(esa_energy_vals, energy_sc_flat, side="right")
|
|
661
|
+
right_idx_flat = np.clip(right_idx_flat, 1, len(esa_energy_vals) - 1)
|
|
662
|
+
left_idx_flat = right_idx_flat - 1
|
|
663
|
+
|
|
664
|
+
# Reshape indices back to match energy_sc shape
|
|
665
|
+
right_idx = right_idx_flat.reshape(energy_sc.shape)
|
|
666
|
+
left_idx = left_idx_flat.reshape(energy_sc.shape)
|
|
667
|
+
|
|
668
|
+
# Create DataArrays for indices with same dims as energy_sc
|
|
669
|
+
# Note: we need to avoid coordinate name conflicts when using isel()
|
|
670
|
+
# The energy dimension should be present in dims but not as a coordinate
|
|
671
|
+
# since we're using these as indices into the energy dimension
|
|
672
|
+
# Create coordinates dict without the energy coordinate
|
|
673
|
+
coords_without_energy = {k: v for k, v in energy_sc.coords.items() if k != "energy"}
|
|
674
|
+
|
|
675
|
+
right_idx_da = xr.DataArray(
|
|
676
|
+
right_idx, dims=energy_sc.dims, coords=coords_without_energy
|
|
677
|
+
)
|
|
678
|
+
left_idx_da = xr.DataArray(
|
|
679
|
+
left_idx, dims=energy_sc.dims, coords=coords_without_energy
|
|
680
|
+
)
|
|
681
|
+
|
|
682
|
+
# Step 2: Extract flux values at bounding energy channels
|
|
683
|
+
# Use xarray's advanced indexing to get fluxes at left and right indices
|
|
684
|
+
flux_left = intensity.isel({"energy": left_idx_da})
|
|
685
|
+
flux_right = intensity.isel({"energy": right_idx_da})
|
|
686
|
+
stat_unc_left = stat_unc.isel({"energy": left_idx_da})
|
|
687
|
+
stat_unc_right = stat_unc.isel({"energy": right_idx_da})
|
|
688
|
+
sys_err_left = sys_err.isel({"energy": left_idx_da})
|
|
689
|
+
|
|
690
|
+
# Get energy values at boundaries - select from esa_energies_ev using indices
|
|
691
|
+
energy_left = esa_energies_ev.isel({"energy": left_idx_da})
|
|
692
|
+
energy_right = esa_energies_ev.isel({"energy": right_idx_da})
|
|
693
|
+
|
|
694
|
+
# Step 3: Perform power-law interpolation to spacecraft energy
|
|
695
|
+
# slope = log(f_right/f_left) / log(e_right/e_left)
|
|
696
|
+
# flux_sc = f_left * (energy_sc / e_left)^slope
|
|
697
|
+
with np.errstate(divide="ignore", invalid="ignore"):
|
|
698
|
+
# Calculate slope for power-law interpolation
|
|
699
|
+
slope = np.log(flux_right / flux_left) / np.log(energy_right / energy_left)
|
|
700
|
+
|
|
701
|
+
# Interpolate flux using power-law
|
|
702
|
+
flux_sc = flux_left * ((energy_sc / energy_left) ** slope)
|
|
703
|
+
|
|
704
|
+
# Interpolation factor for uncertainty propagation (Equations 75 & 76)
|
|
705
|
+
unc_factor = np.log(energy_sc / energy_left) / np.log(
|
|
706
|
+
energy_right / energy_left
|
|
707
|
+
)
|
|
708
|
+
|
|
709
|
+
# Statistical uncertainty propagation (Equation 75):
|
|
710
|
+
# δJ = J * sqrt((δJ_left/J_left)^2 * (1 + unc_factor^2) + (δJ_right/J_right)^2)
|
|
711
|
+
stat_unc_sc = flux_sc * np.sqrt(
|
|
712
|
+
(stat_unc_left / flux_left) ** 2 * (1.0 + unc_factor**2)
|
|
713
|
+
+ (stat_unc_right / flux_right) ** 2
|
|
714
|
+
)
|
|
715
|
+
|
|
716
|
+
# Systematic uncertainty propagation (Equation 76):
|
|
717
|
+
# σJ^g = σJ^src_kref * (⟨E^s_kref⟩ / E^ESA_kref)^γ_kref * (E^h / ⟨E^s_kref⟩)
|
|
718
|
+
# Systematic error scales proportionally with flux during power-law
|
|
719
|
+
# interpolation
|
|
720
|
+
sys_err_sc = sys_err_left * ((energy_sc / energy_left) ** slope)
|
|
721
|
+
|
|
722
|
+
# Step 4: Energy scaling transformation (Liouville theorem)
|
|
723
|
+
# flux_helio = flux_sc * (helio_energy / energy_sc)
|
|
724
|
+
# Use xarray broadcasting - helio_energies_ev will broadcast along esa_energy_step
|
|
725
|
+
with np.errstate(divide="ignore", invalid="ignore"):
|
|
726
|
+
energy_ratio = helio_energies_ev / energy_sc
|
|
727
|
+
flux_helio = flux_sc * energy_ratio
|
|
728
|
+
stat_unc_helio = stat_unc_sc * energy_ratio
|
|
729
|
+
sys_err_helio = sys_err_sc * energy_ratio
|
|
730
|
+
|
|
731
|
+
# Set any location where the value is not finite to NaN (converts +/-inf to NaN)
|
|
732
|
+
flux_helio = flux_helio.where(np.isfinite(flux_helio), np.nan)
|
|
733
|
+
stat_unc_helio = stat_unc_helio.where(np.isfinite(stat_unc_helio), np.nan)
|
|
734
|
+
sys_err_helio = sys_err_helio.where(np.isfinite(sys_err_helio), np.nan)
|
|
735
|
+
|
|
736
|
+
# Update the dataset with interpolated values
|
|
737
|
+
map_ds["ena_intensity"] = flux_helio
|
|
738
|
+
map_ds["ena_intensity_stat_uncert"] = stat_unc_helio
|
|
739
|
+
map_ds["ena_intensity_sys_err"] = sys_err_helio
|
|
740
|
+
|
|
741
|
+
return map_ds
|
|
@@ -342,7 +342,9 @@ class MapDescriptor:
|
|
|
342
342
|
elif frame_str == "gcs":
|
|
343
343
|
return SpiceFrame.IMAP_GCS
|
|
344
344
|
else:
|
|
345
|
-
raise NotImplementedError(
|
|
345
|
+
raise NotImplementedError(
|
|
346
|
+
f"Coordinate frame {frame_str} is not yet implemented."
|
|
347
|
+
)
|
|
346
348
|
|
|
347
349
|
def to_empty_map(
|
|
348
350
|
self,
|
imap_processing/hi/hi_l1c.py
CHANGED
|
@@ -29,11 +29,12 @@ from imap_processing.spice.geometry import (
|
|
|
29
29
|
frame_transform,
|
|
30
30
|
frame_transform_az_el,
|
|
31
31
|
)
|
|
32
|
+
from imap_processing.spice.repoint import get_pointing_times
|
|
32
33
|
from imap_processing.spice.spin import (
|
|
33
34
|
get_instrument_spin_phase,
|
|
34
35
|
get_spin_data,
|
|
35
36
|
)
|
|
36
|
-
from imap_processing.spice.time import ttj2000ns_to_et
|
|
37
|
+
from imap_processing.spice.time import met_to_ttj2000ns, ttj2000ns_to_et
|
|
37
38
|
|
|
38
39
|
N_SPIN_BINS = 3600
|
|
39
40
|
SPIN_PHASE_BIN_EDGES = np.linspace(0, 1, N_SPIN_BINS + 1)
|
|
@@ -101,14 +102,14 @@ def generate_pset_dataset(
|
|
|
101
102
|
config_df = CalibrationProductConfig.from_csv(calibration_prod_config_path)
|
|
102
103
|
|
|
103
104
|
pset_dataset = empty_pset_dataset(
|
|
104
|
-
de_dataset.
|
|
105
|
-
de_dataset.esa_energy_step
|
|
105
|
+
de_dataset.ccsds_met.data.mean(),
|
|
106
|
+
de_dataset.esa_energy_step,
|
|
106
107
|
config_df.cal_prod_config.number_of_products,
|
|
107
108
|
logical_source_parts["sensor"],
|
|
108
109
|
)
|
|
109
|
-
pset_et = ttj2000ns_to_et(pset_dataset.epoch.data[0])
|
|
110
110
|
# Calculate and add despun_z, hae_latitude, and hae_longitude variables to
|
|
111
111
|
# the pset_dataset
|
|
112
|
+
pset_et = ttj2000ns_to_et(pset_dataset.epoch.data[0])
|
|
112
113
|
pset_dataset.update(pset_geometry(pset_et, logical_source_parts["sensor"]))
|
|
113
114
|
# Bin the counts into the spin-bins
|
|
114
115
|
pset_dataset.update(pset_counts(pset_dataset.coords, config_df, de_dataset))
|
|
@@ -121,16 +122,17 @@ def generate_pset_dataset(
|
|
|
121
122
|
|
|
122
123
|
|
|
123
124
|
def empty_pset_dataset(
|
|
124
|
-
|
|
125
|
+
l1b_met: float, l1b_energy_steps: xr.DataArray, n_cal_prods: int, sensor_str: str
|
|
125
126
|
) -> xr.Dataset:
|
|
126
127
|
"""
|
|
127
128
|
Allocate an empty xarray.Dataset with appropriate pset coordinates.
|
|
128
129
|
|
|
129
130
|
Parameters
|
|
130
131
|
----------
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
132
|
+
l1b_met : float
|
|
133
|
+
Any met from the input L1B DE dataset. This is used to query the
|
|
134
|
+
repoint-table data to get the start and end times of the pointing.
|
|
135
|
+
l1b_energy_steps : xarray.DataArray
|
|
134
136
|
The array of esa_energy_step data from the L1B DE product.
|
|
135
137
|
n_cal_prods : int
|
|
136
138
|
Number of calibration products to allocate.
|
|
@@ -148,13 +150,18 @@ def empty_pset_dataset(
|
|
|
148
150
|
|
|
149
151
|
# preallocate coordinates xr.DataArrays
|
|
150
152
|
coords = dict()
|
|
153
|
+
|
|
154
|
+
# Get the Pointing start and end times
|
|
155
|
+
pointing_mets = get_pointing_times(l1b_met)
|
|
156
|
+
epochs = met_to_ttj2000ns(np.asarray(pointing_mets))
|
|
157
|
+
|
|
151
158
|
# epoch coordinate has only 1 entry for pointing set
|
|
152
159
|
epoch_attrs = attr_mgr.get_variable_attributes("epoch", check_schema=False)
|
|
153
160
|
epoch_attrs.update(
|
|
154
161
|
attr_mgr.get_variable_attributes("hi_pset_epoch", check_schema=False)
|
|
155
162
|
)
|
|
156
163
|
coords["epoch"] = xr.DataArray(
|
|
157
|
-
np.array([
|
|
164
|
+
np.array([epochs[0]], dtype=np.int64),
|
|
158
165
|
name="epoch",
|
|
159
166
|
dims=["epoch"],
|
|
160
167
|
attrs=epoch_attrs,
|
|
@@ -164,8 +171,12 @@ def empty_pset_dataset(
|
|
|
164
171
|
"hi_pset_esa_energy_step", check_schema=False
|
|
165
172
|
).copy()
|
|
166
173
|
dtype = attrs.pop("dtype")
|
|
167
|
-
# Find the unique
|
|
168
|
-
|
|
174
|
+
# Find the unique esa_energy_steps from the L1B data
|
|
175
|
+
# Exclude 0 and FILLVAL
|
|
176
|
+
esa_energy_steps = np.array(
|
|
177
|
+
sorted(set(l1b_energy_steps.values) - {0, l1b_energy_steps.attrs["FILLVAL"]}),
|
|
178
|
+
dtype=dtype,
|
|
179
|
+
)
|
|
169
180
|
coords["esa_energy_step"] = xr.DataArray(
|
|
170
181
|
esa_energy_steps,
|
|
171
182
|
name="esa_energy_step",
|
|
@@ -197,6 +208,15 @@ def empty_pset_dataset(
|
|
|
197
208
|
|
|
198
209
|
# Allocate the coordinate label variables
|
|
199
210
|
data_vars = dict()
|
|
211
|
+
# Generate the epoch_delta variable
|
|
212
|
+
data_vars["epoch_delta"] = xr.DataArray(
|
|
213
|
+
np.diff(epochs),
|
|
214
|
+
name="epoch_delta",
|
|
215
|
+
dims=["epoch"],
|
|
216
|
+
attrs=attr_mgr.get_variable_attributes(
|
|
217
|
+
"hi_pset_epoch_delta", check_schema=False
|
|
218
|
+
),
|
|
219
|
+
)
|
|
200
220
|
# Generate label variables
|
|
201
221
|
data_vars["esa_energy_step_label"] = xr.DataArray(
|
|
202
222
|
coords["esa_energy_step"].values.astype(str),
|
|
@@ -253,7 +273,7 @@ def pset_geometry(pset_et: float, sensor_str: str) -> dict[str, xr.DataArray]:
|
|
|
253
273
|
Returns
|
|
254
274
|
-------
|
|
255
275
|
geometry_vars : dict[str, xarray.DataArray]
|
|
256
|
-
Keys are variable names and values are data arrays.
|
|
276
|
+
Keys are variable names, and values are data arrays.
|
|
257
277
|
"""
|
|
258
278
|
geometry_vars = create_dataset_variables(
|
|
259
279
|
["despun_z"], (1, 3), att_manager_lookup_str="hi_pset_{0}"
|
|
@@ -571,11 +591,26 @@ def find_second_de_packet_data(l1b_dataset: xr.Dataset) -> xr.Dataset:
|
|
|
571
591
|
# We should get two CCSDS packets per 8-spin ESA step.
|
|
572
592
|
# Get the indices of the packet before each ESA change.
|
|
573
593
|
esa_step = epoch_dataset["esa_step"].values
|
|
594
|
+
esa_energy_step = epoch_dataset["esa_energy_step"].values
|
|
595
|
+
# A change in esa_step should indicate the location of the second packet in
|
|
596
|
+
# each pair of DE packets at an esa_energy_step. In practice, during some
|
|
597
|
+
# calibration activities, it was observed that the esa_energy_step can change
|
|
598
|
+
# when the esa_step did not. So, we look for either to change and use the
|
|
599
|
+
# indices of those changes to identify the second packet in each pair. We
|
|
600
|
+
# also need to add the last packet index and assume an energy step change
|
|
601
|
+
# occurs after the last packet.
|
|
574
602
|
second_esa_packet_idx = np.append(
|
|
575
|
-
np.flatnonzero(np.diff(esa_step) != 0)
|
|
603
|
+
np.flatnonzero((np.diff(esa_step) != 0) | (np.diff(esa_energy_step) != 0)),
|
|
604
|
+
len(esa_step) - 1,
|
|
605
|
+
)
|
|
606
|
+
# Remove esa energy steps at 0 - these are calibrations
|
|
607
|
+
keep_mask = esa_energy_step[second_esa_packet_idx] != 0
|
|
608
|
+
# Remove esa energy steps at FILLVAL - these are unidentified
|
|
609
|
+
keep_mask &= (
|
|
610
|
+
esa_energy_step[second_esa_packet_idx]
|
|
611
|
+
!= l1b_dataset["esa_energy_step"].attrs["FILLVAL"]
|
|
576
612
|
)
|
|
577
|
-
|
|
578
|
-
second_esa_packet_idx = second_esa_packet_idx[esa_step[second_esa_packet_idx] != 0]
|
|
613
|
+
second_esa_packet_idx = second_esa_packet_idx[keep_mask]
|
|
579
614
|
# Remove indices where we don't have two consecutive packets at the same ESA
|
|
580
615
|
if second_esa_packet_idx[0] == 0:
|
|
581
616
|
logger.warning(
|
|
@@ -584,7 +619,8 @@ def find_second_de_packet_data(l1b_dataset: xr.Dataset) -> xr.Dataset:
|
|
|
584
619
|
)
|
|
585
620
|
second_esa_packet_idx = second_esa_packet_idx[1:]
|
|
586
621
|
missing_esa_pair_mask = (
|
|
587
|
-
|
|
622
|
+
esa_energy_step[second_esa_packet_idx - 1]
|
|
623
|
+
!= esa_energy_step[second_esa_packet_idx]
|
|
588
624
|
)
|
|
589
625
|
if missing_esa_pair_mask.any():
|
|
590
626
|
logger.warning(
|
|
@@ -629,9 +665,11 @@ def get_de_clock_ticks_for_esa_step(
|
|
|
629
665
|
# ESA step group so this match is the end time. The start time is
|
|
630
666
|
# 8-spins earlier.
|
|
631
667
|
spin_start_mets = spin_df.spin_start_met.to_numpy()
|
|
632
|
-
# CCSDS MET has one second resolution, add
|
|
633
|
-
# greater than the spin start time it ended on.
|
|
634
|
-
|
|
668
|
+
# CCSDS MET has one second resolution, add two to it to make sure it is
|
|
669
|
+
# greater than the spin start time it ended on. Theotretically, adding
|
|
670
|
+
# one second should be sufficeint, but in practice, with flight data, adding
|
|
671
|
+
# two seconds was found to be necessary.
|
|
672
|
+
end_time_ind = np.flatnonzero(ccsds_met + 2 >= spin_start_mets).max()
|
|
635
673
|
|
|
636
674
|
# If the minimum absolute difference is greater than 1/2 the spin-phase
|
|
637
675
|
# we have a problem.
|