imap-processing 1.0.0__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of imap-processing might be problematic. Click here for more details.
- imap_processing/_version.py +2 -2
- imap_processing/cdf/config/imap_codice_global_cdf_attrs.yaml +13 -1
- imap_processing/cdf/config/imap_codice_l2-hi-omni_variable_attrs.yaml +635 -0
- imap_processing/cdf/config/imap_codice_l2-hi-sectored_variable_attrs.yaml +422 -0
- imap_processing/cdf/config/imap_enamaps_l2-common_variable_attrs.yaml +28 -21
- imap_processing/cdf/config/imap_enamaps_l2-healpix_variable_attrs.yaml +2 -0
- imap_processing/cdf/config/imap_enamaps_l2-rectangular_variable_attrs.yaml +12 -2
- imap_processing/cli.py +6 -11
- imap_processing/codice/codice_l2.py +640 -127
- imap_processing/codice/constants.py +61 -0
- imap_processing/ena_maps/ena_maps.py +111 -60
- imap_processing/ena_maps/utils/coordinates.py +5 -0
- imap_processing/ena_maps/utils/corrections.py +268 -0
- imap_processing/ena_maps/utils/map_utils.py +143 -42
- imap_processing/hi/hi_l2.py +3 -8
- imap_processing/ialirt/constants.py +7 -1
- imap_processing/ialirt/generate_coverage.py +1 -1
- imap_processing/ialirt/l0/process_codice.py +66 -0
- imap_processing/ialirt/utils/create_xarray.py +1 -0
- imap_processing/idex/idex_l2a.py +2 -2
- imap_processing/idex/idex_l2b.py +1 -1
- imap_processing/lo/l1c/lo_l1c.py +61 -3
- imap_processing/lo/l2/lo_l2.py +79 -11
- imap_processing/mag/l1a/mag_l1a.py +2 -2
- imap_processing/mag/l1a/mag_l1a_data.py +71 -13
- imap_processing/mag/l1c/interpolation_methods.py +34 -13
- imap_processing/mag/l1c/mag_l1c.py +117 -67
- imap_processing/mag/l1d/mag_l1d_data.py +3 -1
- imap_processing/spice/geometry.py +11 -9
- imap_processing/spice/pointing_frame.py +77 -50
- imap_processing/swapi/l1/swapi_l1.py +12 -4
- imap_processing/swe/utils/swe_constants.py +7 -7
- imap_processing/ultra/l1b/extendedspin.py +1 -1
- imap_processing/ultra/l1b/ultra_l1b_culling.py +2 -2
- imap_processing/ultra/l1b/ultra_l1b_extended.py +1 -1
- imap_processing/ultra/l1c/helio_pset.py +1 -1
- imap_processing/ultra/l1c/spacecraft_pset.py +2 -2
- imap_processing-1.0.1.dist-info/METADATA +121 -0
- {imap_processing-1.0.0.dist-info → imap_processing-1.0.1.dist-info}/RECORD +42 -40
- imap_processing-1.0.0.dist-info/METADATA +0 -120
- {imap_processing-1.0.0.dist-info → imap_processing-1.0.1.dist-info}/LICENSE +0 -0
- {imap_processing-1.0.0.dist-info → imap_processing-1.0.1.dist-info}/WHEEL +0 -0
- {imap_processing-1.0.0.dist-info → imap_processing-1.0.1.dist-info}/entry_points.txt +0 -0
|
@@ -4,7 +4,23 @@ from pathlib import Path
|
|
|
4
4
|
|
|
5
5
|
import numpy as np
|
|
6
6
|
import pandas as pd
|
|
7
|
+
import xarray as xr
|
|
7
8
|
from numpy.polynomial import Polynomial
|
|
9
|
+
from scipy.constants import electron_volt, erg, proton_mass
|
|
10
|
+
|
|
11
|
+
from imap_processing.ena_maps.ena_maps import LoHiBasePointingSet
|
|
12
|
+
from imap_processing.ena_maps.utils.coordinates import CoordNames
|
|
13
|
+
from imap_processing.spice import geometry
|
|
14
|
+
from imap_processing.spice.time import ttj2000ns_to_et
|
|
15
|
+
|
|
16
|
+
# Physical constants for Compton-Getting correction
|
|
17
|
+
# Units: electron_volt = [J / eV]
|
|
18
|
+
# erg = [J / erg]
|
|
19
|
+
# To get [erg / eV], => electron_volt [J / eV] / erg [J / erg] = erg_per_ev [erg / eV]
|
|
20
|
+
ERG_PER_EV = electron_volt / erg # erg per eV - unit conversion factor
|
|
21
|
+
# Units: proton_mass = [kg]
|
|
22
|
+
# Here, we convert proton_mass to grams
|
|
23
|
+
PROTON_MASS_GRAMS = proton_mass * 1e3 # proton mass in grams
|
|
8
24
|
|
|
9
25
|
|
|
10
26
|
class PowerLawFluxCorrector:
|
|
@@ -289,3 +305,255 @@ class PowerLawFluxCorrector:
|
|
|
289
305
|
)
|
|
290
306
|
|
|
291
307
|
return corrected_flux, corrected_flux_stat_unc
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
def _add_spacecraft_velocity_to_pset(pset: LoHiBasePointingSet) -> None:
|
|
311
|
+
"""
|
|
312
|
+
Calculate and add spacecraft velocity data to pointing set.
|
|
313
|
+
|
|
314
|
+
Parameters
|
|
315
|
+
----------
|
|
316
|
+
pset : LoHiBasePointingSet
|
|
317
|
+
Pointing set object to be updated.
|
|
318
|
+
|
|
319
|
+
Notes
|
|
320
|
+
-----
|
|
321
|
+
Adds the following DataArrays to pset.data:
|
|
322
|
+
- "sc_velocity": Spacecraft velocity vector (km/s) with dims ["x_y_z"]
|
|
323
|
+
- "sc_direction_vector": Spacecraft velocity unit vector with dims ["x_y_z"]
|
|
324
|
+
"""
|
|
325
|
+
# Compute ephemeris time (J2000 seconds) of PSET midpoint time
|
|
326
|
+
# TODO: Use the Pointing midpoint time. Epoch should be start time
|
|
327
|
+
# but use it until we can make Lo and Hi PSETs have a consistent
|
|
328
|
+
# variable to hold the midpoint time.
|
|
329
|
+
et = ttj2000ns_to_et(pset.data["epoch"].values[0])
|
|
330
|
+
# Get spacecraft state in HAE frame
|
|
331
|
+
sc_state = geometry.imap_state(et, ref_frame=geometry.SpiceFrame.IMAP_HAE)
|
|
332
|
+
sc_velocity_vector = sc_state[3:6]
|
|
333
|
+
|
|
334
|
+
# Store spacecraft velocity as DataArray
|
|
335
|
+
pset.data["sc_velocity"] = xr.DataArray(
|
|
336
|
+
sc_velocity_vector, dims=[CoordNames.CARTESIAN_VECTOR.value]
|
|
337
|
+
)
|
|
338
|
+
|
|
339
|
+
# Calculate spacecraft speed and direction
|
|
340
|
+
sc_velocity_km_per_sec = np.linalg.norm(
|
|
341
|
+
pset.data["sc_velocity"], axis=-1, keepdims=True
|
|
342
|
+
)
|
|
343
|
+
pset.data["sc_direction_vector"] = pset.data["sc_velocity"] / sc_velocity_km_per_sec
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
def _add_cartesian_look_direction(pset: LoHiBasePointingSet) -> None:
|
|
347
|
+
"""
|
|
348
|
+
Calculate and add look direction vectors to pointing set.
|
|
349
|
+
|
|
350
|
+
Parameters
|
|
351
|
+
----------
|
|
352
|
+
pset : LoHiBasePointingSet
|
|
353
|
+
Pointing set object to be updated.
|
|
354
|
+
|
|
355
|
+
Notes
|
|
356
|
+
-----
|
|
357
|
+
Adds the following DataArray to pset.data:
|
|
358
|
+
- "look_direction": Cartesian unit vectors with dims [...spatial_dims, "x_y_z"]
|
|
359
|
+
"""
|
|
360
|
+
longitudes = pset.data["hae_longitude"]
|
|
361
|
+
latitudes = pset.data["hae_latitude"]
|
|
362
|
+
|
|
363
|
+
# Stack spherical coordinates (r=1 for unit vectors, azimuth, elevation)
|
|
364
|
+
spherical_coords = np.stack(
|
|
365
|
+
[
|
|
366
|
+
np.ones_like(longitudes), # r = 1 for unit vectors
|
|
367
|
+
longitudes, # azimuth = longitude
|
|
368
|
+
latitudes, # elevation = latitude
|
|
369
|
+
],
|
|
370
|
+
axis=-1,
|
|
371
|
+
)
|
|
372
|
+
|
|
373
|
+
# Convert to Cartesian coordinates and store as DataArray
|
|
374
|
+
pset.data["look_direction"] = xr.DataArray(
|
|
375
|
+
geometry.spherical_to_cartesian(spherical_coords),
|
|
376
|
+
dims=[*longitudes.dims, CoordNames.CARTESIAN_VECTOR.value],
|
|
377
|
+
)
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
def _calculate_compton_getting_transform(
|
|
381
|
+
pset: LoHiBasePointingSet,
|
|
382
|
+
energy_hf: xr.DataArray,
|
|
383
|
+
) -> None:
|
|
384
|
+
"""
|
|
385
|
+
Apply Compton-Getting transformation to compute ENA source directions.
|
|
386
|
+
|
|
387
|
+
This implements the Compton-Getting velocity transformation to correct
|
|
388
|
+
for the motion of the spacecraft through the heliosphere. The transformation
|
|
389
|
+
accounts for the Doppler shift of ENA energies and the aberration of
|
|
390
|
+
arrival directions.
|
|
391
|
+
|
|
392
|
+
All calculations are performed using xarray DataArrays to preserve
|
|
393
|
+
dimension information throughout the computation.
|
|
394
|
+
|
|
395
|
+
Parameters
|
|
396
|
+
----------
|
|
397
|
+
pset : LoHiBasePointingSet
|
|
398
|
+
Pointing set object with sc_velocity, sc_direction_vector, and
|
|
399
|
+
look_direction already added.
|
|
400
|
+
energy_hf : xr.DataArray
|
|
401
|
+
ENA energies in the heliosphere frame in eV.
|
|
402
|
+
|
|
403
|
+
Notes
|
|
404
|
+
-----
|
|
405
|
+
The algorithm is based on the "Appendix A. The IMAP-Lo Mapping Algorithms"
|
|
406
|
+
document.
|
|
407
|
+
Adds the following DataArrays to pset.data:
|
|
408
|
+
- "energy_sc": ENA energies in spacecraft frame (eV)
|
|
409
|
+
- "ena_source_hae_longitude": ENA source longitudes in heliosphere frame (degrees)
|
|
410
|
+
- "ena_source_hae_latitude": ENA source latitudes in heliosphere frame (degrees)
|
|
411
|
+
"""
|
|
412
|
+
# Store heliosphere frame energies
|
|
413
|
+
pset.data["energy_hf"] = energy_hf
|
|
414
|
+
|
|
415
|
+
# Calculate spacecraft speed
|
|
416
|
+
sc_velocity_km_per_sec = np.linalg.norm(
|
|
417
|
+
pset.data["sc_velocity"], axis=-1, keepdims=True
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
# Calculate dot product between look directions and spacecraft direction vector
|
|
421
|
+
# Use Einstein summation for efficient vectorized dot product
|
|
422
|
+
dot_product = xr.DataArray(
|
|
423
|
+
np.einsum(
|
|
424
|
+
"...i,...i->...",
|
|
425
|
+
pset.data["look_direction"],
|
|
426
|
+
pset.data["sc_direction_vector"],
|
|
427
|
+
),
|
|
428
|
+
dims=pset.data["look_direction"].dims[:-1],
|
|
429
|
+
)
|
|
430
|
+
|
|
431
|
+
# Calculate the kinetic energy of a hydrogen ENA traveling at spacecraft velocity
|
|
432
|
+
# E_u = (1/2) * m * U_sc^2 (convert km/s to cm/s with 1.0e5 factor)
|
|
433
|
+
energy_u = (
|
|
434
|
+
0.5 * PROTON_MASS_GRAMS * (sc_velocity_km_per_sec * 1e5) ** 2 / ERG_PER_EV
|
|
435
|
+
)
|
|
436
|
+
|
|
437
|
+
# Note: Tim thinks that this approach seems backwards. Here, we are assuming
|
|
438
|
+
# that ENAs are observed in the heliosphere frame at the ESA energy levels.
|
|
439
|
+
# We then calculate the velocity that said ENAs would have in the spacecraft
|
|
440
|
+
# frame as well as the CG corrected energy level in the spacecraft frame.
|
|
441
|
+
# We then use this velocity to calculate and the velocity of the spacecraft
|
|
442
|
+
# to do the vector math which determines the ENA source direction in the
|
|
443
|
+
# heliosphere frame.
|
|
444
|
+
# The ENAs are in fact observed in the spacecraft frame at a known energy
|
|
445
|
+
# level in the spacecraft frame. Why don't we use that energy level to
|
|
446
|
+
# calculate the source direction in the spacecraft frame and then do the
|
|
447
|
+
# vector math to find the source direction in the heliosphere frame? We
|
|
448
|
+
# would also need to calculate the CG corrected ENA energy in the heliosphere
|
|
449
|
+
# frame and keep track of that when binning.
|
|
450
|
+
|
|
451
|
+
# Calculate y values for each energy level (Equation 61)
|
|
452
|
+
# y_k = sqrt(E^h_k / E^u)
|
|
453
|
+
y = np.sqrt(pset.data["energy_hf"] / energy_u)
|
|
454
|
+
|
|
455
|
+
# Velocity magnitude factor calculation (Equation 62)
|
|
456
|
+
# x_k = (êₛ · û_sc) + sqrt(y² + (êₛ · û_sc)² - 1)
|
|
457
|
+
x = dot_product + np.sqrt(y**2 + dot_product**2 - 1)
|
|
458
|
+
|
|
459
|
+
# Calculate ENA speed in the spacecraft frame
|
|
460
|
+
# |v⃗_sc| = x_k * U_sc
|
|
461
|
+
velocity_sc = x * sc_velocity_km_per_sec
|
|
462
|
+
|
|
463
|
+
# Calculate the kinetic energy in the spacecraft frame
|
|
464
|
+
# E_sc = (1/2) * M_p * v_sc² (convert km/s to cm/s with 1.0e5 factor)
|
|
465
|
+
pset.data["energy_sc"] = (
|
|
466
|
+
0.5 * PROTON_MASS_GRAMS * (velocity_sc * 1e5) ** 2 / ERG_PER_EV
|
|
467
|
+
)
|
|
468
|
+
|
|
469
|
+
# Calculate the velocity vector in the spacecraft frame
|
|
470
|
+
# v⃗_sc = |v_sc| * êₛ (velocity direction follows look direction)
|
|
471
|
+
velocity_vector_sc = velocity_sc * pset.data["look_direction"]
|
|
472
|
+
|
|
473
|
+
# Calculate the ENA velocity vector in the heliosphere frame
|
|
474
|
+
# v⃗_helio = v⃗_sc - U⃗_sc (simple velocity addition)
|
|
475
|
+
velocity_vector_helio = velocity_vector_sc - pset.data["sc_velocity"]
|
|
476
|
+
|
|
477
|
+
# Convert to spherical coordinates to get ENA source directions
|
|
478
|
+
ena_source_direction_helio = geometry.cartesian_to_spherical(
|
|
479
|
+
velocity_vector_helio.data
|
|
480
|
+
)
|
|
481
|
+
|
|
482
|
+
# Update the PSET hae_longitude and hae_latitude variables with the new
|
|
483
|
+
# energy-dependent values.
|
|
484
|
+
pset.data["hae_longitude"] = (
|
|
485
|
+
pset.data["energy_sc"].dims,
|
|
486
|
+
ena_source_direction_helio[..., 1],
|
|
487
|
+
)
|
|
488
|
+
pset.data["hae_latitude"] = (
|
|
489
|
+
pset.data["energy_sc"].dims,
|
|
490
|
+
ena_source_direction_helio[..., 2],
|
|
491
|
+
)
|
|
492
|
+
|
|
493
|
+
# For ram/anti-ram filtering we can use the sign of the scalar projection
|
|
494
|
+
# of the ENA source direction onto the spacecraft velocity vector.
|
|
495
|
+
# ram_mask = (v⃗_helio · û_sc) >= 0
|
|
496
|
+
ram_mask = (
|
|
497
|
+
np.einsum(
|
|
498
|
+
"...i,...i->...", velocity_vector_helio, pset.data["sc_direction_vector"]
|
|
499
|
+
)
|
|
500
|
+
>= 0
|
|
501
|
+
)
|
|
502
|
+
pset.data["ram_mask"] = xr.DataArray(
|
|
503
|
+
ram_mask,
|
|
504
|
+
dims=velocity_vector_helio.dims[:-1],
|
|
505
|
+
)
|
|
506
|
+
|
|
507
|
+
|
|
508
|
+
def apply_compton_getting_correction(
|
|
509
|
+
pset: LoHiBasePointingSet,
|
|
510
|
+
energy_hf: xr.DataArray,
|
|
511
|
+
) -> None:
|
|
512
|
+
"""
|
|
513
|
+
Apply Compton-Getting correction to a pointing set and update coordinates.
|
|
514
|
+
|
|
515
|
+
This function performs the Compton-Getting velocity transformation to correct
|
|
516
|
+
ENA observations for the motion of the spacecraft through the heliosphere.
|
|
517
|
+
The corrected coordinates represent the true source directions of the ENAs
|
|
518
|
+
in the heliosphere frame.
|
|
519
|
+
|
|
520
|
+
The pointing set is modified in-place: new variables are added to the dataset
|
|
521
|
+
for the corrected coordinates and energies, and the az_el_points attribute
|
|
522
|
+
is updated to use the corrected coordinates for binning.
|
|
523
|
+
|
|
524
|
+
All calculations are performed using xarray DataArrays to preserve dimension
|
|
525
|
+
information throughout the computation.
|
|
526
|
+
|
|
527
|
+
Parameters
|
|
528
|
+
----------
|
|
529
|
+
pset : LoHiBasePointingSet
|
|
530
|
+
Pointing set object containing HAE longitude/latitude coordinates.
|
|
531
|
+
energy_hf : xr.DataArray
|
|
532
|
+
ENA energies in the heliosphere frame in eV. Must be 1D with an
|
|
533
|
+
energy dimension.
|
|
534
|
+
|
|
535
|
+
Notes
|
|
536
|
+
-----
|
|
537
|
+
This function adds the following variables to the pointing set dataset:
|
|
538
|
+
- "sc_velocity": Spacecraft velocity vector (km/s)
|
|
539
|
+
- "sc_direction_vector": Spacecraft velocity unit vector
|
|
540
|
+
- "look_direction": Cartesian unit vectors of observation directions
|
|
541
|
+
- "energy_hf": ENA energies in heliosphere frame (eV)
|
|
542
|
+
- "energy_sc": ENA energies in spacecraft frame (eV)
|
|
543
|
+
- "ena_source_hae_longitude": ENA source longitudes in heliosphere frame (degrees)
|
|
544
|
+
- "ena_source_hae_latitude": ENA source latitudes in heliosphere frame (degrees)
|
|
545
|
+
|
|
546
|
+
The az_el_points attribute is updated to use the corrected coordinates,
|
|
547
|
+
which will be used for subsequent binning operations.
|
|
548
|
+
"""
|
|
549
|
+
# Step 1: Add spacecraft velocity and direction to pset
|
|
550
|
+
_add_spacecraft_velocity_to_pset(pset)
|
|
551
|
+
|
|
552
|
+
# Step 2: Calculate and add look direction vectors to pset
|
|
553
|
+
_add_cartesian_look_direction(pset)
|
|
554
|
+
|
|
555
|
+
# Step 3: Apply Compton-Getting transformation
|
|
556
|
+
_calculate_compton_getting_transform(pset, energy_hf)
|
|
557
|
+
|
|
558
|
+
# Step 4: Update az_el_points to use the corrected coordinates
|
|
559
|
+
pset.update_az_el_points()
|
|
@@ -10,6 +10,89 @@ from numpy.typing import NDArray
|
|
|
10
10
|
logger = logging.getLogger(__name__)
|
|
11
11
|
|
|
12
12
|
|
|
13
|
+
def vectorized_bincount(
|
|
14
|
+
indices: NDArray, weights: NDArray | None = None, minlength: int = 0
|
|
15
|
+
) -> NDArray:
|
|
16
|
+
"""
|
|
17
|
+
Vectorized version of np.bincount for multi-dimensional arrays.
|
|
18
|
+
|
|
19
|
+
This function applies np.bincount across multi-dimensional input arrays by
|
|
20
|
+
adding offsets to the indices and flattening, then reshaping the result.
|
|
21
|
+
This approach allows broadcasting between indices and weights.
|
|
22
|
+
|
|
23
|
+
Parameters
|
|
24
|
+
----------
|
|
25
|
+
indices : NDArray
|
|
26
|
+
Array of non-negative integers to be binned. Can be multi-dimensional.
|
|
27
|
+
If multi-dimensional, bincount is applied independently along each
|
|
28
|
+
leading dimension.
|
|
29
|
+
weights : NDArray, optional
|
|
30
|
+
Array of weights that is broadcastable with indices. If provided, each
|
|
31
|
+
weight is accumulated into its corresponding bin. If None (default),
|
|
32
|
+
each index contributes a count of 1.
|
|
33
|
+
minlength : int, optional
|
|
34
|
+
Minimum number of bins in the output array. Applied to each independent
|
|
35
|
+
bincount operation. Default is 0.
|
|
36
|
+
|
|
37
|
+
Returns
|
|
38
|
+
-------
|
|
39
|
+
NDArray
|
|
40
|
+
Array of binned values with the same leading dimensions as the input
|
|
41
|
+
arrays, and a final dimension of size minlength (or the maximum index + 1,
|
|
42
|
+
whichever is larger).
|
|
43
|
+
|
|
44
|
+
See Also
|
|
45
|
+
--------
|
|
46
|
+
numpy.bincount : The underlying function being vectorized.
|
|
47
|
+
|
|
48
|
+
Examples
|
|
49
|
+
--------
|
|
50
|
+
>>> indices = np.array([[0, 1, 1], [2, 2, 3]])
|
|
51
|
+
>>> vectorized_bincount(indices, minlength=4)
|
|
52
|
+
array([[1., 2., 0., 0.],
|
|
53
|
+
[0., 0., 2., 1.]])
|
|
54
|
+
"""
|
|
55
|
+
# Handle 1D case directly
|
|
56
|
+
if indices.ndim == 1 and (weights is None or weights.ndim == 1):
|
|
57
|
+
return np.bincount(indices, weights=weights, minlength=minlength)
|
|
58
|
+
|
|
59
|
+
# For multi-dimensional arrays, broadcast indices and weights
|
|
60
|
+
if weights is not None:
|
|
61
|
+
indices_bc, weights_bc = np.broadcast_arrays(indices, weights)
|
|
62
|
+
weights_flat = weights_bc.ravel()
|
|
63
|
+
else:
|
|
64
|
+
indices_bc = indices
|
|
65
|
+
weights_flat = None
|
|
66
|
+
|
|
67
|
+
# Get the shape for reshaping output
|
|
68
|
+
non_spatial_shape = indices_bc.shape[:-1]
|
|
69
|
+
n_binsets = np.prod(non_spatial_shape)
|
|
70
|
+
|
|
71
|
+
# Determine actual minlength if not specified
|
|
72
|
+
if minlength == 0:
|
|
73
|
+
minlength = int(np.max(indices_bc)) + 1
|
|
74
|
+
|
|
75
|
+
# We want to flatten the multi-dimensional bincount problem into a 1D problem.
|
|
76
|
+
# This can be done by offsetting the indices for each element of each additional
|
|
77
|
+
# dimension by an integer multiple of the number of bins. Doing so gives
|
|
78
|
+
# each element in the additional dimensions its own set of 1D bins: index 0
|
|
79
|
+
# uses bins [0, minlength), index 1 uses bins [minlength, 2*minlength), etc.
|
|
80
|
+
offsets = np.arange(n_binsets).reshape(*non_spatial_shape, 1) * minlength
|
|
81
|
+
indices_flat = (indices_bc + offsets).ravel()
|
|
82
|
+
|
|
83
|
+
# Single bincount call with flattened data
|
|
84
|
+
binned_flat = np.bincount(
|
|
85
|
+
indices_flat, weights=weights_flat, minlength=n_binsets * minlength
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
# Reshape to separate each sample's bins
|
|
89
|
+
binned_values = binned_flat.reshape(n_binsets, -1)[:, :minlength].reshape(
|
|
90
|
+
*non_spatial_shape, minlength
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
return binned_values
|
|
94
|
+
|
|
95
|
+
|
|
13
96
|
def bin_single_array_at_indices(
|
|
14
97
|
value_array: NDArray,
|
|
15
98
|
projection_grid_shape: tuple[int, ...],
|
|
@@ -25,7 +108,7 @@ def bin_single_array_at_indices(
|
|
|
25
108
|
Parameters
|
|
26
109
|
----------
|
|
27
110
|
value_array : NDArray
|
|
28
|
-
Array of values to bin. The final axis
|
|
111
|
+
Array of values to bin. The final axis is the one and only spatial axis.
|
|
29
112
|
If other axes are present, they will be binned independently
|
|
30
113
|
along the spatial axis.
|
|
31
114
|
projection_grid_shape : tuple[int, ...]
|
|
@@ -34,71 +117,89 @@ def bin_single_array_at_indices(
|
|
|
34
117
|
or just (number of bins,) if the grid is 1D.
|
|
35
118
|
projection_indices : NDArray
|
|
36
119
|
Ordered indices for projection grid, corresponding to indices in input grid.
|
|
37
|
-
1 dimensional.
|
|
120
|
+
Can be 1-dimensional or multi-dimensional. If multi-dimensional, must be
|
|
121
|
+
broadcastable with value_array. May contain non-unique indices, depending
|
|
122
|
+
on the projection method.
|
|
38
123
|
input_indices : NDArray
|
|
39
124
|
Ordered indices for input grid, corresponding to indices in projection grid.
|
|
40
125
|
1 dimensional. May be non-unique, depending on the projection method.
|
|
41
|
-
If None (default), an arange of the same length as the
|
|
42
|
-
|
|
126
|
+
If None (default), an numpy.arange of the same length as the final axis of
|
|
127
|
+
value_array is used.
|
|
43
128
|
input_valid_mask : NDArray, optional
|
|
44
129
|
Boolean mask array for valid values in input grid.
|
|
45
130
|
If None, all pixels are considered valid. Default is None.
|
|
131
|
+
Must be broadcastable with value_array and projection_indices.
|
|
46
132
|
|
|
47
133
|
Returns
|
|
48
134
|
-------
|
|
49
135
|
NDArray
|
|
50
|
-
Binned values on the projection grid.
|
|
136
|
+
Binned values on the projection grid. The output shape depends on the
|
|
137
|
+
input shapes after broadcasting:
|
|
138
|
+
- If value_array is 1D: returns 1D array of shape (num_projection_indices,)
|
|
139
|
+
- If value_array is multi-dimensional: returns array with shape
|
|
140
|
+
(*value_array.shape[:-1], num_projection_indices), where the leading
|
|
141
|
+
dimensions match value_array's non-spatial dimensions and the final
|
|
142
|
+
dimension contains the binned values for each projection grid position.
|
|
143
|
+
- If projection_indices is multi-dimensional and broadcasts with value_array,
|
|
144
|
+
the output shape will be (broadcasted_shape[:-1], num_projection_indices).
|
|
51
145
|
|
|
52
146
|
Raises
|
|
53
147
|
------
|
|
54
148
|
ValueError
|
|
55
|
-
If
|
|
56
|
-
|
|
57
|
-
NotImplementedError
|
|
58
|
-
If the input value_array has dimensionality less than 1.
|
|
149
|
+
If input_indices is not a 1D array, or if the arrays cannot be
|
|
150
|
+
broadcast together.
|
|
59
151
|
"""
|
|
152
|
+
# Set and check input_indices
|
|
60
153
|
if input_indices is None:
|
|
61
154
|
input_indices = np.arange(value_array.shape[-1])
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
# Both sets of indices must be 1D with the same number of elements
|
|
66
|
-
if input_indices.ndim != 1 or projection_indices.ndim != 1:
|
|
155
|
+
# input_indices must be 1D
|
|
156
|
+
if input_indices.ndim != 1:
|
|
67
157
|
raise ValueError(
|
|
68
|
-
"
|
|
158
|
+
"input_indices must be a 1D array. "
|
|
69
159
|
"If using a rectangular grid, the indices must be unwrapped."
|
|
70
160
|
)
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
161
|
+
|
|
162
|
+
# Verify projection_indices is broadcastable with value_array
|
|
163
|
+
try:
|
|
164
|
+
broadcasted_shape = np.broadcast_shapes(
|
|
165
|
+
projection_indices.shape, value_array.shape
|
|
76
166
|
)
|
|
167
|
+
except ValueError as e:
|
|
168
|
+
raise ValueError(
|
|
169
|
+
f"projection_indices shape {projection_indices.shape} must be "
|
|
170
|
+
f"broadcastable with value_array shape {value_array.shape}"
|
|
171
|
+
) from e
|
|
77
172
|
|
|
78
|
-
|
|
79
|
-
|
|
173
|
+
# Set and check input_valid_mask
|
|
174
|
+
if input_valid_mask is None:
|
|
175
|
+
input_valid_mask = np.ones(value_array.shape[-1], dtype=bool)
|
|
176
|
+
else:
|
|
177
|
+
input_valid_mask = np.asarray(input_valid_mask, dtype=bool)
|
|
178
|
+
# Verify input_valid_mask is broadcastable with value_array
|
|
179
|
+
try:
|
|
180
|
+
np.broadcast_shapes(input_valid_mask.shape, value_array.shape)
|
|
181
|
+
except ValueError as e:
|
|
182
|
+
raise ValueError(
|
|
183
|
+
f"input_valid_mask shape {input_valid_mask.shape} must be "
|
|
184
|
+
f"broadcastable with value_array shape {value_array.shape}"
|
|
185
|
+
) from e
|
|
80
186
|
|
|
81
|
-
|
|
187
|
+
# Broadcast input_valid_mask to match value_array shape if needed
|
|
188
|
+
input_valid_mask_bc = np.broadcast_to(input_valid_mask, broadcasted_shape)
|
|
189
|
+
|
|
190
|
+
# Select values at input_indices positions along the spatial axis
|
|
191
|
+
values = value_array[..., input_indices]
|
|
192
|
+
|
|
193
|
+
# Apply mask: set invalid values to 0
|
|
194
|
+
values_masked = np.where(input_valid_mask_bc, values, 0)
|
|
195
|
+
|
|
196
|
+
num_projection_indices = int(np.prod(projection_grid_shape))
|
|
197
|
+
|
|
198
|
+
# Use vectorized_bincount to handle arbitrary dimensions
|
|
199
|
+
binned_values = vectorized_bincount(
|
|
200
|
+
projection_indices, weights=values_masked, minlength=num_projection_indices
|
|
201
|
+
)
|
|
82
202
|
|
|
83
|
-
# Only valid values are summed into bins.
|
|
84
|
-
if value_array.ndim == 1:
|
|
85
|
-
values = value_array[input_indices]
|
|
86
|
-
binned_values = np.bincount(
|
|
87
|
-
projection_indices[mask_idx],
|
|
88
|
-
weights=values[mask_idx],
|
|
89
|
-
minlength=num_projection_indices,
|
|
90
|
-
)
|
|
91
|
-
elif value_array.ndim >= 2:
|
|
92
|
-
# Apply bincount to each row independently
|
|
93
|
-
binned_values = np.apply_along_axis(
|
|
94
|
-
lambda x: np.bincount(
|
|
95
|
-
projection_indices[mask_idx],
|
|
96
|
-
weights=x[..., input_indices][mask_idx],
|
|
97
|
-
minlength=num_projection_indices,
|
|
98
|
-
),
|
|
99
|
-
axis=-1,
|
|
100
|
-
arr=value_array,
|
|
101
|
-
)
|
|
102
203
|
return binned_values
|
|
103
204
|
|
|
104
205
|
|
imap_processing/hi/hi_l2.py
CHANGED
|
@@ -323,20 +323,15 @@ def combine_calibration_products(
|
|
|
323
323
|
# Perform inverse-variance weighted averaging
|
|
324
324
|
# Handle divide by zero and invalid values
|
|
325
325
|
with np.errstate(divide="ignore", invalid="ignore"):
|
|
326
|
-
# Calculate weights for statistical variance combination using only
|
|
327
|
-
# statistical variance
|
|
328
|
-
stat_weights = 1.0 / improved_stat_variance
|
|
329
|
-
|
|
330
|
-
# Combined statistical uncertainty from inverse-variance formula
|
|
331
|
-
combined_stat_unc = np.sqrt(1.0 / stat_weights.sum(dim="calibration_prod"))
|
|
332
|
-
|
|
333
326
|
# Use total variance weights for flux combination
|
|
334
327
|
flux_weights = 1.0 / total_variance
|
|
335
328
|
weighted_flux_sum = (ena_flux * flux_weights).sum(dim="calibration_prod")
|
|
336
329
|
combined_flux = weighted_flux_sum / flux_weights.sum(dim="calibration_prod")
|
|
337
330
|
|
|
338
331
|
map_ds["ena_intensity"] = combined_flux
|
|
339
|
-
map_ds["ena_intensity_stat_uncert"] =
|
|
332
|
+
map_ds["ena_intensity_stat_uncert"] = np.sqrt(
|
|
333
|
+
(map_ds["ena_intensity_stat_uncert"] ** 2).sum(dim="calibration_prod")
|
|
334
|
+
)
|
|
340
335
|
# For systematic error, just do quadrature sum over the systematic error for
|
|
341
336
|
# each calibration product.
|
|
342
337
|
map_ds["ena_intensity_sys_err"] = np.sqrt((sys_err**2).sum(dim="calibration_prod"))
|
|
@@ -65,5 +65,11 @@ STATIONS = {
|
|
|
65
65
|
latitude=54.2632, # degrees North
|
|
66
66
|
altitude=0.1, # approx 100 meters
|
|
67
67
|
min_elevation_deg=5, # 5 degrees is the requirement
|
|
68
|
-
)
|
|
68
|
+
),
|
|
69
|
+
"Manaus": StationProperties(
|
|
70
|
+
longitude=-59.969334, # degrees East (negative = West)
|
|
71
|
+
latitude=-2.891257, # degrees North (negative = South)
|
|
72
|
+
altitude=0.1, # approx 100 meters
|
|
73
|
+
min_elevation_deg=5, # 5 degrees is the requirement
|
|
74
|
+
),
|
|
69
75
|
}
|
|
@@ -77,7 +77,7 @@ def generate_coverage(
|
|
|
77
77
|
dsn_outage_mask |= (time_range >= start_et) & (time_range <= end_et)
|
|
78
78
|
|
|
79
79
|
for station_name, (lon, lat, alt, min_elevation) in stations.items():
|
|
80
|
-
|
|
80
|
+
_azimuth, elevation = calculate_azimuth_and_elevation(lon, lat, alt, time_range)
|
|
81
81
|
visible = elevation > min_elevation
|
|
82
82
|
|
|
83
83
|
outage_mask = np.zeros(time_range.shape, dtype=bool)
|
|
@@ -4,11 +4,56 @@ import logging
|
|
|
4
4
|
from decimal import Decimal
|
|
5
5
|
from typing import Any
|
|
6
6
|
|
|
7
|
+
import numpy as np
|
|
7
8
|
import xarray as xr
|
|
8
9
|
|
|
10
|
+
from imap_processing.codice import decompress
|
|
11
|
+
from imap_processing.ialirt.utils.grouping import find_groups
|
|
12
|
+
|
|
9
13
|
logger = logging.getLogger(__name__)
|
|
10
14
|
|
|
15
|
+
FILLVAL_UINT8 = 255
|
|
11
16
|
FILLVAL_FLOAT32 = Decimal(str(-1.0e31))
|
|
17
|
+
COD_LO_COUNTER = 232
|
|
18
|
+
COD_HI_COUNTER = 197
|
|
19
|
+
COD_LO_RANGE = range(0, 15)
|
|
20
|
+
COD_HI_RANGE = range(0, 5)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def concatenate_bytes(grouped_data: xr.Dataset, group: int, sensor: str) -> bytearray:
|
|
24
|
+
"""
|
|
25
|
+
Concatenate all data fields for a specific group into a single bytearray.
|
|
26
|
+
|
|
27
|
+
Parameters
|
|
28
|
+
----------
|
|
29
|
+
grouped_data : xr.Dataset
|
|
30
|
+
The grouped CoDICE dataset containing cod_{sensor}_data_XX variables.
|
|
31
|
+
group : int
|
|
32
|
+
The group number to extract.
|
|
33
|
+
sensor : str
|
|
34
|
+
The sensor type, either 'lo' or 'hi'.
|
|
35
|
+
|
|
36
|
+
Returns
|
|
37
|
+
-------
|
|
38
|
+
current_data_stream: bytearray
|
|
39
|
+
The concatenated data stream for the selected group.
|
|
40
|
+
"""
|
|
41
|
+
current_data_stream = bytearray()
|
|
42
|
+
group_mask = (grouped_data["group"] == group).values
|
|
43
|
+
|
|
44
|
+
cod_ranges = {
|
|
45
|
+
"lo": COD_LO_RANGE,
|
|
46
|
+
"hi": COD_HI_RANGE,
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
# Loop through all data fields.
|
|
50
|
+
for field in cod_ranges[sensor]:
|
|
51
|
+
data_array = grouped_data[f"cod_{sensor}_data_{field:02}"].values[group_mask]
|
|
52
|
+
|
|
53
|
+
# Convert each value to uint8 and extend the byte stream
|
|
54
|
+
current_data_stream.extend(np.uint8(data_array).tobytes())
|
|
55
|
+
|
|
56
|
+
return current_data_stream
|
|
12
57
|
|
|
13
58
|
|
|
14
59
|
def process_codice(
|
|
@@ -35,6 +80,27 @@ def process_codice(
|
|
|
35
80
|
- Calculate L2 CoDICE pseudodensities (pg 37 of Algorithm Document)
|
|
36
81
|
- Calculate the public data products
|
|
37
82
|
"""
|
|
83
|
+
grouped_cod_lo_data = find_groups(
|
|
84
|
+
dataset, (0, COD_LO_COUNTER), "cod_lo_counter", "cod_lo_acq"
|
|
85
|
+
)
|
|
86
|
+
grouped_cod_hi_data = find_groups(
|
|
87
|
+
dataset, (0, COD_HI_COUNTER), "cod_hi_counter", "cod_hi_acq"
|
|
88
|
+
)
|
|
89
|
+
unique_cod_lo_groups = np.unique(grouped_cod_lo_data["group"])
|
|
90
|
+
unique_cod_hi_groups = np.unique(grouped_cod_hi_data["group"])
|
|
91
|
+
|
|
92
|
+
for group in unique_cod_lo_groups:
|
|
93
|
+
cod_lo_data_stream = concatenate_bytes(grouped_cod_lo_data, group, "lo")
|
|
94
|
+
|
|
95
|
+
# Decompress binary stream
|
|
96
|
+
decompressed_data = decompress._apply_pack_24_bit(bytes(cod_lo_data_stream))
|
|
97
|
+
|
|
98
|
+
for group in unique_cod_hi_groups:
|
|
99
|
+
cod_hi_data_stream = concatenate_bytes(grouped_cod_hi_data, group, "lo")
|
|
100
|
+
|
|
101
|
+
# Decompress binary stream
|
|
102
|
+
decompressed_data = decompress._apply_lossy_a(bytes(cod_hi_data_stream)) # noqa
|
|
103
|
+
|
|
38
104
|
# For I-ALiRT SIT, the test data being used has all zeros and thus no
|
|
39
105
|
# groups can be found, thus there is no data to process
|
|
40
106
|
# TODO: Once I-ALiRT test data is acquired that actually has data in it,
|
imap_processing/idex/idex_l2a.py
CHANGED
|
@@ -118,7 +118,7 @@ def idex_l2a(l1b_dataset: xr.Dataset, ancillary_files: dict) -> xr.Dataset:
|
|
|
118
118
|
atomic_masses_path = f"{imap_module_directory}/idex/atomic_masses.csv"
|
|
119
119
|
atomic_masses = pd.read_csv(atomic_masses_path)
|
|
120
120
|
masses = atomic_masses["Mass"]
|
|
121
|
-
|
|
121
|
+
_stretches, _shifts, mass_scales = time_to_mass(tof_high.data, hs_time.data, masses)
|
|
122
122
|
|
|
123
123
|
# TODO use correct fillval
|
|
124
124
|
mass_scales_da = xr.DataArray(
|
|
@@ -379,7 +379,7 @@ def log_smooth_powerlaw(log_v: float, log_a: float, params: np.ndarray) -> float
|
|
|
379
379
|
# segments.
|
|
380
380
|
# vb and vc are the characteristic speeds where the slope transition happens, and k
|
|
381
381
|
# setting the sharpness of the transitions.
|
|
382
|
-
a1, a2, a3, vb, vc,
|
|
382
|
+
a1, a2, a3, vb, vc, _k, m = params
|
|
383
383
|
v = 10**log_v
|
|
384
384
|
base = log_a + a1 * log_v
|
|
385
385
|
transition1 = (1 + (v / vb) ** m) ** ((a2 - a1) / m)
|
imap_processing/idex/idex_l2b.py
CHANGED
|
@@ -645,7 +645,7 @@ def get_science_acquisition_on_percentage(evt_dataset: xr.Dataset) -> dict:
|
|
|
645
645
|
of year.
|
|
646
646
|
"""
|
|
647
647
|
# Get science acquisition start and stop times
|
|
648
|
-
|
|
648
|
+
_evt_logs, evt_time, evt_values = get_science_acquisition_timestamps(evt_dataset)
|
|
649
649
|
if len(evt_time) == 0:
|
|
650
650
|
logger.warning(
|
|
651
651
|
"No science acquisition events found in event dataset. Returning empty "
|