imap-processing 0.8.0__py3-none-any.whl → 0.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of imap-processing might be problematic. Click here for more details.

Files changed (99) hide show
  1. imap_processing/_version.py +2 -2
  2. imap_processing/ccsds/excel_to_xtce.py +2 -0
  3. imap_processing/cdf/config/imap_hi_variable_attrs.yaml +100 -1
  4. imap_processing/cdf/config/imap_hit_global_cdf_attrs.yaml +14 -0
  5. imap_processing/cdf/config/imap_hit_l1a_variable_attrs.yaml +63 -1
  6. imap_processing/cdf/config/imap_idex_global_cdf_attrs.yaml +7 -0
  7. imap_processing/cdf/config/imap_idex_l1a_variable_attrs.yaml +574 -231
  8. imap_processing/cdf/config/imap_idex_l1b_variable_attrs.yaml +326 -0
  9. imap_processing/cdf/config/imap_lo_l1a_variable_attrs.yaml +33 -23
  10. imap_processing/cdf/config/imap_ultra_l1b_variable_attrs.yaml +7 -4
  11. imap_processing/cdf/utils.py +3 -5
  12. imap_processing/cli.py +13 -4
  13. imap_processing/codice/codice_l1a.py +5 -5
  14. imap_processing/codice/constants.py +9 -9
  15. imap_processing/codice/decompress.py +6 -2
  16. imap_processing/glows/l1a/glows_l1a.py +1 -2
  17. imap_processing/hi/l1a/hi_l1a.py +4 -4
  18. imap_processing/hi/l1a/histogram.py +106 -108
  19. imap_processing/hi/l1a/science_direct_event.py +91 -224
  20. imap_processing/hi/packet_definitions/TLM_HI_COMBINED_SCI.xml +3994 -0
  21. imap_processing/hit/l0/constants.py +2 -2
  22. imap_processing/hit/l0/decom_hit.py +12 -101
  23. imap_processing/hit/l1a/hit_l1a.py +164 -23
  24. imap_processing/ialirt/l0/process_codicelo.py +153 -0
  25. imap_processing/ialirt/l0/process_hit.py +5 -5
  26. imap_processing/ialirt/packet_definitions/ialirt_codicelo.xml +281 -0
  27. imap_processing/ialirt/process_ephemeris.py +212 -0
  28. imap_processing/idex/idex_l1a.py +55 -75
  29. imap_processing/idex/idex_l1b.py +192 -0
  30. imap_processing/idex/idex_variable_unpacking_and_eu_conversion.csv +33 -0
  31. imap_processing/idex/packet_definitions/idex_packet_definition.xml +97 -595
  32. imap_processing/lo/l0/decompression_tables/decompression_tables.py +16 -0
  33. imap_processing/lo/l0/lo_science.py +44 -12
  34. imap_processing/lo/l1a/lo_l1a.py +76 -8
  35. imap_processing/lo/packet_definitions/lo_xtce.xml +9877 -87
  36. imap_processing/mag/l1a/mag_l1a.py +1 -2
  37. imap_processing/mag/l1a/mag_l1a_data.py +1 -2
  38. imap_processing/mag/l1b/mag_l1b.py +2 -1
  39. imap_processing/spice/geometry.py +37 -19
  40. imap_processing/spice/time.py +144 -2
  41. imap_processing/swapi/l1/swapi_l1.py +3 -3
  42. imap_processing/swapi/packet_definitions/swapi_packet_definition.xml +1535 -446
  43. imap_processing/swe/l2/swe_l2.py +134 -17
  44. imap_processing/tests/ccsds/test_data/expected_output.xml +1 -1
  45. imap_processing/tests/codice/test_codice_l1a.py +8 -8
  46. imap_processing/tests/codice/test_decompress.py +4 -4
  47. imap_processing/tests/conftest.py +46 -43
  48. imap_processing/tests/hi/test_data/l0/H90_NHK_20241104.bin +0 -0
  49. imap_processing/tests/hi/test_data/l0/H90_sci_cnt_20241104.bin +0 -0
  50. imap_processing/tests/hi/test_data/l0/H90_sci_de_20241104.bin +0 -0
  51. imap_processing/tests/hi/test_hi_l1b.py +2 -2
  52. imap_processing/tests/hi/test_l1a.py +31 -58
  53. imap_processing/tests/hi/test_science_direct_event.py +58 -0
  54. imap_processing/tests/hit/test_data/sci_sample1.ccsds +0 -0
  55. imap_processing/tests/hit/test_decom_hit.py +60 -50
  56. imap_processing/tests/hit/test_hit_l1a.py +327 -12
  57. imap_processing/tests/hit/test_hit_l1b.py +76 -0
  58. imap_processing/tests/hit/validation_data/hskp_sample_eu.csv +89 -0
  59. imap_processing/tests/hit/validation_data/sci_sample_raw1.csv +29 -0
  60. imap_processing/tests/ialirt/test_data/l0/apid01152.tlm +0 -0
  61. imap_processing/tests/ialirt/test_data/l0/imap_codice_l1a_lo-ialirt_20241110193700_v0.0.0.cdf +0 -0
  62. imap_processing/tests/ialirt/unit/test_process_codicelo.py +106 -0
  63. imap_processing/tests/ialirt/unit/test_process_ephemeris.py +109 -0
  64. imap_processing/tests/ialirt/unit/test_process_hit.py +9 -6
  65. imap_processing/tests/idex/conftest.py +1 -1
  66. imap_processing/tests/idex/test_idex_l0.py +1 -1
  67. imap_processing/tests/idex/test_idex_l1a.py +7 -1
  68. imap_processing/tests/idex/test_idex_l1b.py +126 -0
  69. imap_processing/tests/lo/test_lo_l1a.py +7 -16
  70. imap_processing/tests/lo/test_lo_science.py +67 -3
  71. imap_processing/tests/lo/test_pkts/imap_lo_l0_raw_20240803_v002.pkts +0 -0
  72. imap_processing/tests/lo/validation_data/Instrument_FM1_T104_R129_20240803_ILO_SCI_DE_dec_DN_with_fills.csv +1999 -0
  73. imap_processing/tests/mag/test_mag_l1b.py +39 -5
  74. imap_processing/tests/spice/test_geometry.py +32 -6
  75. imap_processing/tests/spice/test_time.py +135 -6
  76. imap_processing/tests/swapi/test_swapi_decom.py +75 -69
  77. imap_processing/tests/swapi/test_swapi_l1.py +4 -4
  78. imap_processing/tests/swe/test_swe_l2.py +64 -8
  79. imap_processing/tests/test_utils.py +1 -1
  80. imap_processing/tests/ultra/test_data/l0/ultra45_raw_sc_ultrarawimg_withFSWcalcs_FM45_40P_Phi28p5_BeamCal_LinearScan_phi2850_theta-000_20240207T102740.csv +3314 -3314
  81. imap_processing/tests/ultra/unit/test_de.py +8 -3
  82. imap_processing/tests/ultra/unit/test_spatial_utils.py +125 -0
  83. imap_processing/tests/ultra/unit/test_ultra_l1b_extended.py +39 -29
  84. imap_processing/tests/ultra/unit/test_ultra_l1c_pset_bins.py +2 -25
  85. imap_processing/ultra/constants.py +4 -0
  86. imap_processing/ultra/l1b/de.py +8 -14
  87. imap_processing/ultra/l1b/ultra_l1b_extended.py +29 -70
  88. imap_processing/ultra/l1c/ultra_l1c_pset_bins.py +1 -36
  89. imap_processing/ultra/utils/spatial_utils.py +221 -0
  90. {imap_processing-0.8.0.dist-info → imap_processing-0.9.0.dist-info}/METADATA +1 -1
  91. {imap_processing-0.8.0.dist-info → imap_processing-0.9.0.dist-info}/RECORD +94 -76
  92. imap_processing/hi/l0/__init__.py +0 -0
  93. imap_processing/hi/l0/decom_hi.py +0 -24
  94. imap_processing/hi/packet_definitions/hi_packet_definition.xml +0 -482
  95. imap_processing/tests/hi/test_decom.py +0 -55
  96. imap_processing/tests/hi/test_l1a_sci_de.py +0 -72
  97. {imap_processing-0.8.0.dist-info → imap_processing-0.9.0.dist-info}/LICENSE +0 -0
  98. {imap_processing-0.8.0.dist-info → imap_processing-0.9.0.dist-info}/WHEEL +0 -0
  99. {imap_processing-0.8.0.dist-info → imap_processing-0.9.0.dist-info}/entry_points.txt +0 -0
@@ -15,7 +15,6 @@ from imap_processing.hit.l0.decom_hit import (
15
15
  is_sequential,
16
16
  parse_count_rates,
17
17
  parse_data,
18
- subcom_sectorates,
19
18
  update_ccsds_header_dims,
20
19
  )
21
20
  from imap_processing.utils import packet_file_to_datasets
@@ -201,45 +200,6 @@ def test_assemble_science_frames(sci_dataset):
201
200
  assert "pha_raw" in updated_dataset
202
201
 
203
202
 
204
- def test_subcom_sectorates(sci_dataset):
205
- """Test the subcom_sectorates function.
206
-
207
- This function organizes the sector rates data
208
- into new variables for each species and adds
209
- them to the dataset.
210
- """
211
-
212
- # Prepare the input needed for the function to be called
213
- sci_dataset = update_ccsds_header_dims(sci_dataset)
214
- sci_dataset = assemble_science_frames(sci_dataset)
215
- parse_count_rates(sci_dataset)
216
-
217
- # Call the function to be tested
218
- subcom_sectorates(sci_dataset)
219
-
220
- # Check if the dataset has the expected new variables
221
- for species in ["H", "4He", "CNO", "NeMgSi", "Fe"]:
222
- assert species in sci_dataset
223
- assert f"{species}_energy_min" in sci_dataset
224
- assert f"{species}_energy_max" in sci_dataset
225
-
226
- # Check the shape of the new variables
227
- for species in ["H", "4He", "CNO", "NeMgSi", "Fe"]:
228
- if species == "H":
229
- assert sci_dataset[species].shape == (86, 3, 8, 15)
230
- assert sci_dataset[f"{species}_energy_min"].shape == (3,)
231
- elif species in ("4He", "CNO", "NeMgSi"):
232
- assert sci_dataset[species].shape == (86, 2, 8, 15)
233
- assert sci_dataset[f"{species}_energy_min"].shape == (2,)
234
- elif species == "Fe":
235
- assert sci_dataset[species].shape == (86, 1, 8, 15)
236
- assert sci_dataset[f"{species}_energy_min"].shape == (1,)
237
- assert (
238
- sci_dataset[f"{species}_energy_max"].shape
239
- == sci_dataset[f"{species}_energy_min"].shape
240
- )
241
-
242
-
243
203
  @pytest.mark.parametrize(
244
204
  "packed, expected",
245
205
  [
@@ -266,14 +226,64 @@ def test_decom_hit(sci_dataset):
266
226
  This function orchestrates the unpacking and decompression
267
227
  of the HIT science data.
268
228
  """
269
- # TODO: complete this test once the function is complete
270
229
  updated_dataset = decom_hit(sci_dataset)
271
- # Check if the dataset has the expected new variables
272
- # Check that binary science data exists
273
- assert "count_rates_raw" in updated_dataset
274
- assert "pha_raw" in updated_dataset
275
- # Check that sector rates data has been organized
276
- for species in ["H", "4He", "CNO", "NeMgSi", "Fe"]:
277
- assert species in updated_dataset
278
- assert f"{species}_energy_min" in updated_dataset
279
- assert f"{species}_energy_max" in updated_dataset
230
+ # Check if the dataset has the expected data variables
231
+ sci_fields = [
232
+ "version",
233
+ "type",
234
+ "sec_hdr_flg",
235
+ "pkt_apid",
236
+ "seq_flgs",
237
+ "src_seq_ctr",
238
+ "pkt_len",
239
+ "pha_raw",
240
+ "hdr_unit_num",
241
+ "hdr_frame_version",
242
+ "hdr_dynamic_threshold_state",
243
+ "hdr_leak_conv",
244
+ "hdr_heater_duty_cycle",
245
+ "hdr_code_ok",
246
+ "hdr_minute_cnt",
247
+ "livetime",
248
+ "num_trig",
249
+ "num_reject",
250
+ "num_acc_w_pha",
251
+ "num_acc_no_pha",
252
+ "num_haz_trig",
253
+ "num_haz_reject",
254
+ "num_haz_acc_w_pha",
255
+ "num_haz_acc_no_pha",
256
+ "sngrates",
257
+ "nread",
258
+ "nhazard",
259
+ "nadcstim",
260
+ "nodd",
261
+ "noddfix",
262
+ "nmulti",
263
+ "nmultifix",
264
+ "nbadtraj",
265
+ "nl2",
266
+ "nl3",
267
+ "nl4",
268
+ "npen",
269
+ "nformat",
270
+ "naside",
271
+ "nbside",
272
+ "nerror",
273
+ "nbadtags",
274
+ "coinrates",
275
+ "bufrates",
276
+ "l2fgrates",
277
+ "l2bgrates",
278
+ "l3fgrates",
279
+ "l3bgrates",
280
+ "penfgrates",
281
+ "penbgrates",
282
+ "ialirtrates",
283
+ "sectorates",
284
+ "l4fgrates",
285
+ "l4bgrates",
286
+ ]
287
+
288
+ for field in sci_fields:
289
+ assert field in updated_dataset
@@ -1,29 +1,344 @@
1
+ import numpy as np
2
+ import pandas as pd
1
3
  import pytest
2
4
  import xarray as xr
3
5
 
4
6
  from imap_processing import imap_module_directory
5
- from imap_processing.hit.l1a.hit_l1a import hit_l1a
7
+ from imap_processing.hit.hit_utils import (
8
+ HitAPID,
9
+ get_datasets_by_apid,
10
+ )
11
+ from imap_processing.hit.l1a.hit_l1a import decom_hit, hit_l1a, subcom_sectorates
12
+
13
+ # TODO: Packet files are per apid at the moment so the tests currently
14
+ # reflect this. Eventually, HIT will provide a packet file with all apids
15
+ # and the tests will need to be updated.
6
16
 
7
17
 
8
18
  @pytest.fixture(scope="module")
9
- def packet_filepath():
19
+ def hk_packet_filepath():
10
20
  """Set path to test data file"""
11
21
  return (
12
22
  imap_module_directory / "tests/hit/test_data/imap_hit_l0_raw_20100105_v001.pkts"
13
23
  )
14
24
 
15
25
 
16
- def test_hit_l1a(packet_filepath):
17
- """Create L1A datasets from a packet file.
26
+ @pytest.fixture(scope="module")
27
+ def sci_packet_filepath():
28
+ """Set path to test data file"""
29
+ return imap_module_directory / "tests/hit/test_data/sci_sample1.ccsds"
30
+
31
+
32
+ def test_validate_l1a_housekeeping_data(hk_packet_filepath):
33
+ """Validate the housekeeping dataset created by the L1A processing.
34
+
35
+ Compares the processed housekeeping data with expected values from
36
+ a validation csv file.
37
+
38
+ Parameters
39
+ ----------
40
+ hk_packet_filepath : str
41
+ File path to housekeeping ccsds file
42
+ """
43
+ datasets = hit_l1a(hk_packet_filepath, "001")
44
+ hk_dataset = None
45
+ for dataset in datasets:
46
+ if dataset.attrs["Logical_source"] == "imap_hit_l1a_hk":
47
+ hk_dataset = dataset
48
+
49
+ # Load the validation data
50
+ validation_file = (
51
+ imap_module_directory / "tests/hit/validation_data/hskp_sample_raw.csv"
52
+ )
53
+ validation_data = pd.read_csv(validation_file)
54
+ validation_data.columns = validation_data.columns.str.lower()
55
+
56
+ # Get a list of leak columns in ascending order
57
+ # (LEAK_I_00, LEAK_I_01, ..., LEAK_I_63)
58
+ # and group values into a single column
59
+ leak_columns = [col for col in validation_data.columns if col.startswith("leak")][
60
+ ::-1
61
+ ]
62
+ validation_data["leak_i"] = validation_data[leak_columns].apply(
63
+ lambda row: row.values, axis=1
64
+ )
65
+ validation_data.drop(columns=leak_columns, inplace=True)
66
+
67
+ # Define the keys that should have dropped from the housekeeping dataset
68
+ dropped_fields = {
69
+ "pkt_apid",
70
+ "sc_tick",
71
+ "version",
72
+ "type",
73
+ "sec_hdr_flg",
74
+ "seq_flgs",
75
+ "src_seq_ctr",
76
+ "pkt_len",
77
+ "hskp_spare1",
78
+ "hskp_spare2",
79
+ "hskp_spare3",
80
+ "hskp_spare4",
81
+ "hskp_spare5",
82
+ }
83
+
84
+ # Define the keys that should be ignored in the validation
85
+ # like ccsds headers
86
+ ignore_validation_fields = {
87
+ "ccsds_version",
88
+ "ccsds_type",
89
+ "ccsds_sec_hdr_flag",
90
+ "ccsds_appid",
91
+ "ccsds_grp_flag",
92
+ "ccsds_seq_cnt",
93
+ "ccsds_length",
94
+ "shcoarse",
95
+ }
96
+
97
+ # Check that dropped variables are not in the dataset
98
+ assert set(dropped_fields).isdisjoint(set(hk_dataset.data_vars.keys()))
99
+
100
+ # Compare the housekeeping dataset with the expected validation data
101
+ for field in validation_data.columns:
102
+ if field not in ignore_validation_fields:
103
+ assert field in hk_dataset.data_vars.keys()
104
+ for pkt in range(validation_data.shape[0]):
105
+ assert np.array_equal(
106
+ hk_dataset[field][pkt].data, validation_data[field][pkt]
107
+ )
108
+
109
+
110
+ def test_subcom_sectorates(sci_packet_filepath):
111
+ """Test the subcom_sectorates function.
112
+
113
+ This function organizes the sector rates data
114
+ by species and adds the data as new variables
115
+ to the dataset.
116
+ """
117
+
118
+ # Unpack and decompress ccsds file to xarray datasets
119
+ sci_dataset = get_datasets_by_apid(sci_packet_filepath)[HitAPID.HIT_SCIENCE]
120
+ sci_dataset = decom_hit(sci_dataset)
121
+
122
+ # Call the function to be tested
123
+ subcom_sectorates(sci_dataset)
124
+
125
+ # Number of science frames in the dataset
126
+ frames = sci_dataset["epoch"].shape[0]
127
+
128
+ # Check if the dataset has the expected new variables
129
+ for species in ["h", "he4", "cno", "nemgsi", "fe"]:
130
+ assert f"{species}_counts_sectored" in sci_dataset
131
+ assert f"{species}_energy_min" in sci_dataset
132
+ assert f"{species}_energy_max" in sci_dataset
133
+
134
+ # Check the shape of the new data variables
135
+ if species == "h":
136
+ assert sci_dataset[f"{species}_counts_sectored"].shape == (frames, 3, 8, 15)
137
+ assert sci_dataset[f"{species}_energy_min"].shape == (3,)
138
+ elif species in ("4he", "cno", "nemgsi"):
139
+ assert sci_dataset[f"{species}_counts_sectored"].shape == (frames, 2, 8, 15)
140
+ assert sci_dataset[f"{species}_energy_min"].shape == (2,)
141
+ elif species == "fe":
142
+ assert sci_dataset[f"{species}_counts_sectored"].shape == (frames, 1, 8, 15)
143
+ assert sci_dataset[f"{species}_energy_min"].shape == (1,)
144
+ assert (
145
+ sci_dataset[f"{species}_energy_max"].shape
146
+ == sci_dataset[f"{species}_energy_min"].shape
147
+ )
148
+
149
+
150
+ def test_validate_l1a_counts_data(sci_packet_filepath):
151
+ """Compare the output of the L1A processing to the validation data.
152
+
153
+ This test compares the counts data product with the validation data.
154
+ The PHA data product is not validated since it's not being decommutated.
155
+
156
+ Parameters
157
+ ----------
158
+ sci_packet_filepath : str
159
+ Path to ccsds file for science data
160
+ """
161
+ # Process the sample data
162
+ processed_datasets = hit_l1a(sci_packet_filepath, "001")
163
+ l1a_counts_data = processed_datasets[0]
164
+
165
+ # Read in the validation data
166
+ validation_data = pd.read_csv(
167
+ imap_module_directory / "tests/hit/validation_data/sci_sample_raw1.csv"
168
+ )
169
+
170
+ # Helper functions for this test
171
+ def consolidate_rate_columns(data, rate_columns):
172
+ # The validation data isn't organized by arrays.
173
+ # Each value is in a separate column.
174
+ # Aggregate related data into arrays.
175
+ for new_col, prefix in rate_columns.items():
176
+ columns = [col for col in data.columns if prefix in col]
177
+ data[new_col] = data[columns].apply(lambda row: row.values, axis=1)
178
+ if new_col == "sectorates":
179
+ # Differentiate between the sectorate columns with three and
180
+ # five digits in the name. Those with three digits contain the
181
+ # sectorate value for the science frame and those with five digits
182
+ # are the sectorate values with the mod value appended to the end.
183
+ # The mod value determines the species and energy range for that
184
+ # science frame
185
+ sectorates_three_digits = data.filter(
186
+ regex=r"^SECTORATES_\d{3}$"
187
+ ).columns
188
+ sectorates_five_digits = data.filter(
189
+ regex=r"^SECTORATES_\d{3}_\d{1}$"
190
+ ).columns
191
+ data["sectorates"] = data[sectorates_three_digits].apply(
192
+ lambda row: row.values.reshape(8, 15), axis=1
193
+ )
194
+ data["sectorates_by_mod_val"] = data[sectorates_five_digits].apply(
195
+ lambda row: row.values, axis=1
196
+ )
197
+ data.drop(columns=columns, inplace=True)
198
+ return data
199
+
200
+ def process_single_rates(data):
201
+ # Combine the single rates for high and low gain into a 2D array
202
+ data["sngrates"] = data.apply(
203
+ lambda row: np.array([row["sngrates_hg"], row["sngrates_lg"]]), axis=1
204
+ )
205
+ data.drop(columns=["sngrates_hg", "sngrates_lg"], inplace=True)
206
+ return data
207
+
208
+ def process_sectorates(data):
209
+ # Add species and energy index to the data frame for each science frame
210
+ # First find the mod value for each science frame which equals the first index
211
+ # in the sectorates_by_mod_val array that has a value instead of a blank space
212
+ data["mod_10"] = data["sectorates_by_mod_val"].apply(
213
+ lambda row: next((i for i, value in enumerate(row) if value != " "), None)
214
+ )
215
+ # Mapping of mod value to species and energy index
216
+ species_energy = {
217
+ 0: {"species": "H", "energy_idx": 0},
218
+ 1: {"species": "H", "energy_idx": 1},
219
+ 2: {"species": "H", "energy_idx": 2},
220
+ 3: {"species": "He4", "energy_idx": 0},
221
+ 4: {"species": "He4", "energy_idx": 1},
222
+ 5: {"species": "CNO", "energy_idx": 0},
223
+ 6: {"species": "CNO", "energy_idx": 1},
224
+ 7: {"species": "NeMgSi", "energy_idx": 0},
225
+ 8: {"species": "NeMgSi", "energy_idx": 1},
226
+ 9: {"species": "Fe", "energy_idx": 0},
227
+ }
228
+ # Use the mod 10 value to determine the species and energy index
229
+ # for each science frame and add this information to the data frame
230
+ data["species"] = data["mod_10"].apply(
231
+ lambda row: species_energy[row]["species"].lower()
232
+ if row is not None
233
+ else None
234
+ )
235
+ data["energy_idx"] = data["mod_10"].apply(
236
+ lambda row: species_energy[row]["energy_idx"] if row is not None else None
237
+ )
238
+ data.drop(columns=["sectorates_by_mod_val", "mod_10"], inplace=True)
239
+ return data
240
+
241
+ def compare_data(expected_data, actual_data, skip):
242
+ # Compare the processed data to the validation data
243
+ for field in expected_data.columns:
244
+ if field not in [
245
+ "sc_tick",
246
+ "hdr_status_bits",
247
+ "species",
248
+ "energy_idx",
249
+ ]:
250
+ assert field in l1a_counts_data.data_vars.keys()
251
+ if field not in ignore:
252
+ for frame in range(expected_data.shape[0]):
253
+ if field == "species":
254
+ species = expected_data[field][frame]
255
+ energy_idx = expected_data["energy_idx"][frame]
256
+ assert np.array_equal(
257
+ actual_data[f"{species}_counts_sectored"][frame][
258
+ energy_idx
259
+ ].data,
260
+ expected_data["sectorates"][frame],
261
+ )
262
+ else:
263
+ assert np.array_equal(
264
+ actual_data[field][frame].data, expected_data[field][frame]
265
+ )
266
+
267
+ rate_columns = {
268
+ "coinrates": "COINRATES_",
269
+ "bufrates": "BUFRATES_",
270
+ "l2fgrates": "L2FGRATES_",
271
+ "l2bgrates": "L2BGRATES_",
272
+ "l3fgrates": "L3FGRATES_",
273
+ "l3bgrates": "L3BGRATES_",
274
+ "penfgrates": "PENFGRATES_",
275
+ "penbgrates": "PENBGRATES_",
276
+ "sectorates": "SECTORATES_",
277
+ "l4fgrates": "L4FGRATES_",
278
+ "l4bgrates": "L4BGRATES_",
279
+ "ialirtrates": "IALIRTRATES_",
280
+ "sngrates_hg": "SNGRATES_HG_",
281
+ "sngrates_lg": "SNGRATES_LG_",
282
+ }
283
+
284
+ # Prepare validation data for comparison with processed data
285
+ validation_data.columns = validation_data.columns.str.strip()
286
+ validation_data = consolidate_rate_columns(validation_data, rate_columns)
287
+ validation_data = process_single_rates(validation_data)
288
+ validation_data = process_sectorates(validation_data)
289
+
290
+ # Fields to skip in comparison. CCSDS headers plus a few others that are not
291
+ # relevant to the comparison.
292
+ # The CCSDS header fields contain data per packet in the dataset, but the
293
+ # validation data has a value per science frame so skipping comparison for now
294
+ ignore = [
295
+ "version",
296
+ "type",
297
+ "sec_hdr_flg",
298
+ "pkt_apid",
299
+ "seq_flgs",
300
+ "src_seq_ctr",
301
+ "pkt_len",
302
+ "sc_tick",
303
+ "hdr_status_bits",
304
+ "energy_idx",
305
+ ]
306
+
307
+ # Compare processed data to validation data
308
+ validation_data.columns = validation_data.columns.str.lower()
309
+ compare_data(validation_data, l1a_counts_data, ignore)
310
+
311
+ # TODO: add validation for hdr_status_bits once validation data has been updated
312
+ # to include this field broken out into its subfields
313
+
314
+ # TODO: add validation for CCSDS fields? currently validation data only has
315
+ # one value per frame and the processed data has one value per packet.
316
+
317
+
318
+ def test_hit_l1a(hk_packet_filepath, sci_packet_filepath):
319
+ """Create L1A datasets from packet files.
18
320
 
19
321
  Parameters
20
322
  ----------
21
- packet_filepath : str
22
- Path to ccsds file
323
+ hk_packet_filepath : str
324
+ Path to ccsds file for housekeeping data
325
+ sci_packet_filepath : str
326
+ Path to ccsds file for science data
23
327
  """
24
- processed_datasets = hit_l1a(packet_filepath, "001")
25
- # TODO: update assertions after science data processing is completed
26
- assert isinstance(processed_datasets, list)
27
- assert len(processed_datasets) == 1
28
- assert isinstance(processed_datasets[0], xr.Dataset)
29
- assert processed_datasets[0].attrs["Logical_source"] == "imap_hit_l1a_hk"
328
+ for packet_filepath in [hk_packet_filepath, sci_packet_filepath]:
329
+ processed_datasets = hit_l1a(packet_filepath, "001")
330
+ assert isinstance(processed_datasets, list)
331
+ assert all(isinstance(ds, xr.Dataset) for ds in processed_datasets)
332
+ if packet_filepath == hk_packet_filepath:
333
+ assert len(processed_datasets) == 1
334
+ assert processed_datasets[0].attrs["Logical_source"] == "imap_hit_l1a_hk"
335
+ else:
336
+ assert len(processed_datasets) == 2
337
+ assert (
338
+ processed_datasets[0].attrs["Logical_source"]
339
+ == "imap_hit_l1a_count-rates"
340
+ )
341
+ assert (
342
+ processed_datasets[1].attrs["Logical_source"]
343
+ == "imap_hit_l1a_pulse-height-events"
344
+ )
@@ -1,3 +1,4 @@
1
+ import pandas as pd
1
2
  import pytest
2
3
  import xarray as xr
3
4
 
@@ -165,6 +166,81 @@ def test_hit_l1b_hk_dataset_attributes(hk_dataset):
165
166
  assert hk_dataset.coords.keys() == dataset_coords_dims
166
167
 
167
168
 
169
+ def test_validate_l1b_housekeeping_data(hk_dataset):
170
+ """Validate the housekeeping dataset created by the L1B processing.
171
+
172
+ Parameters
173
+ ----------
174
+ hk_dataset : xr.Dataset
175
+ Housekeeping dataset created by the L1B processing.
176
+ """
177
+ # TODO: finish test. HIT will provide an updated validation file to fix issues:
178
+ # - some fields have strings as values but in the processed data they're integers
179
+ # - Some columns have blank cells where there should be data
180
+
181
+ # Load the validation data
182
+ validation_file = (
183
+ imap_module_directory / "tests/hit/validation_data/hskp_sample_eu.csv"
184
+ )
185
+ validation_data = pd.read_csv(validation_file)
186
+ validation_data.columns = validation_data.columns.str.lower().str.strip()
187
+
188
+ # Get a list of leak columns in ascending order
189
+ # (LEAK_I_00, LEAK_I_01, ..., LEAK_I_63)
190
+ # and group values into a single column
191
+ leak_columns = [
192
+ col for col in validation_data.columns if col.startswith("leak_i_")
193
+ ][::-1]
194
+ validation_data["leak_i"] = validation_data[leak_columns].apply(
195
+ lambda row: row.values, axis=1
196
+ )
197
+ validation_data.drop(columns=leak_columns, inplace=True)
198
+
199
+ # Define the keys that should have dropped from the housekeeping dataset
200
+ dropped_fields = {
201
+ "pkt_apid",
202
+ "sc_tick",
203
+ "version",
204
+ "type",
205
+ "sec_hdr_flg",
206
+ "seq_flgs",
207
+ "src_seq_ctr",
208
+ "pkt_len",
209
+ "hskp_spare1",
210
+ "hskp_spare2",
211
+ "hskp_spare3",
212
+ "hskp_spare4",
213
+ "hskp_spare5",
214
+ }
215
+
216
+ # Check that dropped variables are not in the dataset
217
+ assert set(dropped_fields).isdisjoint(set(hk_dataset.data_vars.keys()))
218
+
219
+ # TODO: uncomment block after new validation data is provided
220
+ # Define the keys that should be ignored in the validation
221
+ # like ccsds headers
222
+ # ignore_validation_fields = {
223
+ # "ccsds_version",
224
+ # "ccsds_type",
225
+ # "ccsds_sec_hdr_flag",
226
+ # "ccsds_appid",
227
+ # "ccsds_grp_flag",
228
+ # "ccsds_seq_cnt",
229
+ # "ccsds_length",
230
+ # "sc_tick",
231
+ # }
232
+
233
+ # # Compare the housekeeping dataset with the expected validation data
234
+ # for field in validation_data.columns:
235
+ # if field not in ignore_validation_fields:
236
+ # print(field)
237
+ # assert field in hk_dataset.data_vars.keys()
238
+ # for pkt in range(validation_data.shape[0]):
239
+ # assert np.array_equal(
240
+ # hk_dataset[field][pkt].data, validation_data[field][pkt]
241
+ # )
242
+
243
+
168
244
  def test_hit_l1b(dependencies):
169
245
  """Test creating L1B CDF files
170
246