ilovetools 0.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ilovetools/__init__.py +42 -0
- ilovetools/ai/__init__.py +13 -0
- ilovetools/ai/embeddings.py +270 -0
- ilovetools/ai/inference.py +5 -0
- ilovetools/ai/llm_helpers.py +141 -0
- ilovetools/audio/__init__.py +5 -0
- ilovetools/automation/__init__.py +5 -0
- ilovetools/conversion/__init__.py +5 -0
- ilovetools/data/__init__.py +27 -0
- ilovetools/data/feature_engineering.py +497 -0
- ilovetools/data/preprocessing.py +234 -0
- ilovetools/database/__init__.py +5 -0
- ilovetools/datetime/__init__.py +5 -0
- ilovetools/files/__init__.py +5 -0
- ilovetools/image/__init__.py +5 -0
- ilovetools/ml/__init__.py +603 -0
- ilovetools/ml/clustering.py +1107 -0
- ilovetools/ml/cross_validation.py +612 -0
- ilovetools/ml/dimensionality.py +1001 -0
- ilovetools/ml/ensemble.py +872 -0
- ilovetools/ml/feature_selection.py +971 -0
- ilovetools/ml/imbalanced.py +797 -0
- ilovetools/ml/interpretation.py +915 -0
- ilovetools/ml/metrics.py +601 -0
- ilovetools/ml/pipeline.py +711 -0
- ilovetools/ml/timeseries.py +984 -0
- ilovetools/ml/tuning.py +781 -0
- ilovetools/security/__init__.py +5 -0
- ilovetools/text/__init__.py +5 -0
- ilovetools/utils/__init__.py +5 -0
- ilovetools/validation/__init__.py +5 -0
- ilovetools/web/__init__.py +5 -0
- ilovetools-0.2.3.dist-info/METADATA +143 -0
- ilovetools-0.2.3.dist-info/RECORD +38 -0
- ilovetools-0.2.3.dist-info/WHEEL +5 -0
- ilovetools-0.2.3.dist-info/licenses/LICENSE +21 -0
- ilovetools-0.2.3.dist-info/top_level.txt +2 -0
- tests/__init__.py +3 -0
|
@@ -0,0 +1,603 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Machine Learning utilities module
|
|
3
|
+
All functions have dual names: full descriptive name + abbreviated alias
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from .metrics import (
|
|
7
|
+
accuracy_score,
|
|
8
|
+
precision_score,
|
|
9
|
+
recall_score,
|
|
10
|
+
f1_score,
|
|
11
|
+
confusion_matrix,
|
|
12
|
+
classification_report,
|
|
13
|
+
mean_squared_error,
|
|
14
|
+
mean_absolute_error,
|
|
15
|
+
root_mean_squared_error,
|
|
16
|
+
r2_score,
|
|
17
|
+
roc_auc_score,
|
|
18
|
+
# Aliases
|
|
19
|
+
mae,
|
|
20
|
+
mse,
|
|
21
|
+
rmse,
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
from .cross_validation import (
|
|
25
|
+
# Full names
|
|
26
|
+
k_fold_cross_validation,
|
|
27
|
+
stratified_k_fold,
|
|
28
|
+
time_series_split,
|
|
29
|
+
leave_one_out_cv,
|
|
30
|
+
shuffle_split_cv,
|
|
31
|
+
cross_validate_score,
|
|
32
|
+
holdout_validation_split,
|
|
33
|
+
train_val_test_split,
|
|
34
|
+
# Abbreviated aliases
|
|
35
|
+
kfold,
|
|
36
|
+
skfold,
|
|
37
|
+
tssplit,
|
|
38
|
+
loocv,
|
|
39
|
+
shuffle_cv,
|
|
40
|
+
cv_score,
|
|
41
|
+
holdout,
|
|
42
|
+
tvt_split,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
from .tuning import (
|
|
46
|
+
# Full names
|
|
47
|
+
grid_search_cv,
|
|
48
|
+
random_search_cv,
|
|
49
|
+
generate_param_grid,
|
|
50
|
+
extract_best_params,
|
|
51
|
+
format_cv_results,
|
|
52
|
+
learning_curve_data,
|
|
53
|
+
validation_curve_data,
|
|
54
|
+
early_stopping_monitor,
|
|
55
|
+
compare_models_cv,
|
|
56
|
+
bayesian_search_simple,
|
|
57
|
+
# Abbreviated aliases
|
|
58
|
+
gridsearch,
|
|
59
|
+
randomsearch,
|
|
60
|
+
param_grid,
|
|
61
|
+
best_params,
|
|
62
|
+
cv_results,
|
|
63
|
+
learning_curve,
|
|
64
|
+
val_curve,
|
|
65
|
+
early_stop,
|
|
66
|
+
compare_models,
|
|
67
|
+
bayesopt,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
from .ensemble import (
|
|
71
|
+
# Full names
|
|
72
|
+
voting_classifier,
|
|
73
|
+
voting_regressor,
|
|
74
|
+
bagging_predictions,
|
|
75
|
+
boosting_sequential,
|
|
76
|
+
stacking_ensemble,
|
|
77
|
+
weighted_average_ensemble,
|
|
78
|
+
majority_vote,
|
|
79
|
+
soft_vote,
|
|
80
|
+
bootstrap_sample,
|
|
81
|
+
out_of_bag_score,
|
|
82
|
+
ensemble_diversity,
|
|
83
|
+
blend_predictions,
|
|
84
|
+
# Abbreviated aliases
|
|
85
|
+
vote_clf,
|
|
86
|
+
vote_reg,
|
|
87
|
+
bagging,
|
|
88
|
+
boosting,
|
|
89
|
+
stacking,
|
|
90
|
+
weighted_avg,
|
|
91
|
+
hard_vote,
|
|
92
|
+
soft_vote_alias,
|
|
93
|
+
bootstrap,
|
|
94
|
+
oob_score,
|
|
95
|
+
diversity,
|
|
96
|
+
blend,
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
from .feature_selection import (
|
|
100
|
+
# Full names
|
|
101
|
+
correlation_filter,
|
|
102
|
+
variance_threshold_filter,
|
|
103
|
+
chi_square_filter,
|
|
104
|
+
mutual_information_filter,
|
|
105
|
+
recursive_feature_elimination,
|
|
106
|
+
forward_feature_selection,
|
|
107
|
+
backward_feature_elimination,
|
|
108
|
+
feature_importance_ranking,
|
|
109
|
+
l1_feature_selection,
|
|
110
|
+
univariate_feature_selection,
|
|
111
|
+
select_k_best_features,
|
|
112
|
+
remove_correlated_features,
|
|
113
|
+
# Abbreviated aliases
|
|
114
|
+
corr_filter,
|
|
115
|
+
var_filter,
|
|
116
|
+
chi2_filter,
|
|
117
|
+
mi_filter,
|
|
118
|
+
rfe,
|
|
119
|
+
forward_select,
|
|
120
|
+
backward_select,
|
|
121
|
+
feat_importance,
|
|
122
|
+
l1_select,
|
|
123
|
+
univariate_select,
|
|
124
|
+
select_k_best,
|
|
125
|
+
remove_corr,
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
from .interpretation import (
|
|
129
|
+
# Full names
|
|
130
|
+
feature_importance_scores,
|
|
131
|
+
permutation_importance,
|
|
132
|
+
partial_dependence,
|
|
133
|
+
shap_values_approximation,
|
|
134
|
+
lime_explanation,
|
|
135
|
+
decision_path_explanation,
|
|
136
|
+
model_coefficients_interpretation,
|
|
137
|
+
prediction_breakdown,
|
|
138
|
+
feature_contribution_analysis,
|
|
139
|
+
global_feature_importance,
|
|
140
|
+
local_feature_importance,
|
|
141
|
+
model_summary_statistics,
|
|
142
|
+
# Abbreviated aliases
|
|
143
|
+
feat_importance_scores,
|
|
144
|
+
perm_importance,
|
|
145
|
+
pdp,
|
|
146
|
+
shap_approx,
|
|
147
|
+
lime_explain,
|
|
148
|
+
decision_path,
|
|
149
|
+
coef_interpret,
|
|
150
|
+
pred_breakdown,
|
|
151
|
+
feat_contrib,
|
|
152
|
+
global_importance,
|
|
153
|
+
local_importance,
|
|
154
|
+
model_summary,
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
from .pipeline import (
|
|
158
|
+
# Full names
|
|
159
|
+
create_pipeline,
|
|
160
|
+
add_pipeline_step,
|
|
161
|
+
execute_pipeline,
|
|
162
|
+
validate_pipeline,
|
|
163
|
+
serialize_pipeline,
|
|
164
|
+
deserialize_pipeline,
|
|
165
|
+
pipeline_transform,
|
|
166
|
+
pipeline_fit_transform,
|
|
167
|
+
get_pipeline_params,
|
|
168
|
+
set_pipeline_params,
|
|
169
|
+
clone_pipeline,
|
|
170
|
+
pipeline_summary,
|
|
171
|
+
# Abbreviated aliases
|
|
172
|
+
create_pipe,
|
|
173
|
+
add_step,
|
|
174
|
+
execute_pipe,
|
|
175
|
+
validate_pipe,
|
|
176
|
+
serialize_pipe,
|
|
177
|
+
deserialize_pipe,
|
|
178
|
+
pipe_transform,
|
|
179
|
+
pipe_fit_transform,
|
|
180
|
+
get_params,
|
|
181
|
+
set_params,
|
|
182
|
+
clone_pipe,
|
|
183
|
+
pipe_summary,
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
from .imbalanced import (
|
|
187
|
+
# Full names
|
|
188
|
+
random_oversampling,
|
|
189
|
+
random_undersampling,
|
|
190
|
+
smote_oversampling,
|
|
191
|
+
tomek_links_undersampling,
|
|
192
|
+
class_weight_calculator,
|
|
193
|
+
stratified_sampling,
|
|
194
|
+
compute_class_distribution,
|
|
195
|
+
balance_dataset,
|
|
196
|
+
minority_class_identifier,
|
|
197
|
+
imbalance_ratio,
|
|
198
|
+
synthetic_sample_generator,
|
|
199
|
+
near_miss_undersampling,
|
|
200
|
+
# Abbreviated aliases
|
|
201
|
+
random_oversample,
|
|
202
|
+
random_undersample,
|
|
203
|
+
smote,
|
|
204
|
+
tomek_links,
|
|
205
|
+
class_weights,
|
|
206
|
+
stratified_sample,
|
|
207
|
+
class_dist,
|
|
208
|
+
balance_data,
|
|
209
|
+
minority_class,
|
|
210
|
+
imbalance_ratio_alias,
|
|
211
|
+
synthetic_sample,
|
|
212
|
+
near_miss,
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
from .dimensionality import (
|
|
216
|
+
# Full names
|
|
217
|
+
pca_transform,
|
|
218
|
+
explained_variance_ratio,
|
|
219
|
+
scree_plot_data,
|
|
220
|
+
cumulative_variance,
|
|
221
|
+
pca_inverse_transform,
|
|
222
|
+
truncated_svd,
|
|
223
|
+
kernel_pca_transform,
|
|
224
|
+
incremental_pca_transform,
|
|
225
|
+
feature_projection,
|
|
226
|
+
dimensionality_reduction_ratio,
|
|
227
|
+
reconstruction_error,
|
|
228
|
+
optimal_components,
|
|
229
|
+
whitening_transform,
|
|
230
|
+
component_loadings,
|
|
231
|
+
biplot_data,
|
|
232
|
+
# Abbreviated aliases
|
|
233
|
+
pca,
|
|
234
|
+
exp_var,
|
|
235
|
+
scree_plot,
|
|
236
|
+
cum_var,
|
|
237
|
+
pca_inverse,
|
|
238
|
+
svd,
|
|
239
|
+
kpca,
|
|
240
|
+
ipca,
|
|
241
|
+
project,
|
|
242
|
+
dim_ratio,
|
|
243
|
+
recon_error,
|
|
244
|
+
opt_components,
|
|
245
|
+
whiten,
|
|
246
|
+
loadings,
|
|
247
|
+
biplot,
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
from .timeseries import (
|
|
251
|
+
# Full names
|
|
252
|
+
moving_average,
|
|
253
|
+
exponential_moving_average,
|
|
254
|
+
weighted_moving_average,
|
|
255
|
+
seasonal_decompose,
|
|
256
|
+
difference_series,
|
|
257
|
+
autocorrelation,
|
|
258
|
+
partial_autocorrelation,
|
|
259
|
+
detect_trend,
|
|
260
|
+
detect_seasonality,
|
|
261
|
+
remove_trend,
|
|
262
|
+
remove_seasonality,
|
|
263
|
+
rolling_statistics,
|
|
264
|
+
lag_features,
|
|
265
|
+
time_series_split_cv,
|
|
266
|
+
forecast_accuracy,
|
|
267
|
+
# Abbreviated aliases
|
|
268
|
+
ma,
|
|
269
|
+
ema,
|
|
270
|
+
wma,
|
|
271
|
+
decompose,
|
|
272
|
+
diff,
|
|
273
|
+
acf,
|
|
274
|
+
pacf,
|
|
275
|
+
trend,
|
|
276
|
+
seasonality,
|
|
277
|
+
detrend,
|
|
278
|
+
deseasonalize,
|
|
279
|
+
rolling_stats,
|
|
280
|
+
lag,
|
|
281
|
+
ts_cv,
|
|
282
|
+
forecast_acc,
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
from .clustering import (
|
|
286
|
+
# Full names
|
|
287
|
+
kmeans_clustering,
|
|
288
|
+
hierarchical_clustering,
|
|
289
|
+
dbscan_clustering,
|
|
290
|
+
elbow_method,
|
|
291
|
+
silhouette_score,
|
|
292
|
+
euclidean_distance,
|
|
293
|
+
manhattan_distance,
|
|
294
|
+
cosine_similarity_distance,
|
|
295
|
+
initialize_centroids,
|
|
296
|
+
assign_clusters,
|
|
297
|
+
update_centroids,
|
|
298
|
+
calculate_inertia,
|
|
299
|
+
dendrogram_data,
|
|
300
|
+
cluster_purity,
|
|
301
|
+
davies_bouldin_index,
|
|
302
|
+
# Abbreviated aliases
|
|
303
|
+
kmeans,
|
|
304
|
+
hierarchical,
|
|
305
|
+
dbscan,
|
|
306
|
+
elbow,
|
|
307
|
+
silhouette,
|
|
308
|
+
euclidean,
|
|
309
|
+
manhattan,
|
|
310
|
+
cosine_dist,
|
|
311
|
+
init_centroids,
|
|
312
|
+
assign,
|
|
313
|
+
update,
|
|
314
|
+
inertia,
|
|
315
|
+
dendrogram,
|
|
316
|
+
purity,
|
|
317
|
+
davies_bouldin,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
__all__ = [
|
|
321
|
+
# Metrics (full names)
|
|
322
|
+
'accuracy_score',
|
|
323
|
+
'precision_score',
|
|
324
|
+
'recall_score',
|
|
325
|
+
'f1_score',
|
|
326
|
+
'confusion_matrix',
|
|
327
|
+
'classification_report',
|
|
328
|
+
'mean_squared_error',
|
|
329
|
+
'mean_absolute_error',
|
|
330
|
+
'root_mean_squared_error',
|
|
331
|
+
'r2_score',
|
|
332
|
+
'roc_auc_score',
|
|
333
|
+
# Metrics (aliases)
|
|
334
|
+
'mae',
|
|
335
|
+
'mse',
|
|
336
|
+
'rmse',
|
|
337
|
+
# Cross-validation (full names)
|
|
338
|
+
'k_fold_cross_validation',
|
|
339
|
+
'stratified_k_fold',
|
|
340
|
+
'time_series_split',
|
|
341
|
+
'leave_one_out_cv',
|
|
342
|
+
'shuffle_split_cv',
|
|
343
|
+
'cross_validate_score',
|
|
344
|
+
'holdout_validation_split',
|
|
345
|
+
'train_val_test_split',
|
|
346
|
+
# Cross-validation (aliases)
|
|
347
|
+
'kfold',
|
|
348
|
+
'skfold',
|
|
349
|
+
'tssplit',
|
|
350
|
+
'loocv',
|
|
351
|
+
'shuffle_cv',
|
|
352
|
+
'cv_score',
|
|
353
|
+
'holdout',
|
|
354
|
+
'tvt_split',
|
|
355
|
+
# Tuning (full names)
|
|
356
|
+
'grid_search_cv',
|
|
357
|
+
'random_search_cv',
|
|
358
|
+
'generate_param_grid',
|
|
359
|
+
'extract_best_params',
|
|
360
|
+
'format_cv_results',
|
|
361
|
+
'learning_curve_data',
|
|
362
|
+
'validation_curve_data',
|
|
363
|
+
'early_stopping_monitor',
|
|
364
|
+
'compare_models_cv',
|
|
365
|
+
'bayesian_search_simple',
|
|
366
|
+
# Tuning (aliases)
|
|
367
|
+
'gridsearch',
|
|
368
|
+
'randomsearch',
|
|
369
|
+
'param_grid',
|
|
370
|
+
'best_params',
|
|
371
|
+
'cv_results',
|
|
372
|
+
'learning_curve',
|
|
373
|
+
'val_curve',
|
|
374
|
+
'early_stop',
|
|
375
|
+
'compare_models',
|
|
376
|
+
'bayesopt',
|
|
377
|
+
# Ensemble (full names)
|
|
378
|
+
'voting_classifier',
|
|
379
|
+
'voting_regressor',
|
|
380
|
+
'bagging_predictions',
|
|
381
|
+
'boosting_sequential',
|
|
382
|
+
'stacking_ensemble',
|
|
383
|
+
'weighted_average_ensemble',
|
|
384
|
+
'majority_vote',
|
|
385
|
+
'soft_vote',
|
|
386
|
+
'bootstrap_sample',
|
|
387
|
+
'out_of_bag_score',
|
|
388
|
+
'ensemble_diversity',
|
|
389
|
+
'blend_predictions',
|
|
390
|
+
# Ensemble (aliases)
|
|
391
|
+
'vote_clf',
|
|
392
|
+
'vote_reg',
|
|
393
|
+
'bagging',
|
|
394
|
+
'boosting',
|
|
395
|
+
'stacking',
|
|
396
|
+
'weighted_avg',
|
|
397
|
+
'hard_vote',
|
|
398
|
+
'soft_vote_alias',
|
|
399
|
+
'bootstrap',
|
|
400
|
+
'oob_score',
|
|
401
|
+
'diversity',
|
|
402
|
+
'blend',
|
|
403
|
+
# Feature Selection (full names)
|
|
404
|
+
'correlation_filter',
|
|
405
|
+
'variance_threshold_filter',
|
|
406
|
+
'chi_square_filter',
|
|
407
|
+
'mutual_information_filter',
|
|
408
|
+
'recursive_feature_elimination',
|
|
409
|
+
'forward_feature_selection',
|
|
410
|
+
'backward_feature_elimination',
|
|
411
|
+
'feature_importance_ranking',
|
|
412
|
+
'l1_feature_selection',
|
|
413
|
+
'univariate_feature_selection',
|
|
414
|
+
'select_k_best_features',
|
|
415
|
+
'remove_correlated_features',
|
|
416
|
+
# Feature Selection (aliases)
|
|
417
|
+
'corr_filter',
|
|
418
|
+
'var_filter',
|
|
419
|
+
'chi2_filter',
|
|
420
|
+
'mi_filter',
|
|
421
|
+
'rfe',
|
|
422
|
+
'forward_select',
|
|
423
|
+
'backward_select',
|
|
424
|
+
'feat_importance',
|
|
425
|
+
'l1_select',
|
|
426
|
+
'univariate_select',
|
|
427
|
+
'select_k_best',
|
|
428
|
+
'remove_corr',
|
|
429
|
+
# Interpretation (full names)
|
|
430
|
+
'feature_importance_scores',
|
|
431
|
+
'permutation_importance',
|
|
432
|
+
'partial_dependence',
|
|
433
|
+
'shap_values_approximation',
|
|
434
|
+
'lime_explanation',
|
|
435
|
+
'decision_path_explanation',
|
|
436
|
+
'model_coefficients_interpretation',
|
|
437
|
+
'prediction_breakdown',
|
|
438
|
+
'feature_contribution_analysis',
|
|
439
|
+
'global_feature_importance',
|
|
440
|
+
'local_feature_importance',
|
|
441
|
+
'model_summary_statistics',
|
|
442
|
+
# Interpretation (aliases)
|
|
443
|
+
'feat_importance_scores',
|
|
444
|
+
'perm_importance',
|
|
445
|
+
'pdp',
|
|
446
|
+
'shap_approx',
|
|
447
|
+
'lime_explain',
|
|
448
|
+
'decision_path',
|
|
449
|
+
'coef_interpret',
|
|
450
|
+
'pred_breakdown',
|
|
451
|
+
'feat_contrib',
|
|
452
|
+
'global_importance',
|
|
453
|
+
'local_importance',
|
|
454
|
+
'model_summary',
|
|
455
|
+
# Pipeline (full names)
|
|
456
|
+
'create_pipeline',
|
|
457
|
+
'add_pipeline_step',
|
|
458
|
+
'execute_pipeline',
|
|
459
|
+
'validate_pipeline',
|
|
460
|
+
'serialize_pipeline',
|
|
461
|
+
'deserialize_pipeline',
|
|
462
|
+
'pipeline_transform',
|
|
463
|
+
'pipeline_fit_transform',
|
|
464
|
+
'get_pipeline_params',
|
|
465
|
+
'set_pipeline_params',
|
|
466
|
+
'clone_pipeline',
|
|
467
|
+
'pipeline_summary',
|
|
468
|
+
# Pipeline (aliases)
|
|
469
|
+
'create_pipe',
|
|
470
|
+
'add_step',
|
|
471
|
+
'execute_pipe',
|
|
472
|
+
'validate_pipe',
|
|
473
|
+
'serialize_pipe',
|
|
474
|
+
'deserialize_pipe',
|
|
475
|
+
'pipe_transform',
|
|
476
|
+
'pipe_fit_transform',
|
|
477
|
+
'get_params',
|
|
478
|
+
'set_params',
|
|
479
|
+
'clone_pipe',
|
|
480
|
+
'pipe_summary',
|
|
481
|
+
# Imbalanced (full names)
|
|
482
|
+
'random_oversampling',
|
|
483
|
+
'random_undersampling',
|
|
484
|
+
'smote_oversampling',
|
|
485
|
+
'tomek_links_undersampling',
|
|
486
|
+
'class_weight_calculator',
|
|
487
|
+
'stratified_sampling',
|
|
488
|
+
'compute_class_distribution',
|
|
489
|
+
'balance_dataset',
|
|
490
|
+
'minority_class_identifier',
|
|
491
|
+
'imbalance_ratio',
|
|
492
|
+
'synthetic_sample_generator',
|
|
493
|
+
'near_miss_undersampling',
|
|
494
|
+
# Imbalanced (aliases)
|
|
495
|
+
'random_oversample',
|
|
496
|
+
'random_undersample',
|
|
497
|
+
'smote',
|
|
498
|
+
'tomek_links',
|
|
499
|
+
'class_weights',
|
|
500
|
+
'stratified_sample',
|
|
501
|
+
'class_dist',
|
|
502
|
+
'balance_data',
|
|
503
|
+
'minority_class',
|
|
504
|
+
'imbalance_ratio_alias',
|
|
505
|
+
'synthetic_sample',
|
|
506
|
+
'near_miss',
|
|
507
|
+
# Dimensionality (full names)
|
|
508
|
+
'pca_transform',
|
|
509
|
+
'explained_variance_ratio',
|
|
510
|
+
'scree_plot_data',
|
|
511
|
+
'cumulative_variance',
|
|
512
|
+
'pca_inverse_transform',
|
|
513
|
+
'truncated_svd',
|
|
514
|
+
'kernel_pca_transform',
|
|
515
|
+
'incremental_pca_transform',
|
|
516
|
+
'feature_projection',
|
|
517
|
+
'dimensionality_reduction_ratio',
|
|
518
|
+
'reconstruction_error',
|
|
519
|
+
'optimal_components',
|
|
520
|
+
'whitening_transform',
|
|
521
|
+
'component_loadings',
|
|
522
|
+
'biplot_data',
|
|
523
|
+
# Dimensionality (aliases)
|
|
524
|
+
'pca',
|
|
525
|
+
'exp_var',
|
|
526
|
+
'scree_plot',
|
|
527
|
+
'cum_var',
|
|
528
|
+
'pca_inverse',
|
|
529
|
+
'svd',
|
|
530
|
+
'kpca',
|
|
531
|
+
'ipca',
|
|
532
|
+
'project',
|
|
533
|
+
'dim_ratio',
|
|
534
|
+
'recon_error',
|
|
535
|
+
'opt_components',
|
|
536
|
+
'whiten',
|
|
537
|
+
'loadings',
|
|
538
|
+
'biplot',
|
|
539
|
+
# Time Series (full names)
|
|
540
|
+
'moving_average',
|
|
541
|
+
'exponential_moving_average',
|
|
542
|
+
'weighted_moving_average',
|
|
543
|
+
'seasonal_decompose',
|
|
544
|
+
'difference_series',
|
|
545
|
+
'autocorrelation',
|
|
546
|
+
'partial_autocorrelation',
|
|
547
|
+
'detect_trend',
|
|
548
|
+
'detect_seasonality',
|
|
549
|
+
'remove_trend',
|
|
550
|
+
'remove_seasonality',
|
|
551
|
+
'rolling_statistics',
|
|
552
|
+
'lag_features',
|
|
553
|
+
'time_series_split_cv',
|
|
554
|
+
'forecast_accuracy',
|
|
555
|
+
# Time Series (aliases)
|
|
556
|
+
'ma',
|
|
557
|
+
'ema',
|
|
558
|
+
'wma',
|
|
559
|
+
'decompose',
|
|
560
|
+
'diff',
|
|
561
|
+
'acf',
|
|
562
|
+
'pacf',
|
|
563
|
+
'trend',
|
|
564
|
+
'seasonality',
|
|
565
|
+
'detrend',
|
|
566
|
+
'deseasonalize',
|
|
567
|
+
'rolling_stats',
|
|
568
|
+
'lag',
|
|
569
|
+
'ts_cv',
|
|
570
|
+
'forecast_acc',
|
|
571
|
+
# Clustering (full names)
|
|
572
|
+
'kmeans_clustering',
|
|
573
|
+
'hierarchical_clustering',
|
|
574
|
+
'dbscan_clustering',
|
|
575
|
+
'elbow_method',
|
|
576
|
+
'silhouette_score',
|
|
577
|
+
'euclidean_distance',
|
|
578
|
+
'manhattan_distance',
|
|
579
|
+
'cosine_similarity_distance',
|
|
580
|
+
'initialize_centroids',
|
|
581
|
+
'assign_clusters',
|
|
582
|
+
'update_centroids',
|
|
583
|
+
'calculate_inertia',
|
|
584
|
+
'dendrogram_data',
|
|
585
|
+
'cluster_purity',
|
|
586
|
+
'davies_bouldin_index',
|
|
587
|
+
# Clustering (aliases)
|
|
588
|
+
'kmeans',
|
|
589
|
+
'hierarchical',
|
|
590
|
+
'dbscan',
|
|
591
|
+
'elbow',
|
|
592
|
+
'silhouette',
|
|
593
|
+
'euclidean',
|
|
594
|
+
'manhattan',
|
|
595
|
+
'cosine_dist',
|
|
596
|
+
'init_centroids',
|
|
597
|
+
'assign',
|
|
598
|
+
'update',
|
|
599
|
+
'inertia',
|
|
600
|
+
'dendrogram',
|
|
601
|
+
'purity',
|
|
602
|
+
'davies_bouldin',
|
|
603
|
+
]
|