ilovetools 0.2.0__py3-none-any.whl → 0.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ilovetools/__init__.py +1 -1
- ilovetools/ml/__init__.py +134 -0
- ilovetools/ml/dimensionality.py +1001 -0
- ilovetools/ml/timeseries.py +984 -0
- {ilovetools-0.2.0.dist-info → ilovetools-0.2.2.dist-info}/METADATA +1 -1
- {ilovetools-0.2.0.dist-info → ilovetools-0.2.2.dist-info}/RECORD +9 -7
- {ilovetools-0.2.0.dist-info → ilovetools-0.2.2.dist-info}/WHEEL +0 -0
- {ilovetools-0.2.0.dist-info → ilovetools-0.2.2.dist-info}/licenses/LICENSE +0 -0
- {ilovetools-0.2.0.dist-info → ilovetools-0.2.2.dist-info}/top_level.txt +0 -0
ilovetools/__init__.py
CHANGED
ilovetools/ml/__init__.py
CHANGED
|
@@ -212,6 +212,76 @@ from .imbalanced import (
|
|
|
212
212
|
near_miss,
|
|
213
213
|
)
|
|
214
214
|
|
|
215
|
+
from .dimensionality import (
|
|
216
|
+
# Full names
|
|
217
|
+
pca_transform,
|
|
218
|
+
explained_variance_ratio,
|
|
219
|
+
scree_plot_data,
|
|
220
|
+
cumulative_variance,
|
|
221
|
+
pca_inverse_transform,
|
|
222
|
+
truncated_svd,
|
|
223
|
+
kernel_pca_transform,
|
|
224
|
+
incremental_pca_transform,
|
|
225
|
+
feature_projection,
|
|
226
|
+
dimensionality_reduction_ratio,
|
|
227
|
+
reconstruction_error,
|
|
228
|
+
optimal_components,
|
|
229
|
+
whitening_transform,
|
|
230
|
+
component_loadings,
|
|
231
|
+
biplot_data,
|
|
232
|
+
# Abbreviated aliases
|
|
233
|
+
pca,
|
|
234
|
+
exp_var,
|
|
235
|
+
scree_plot,
|
|
236
|
+
cum_var,
|
|
237
|
+
pca_inverse,
|
|
238
|
+
svd,
|
|
239
|
+
kpca,
|
|
240
|
+
ipca,
|
|
241
|
+
project,
|
|
242
|
+
dim_ratio,
|
|
243
|
+
recon_error,
|
|
244
|
+
opt_components,
|
|
245
|
+
whiten,
|
|
246
|
+
loadings,
|
|
247
|
+
biplot,
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
from .timeseries import (
|
|
251
|
+
# Full names
|
|
252
|
+
moving_average,
|
|
253
|
+
exponential_moving_average,
|
|
254
|
+
weighted_moving_average,
|
|
255
|
+
seasonal_decompose,
|
|
256
|
+
difference_series,
|
|
257
|
+
autocorrelation,
|
|
258
|
+
partial_autocorrelation,
|
|
259
|
+
detect_trend,
|
|
260
|
+
detect_seasonality,
|
|
261
|
+
remove_trend,
|
|
262
|
+
remove_seasonality,
|
|
263
|
+
rolling_statistics,
|
|
264
|
+
lag_features,
|
|
265
|
+
time_series_split_cv,
|
|
266
|
+
forecast_accuracy,
|
|
267
|
+
# Abbreviated aliases
|
|
268
|
+
ma,
|
|
269
|
+
ema,
|
|
270
|
+
wma,
|
|
271
|
+
decompose,
|
|
272
|
+
diff,
|
|
273
|
+
acf,
|
|
274
|
+
pacf,
|
|
275
|
+
trend,
|
|
276
|
+
seasonality,
|
|
277
|
+
detrend,
|
|
278
|
+
deseasonalize,
|
|
279
|
+
rolling_stats,
|
|
280
|
+
lag,
|
|
281
|
+
ts_cv,
|
|
282
|
+
forecast_acc,
|
|
283
|
+
)
|
|
284
|
+
|
|
215
285
|
__all__ = [
|
|
216
286
|
# Metrics (full names)
|
|
217
287
|
'accuracy_score',
|
|
@@ -399,4 +469,68 @@ __all__ = [
|
|
|
399
469
|
'imbalance_ratio_alias',
|
|
400
470
|
'synthetic_sample',
|
|
401
471
|
'near_miss',
|
|
472
|
+
# Dimensionality (full names)
|
|
473
|
+
'pca_transform',
|
|
474
|
+
'explained_variance_ratio',
|
|
475
|
+
'scree_plot_data',
|
|
476
|
+
'cumulative_variance',
|
|
477
|
+
'pca_inverse_transform',
|
|
478
|
+
'truncated_svd',
|
|
479
|
+
'kernel_pca_transform',
|
|
480
|
+
'incremental_pca_transform',
|
|
481
|
+
'feature_projection',
|
|
482
|
+
'dimensionality_reduction_ratio',
|
|
483
|
+
'reconstruction_error',
|
|
484
|
+
'optimal_components',
|
|
485
|
+
'whitening_transform',
|
|
486
|
+
'component_loadings',
|
|
487
|
+
'biplot_data',
|
|
488
|
+
# Dimensionality (aliases)
|
|
489
|
+
'pca',
|
|
490
|
+
'exp_var',
|
|
491
|
+
'scree_plot',
|
|
492
|
+
'cum_var',
|
|
493
|
+
'pca_inverse',
|
|
494
|
+
'svd',
|
|
495
|
+
'kpca',
|
|
496
|
+
'ipca',
|
|
497
|
+
'project',
|
|
498
|
+
'dim_ratio',
|
|
499
|
+
'recon_error',
|
|
500
|
+
'opt_components',
|
|
501
|
+
'whiten',
|
|
502
|
+
'loadings',
|
|
503
|
+
'biplot',
|
|
504
|
+
# Time Series (full names)
|
|
505
|
+
'moving_average',
|
|
506
|
+
'exponential_moving_average',
|
|
507
|
+
'weighted_moving_average',
|
|
508
|
+
'seasonal_decompose',
|
|
509
|
+
'difference_series',
|
|
510
|
+
'autocorrelation',
|
|
511
|
+
'partial_autocorrelation',
|
|
512
|
+
'detect_trend',
|
|
513
|
+
'detect_seasonality',
|
|
514
|
+
'remove_trend',
|
|
515
|
+
'remove_seasonality',
|
|
516
|
+
'rolling_statistics',
|
|
517
|
+
'lag_features',
|
|
518
|
+
'time_series_split_cv',
|
|
519
|
+
'forecast_accuracy',
|
|
520
|
+
# Time Series (aliases)
|
|
521
|
+
'ma',
|
|
522
|
+
'ema',
|
|
523
|
+
'wma',
|
|
524
|
+
'decompose',
|
|
525
|
+
'diff',
|
|
526
|
+
'acf',
|
|
527
|
+
'pacf',
|
|
528
|
+
'trend',
|
|
529
|
+
'seasonality',
|
|
530
|
+
'detrend',
|
|
531
|
+
'deseasonalize',
|
|
532
|
+
'rolling_stats',
|
|
533
|
+
'lag',
|
|
534
|
+
'ts_cv',
|
|
535
|
+
'forecast_acc',
|
|
402
536
|
]
|