ilovetools 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ilovetools/__init__.py CHANGED
@@ -2,7 +2,7 @@
2
2
  ilovetools - A comprehensive Python utility library
3
3
  """
4
4
 
5
- __version__ = "0.1.6"
5
+ __version__ = "0.1.8"
6
6
  __author__ = "Ali Mehdi"
7
7
  __email__ = "ali.mehdi.dev579@gmail.com"
8
8
 
ilovetools/ml/__init__.py CHANGED
@@ -96,6 +96,64 @@ from .ensemble import (
96
96
  blend,
97
97
  )
98
98
 
99
+ from .feature_selection import (
100
+ # Full names
101
+ correlation_filter,
102
+ variance_threshold_filter,
103
+ chi_square_filter,
104
+ mutual_information_filter,
105
+ recursive_feature_elimination,
106
+ forward_feature_selection,
107
+ backward_feature_elimination,
108
+ feature_importance_ranking,
109
+ l1_feature_selection,
110
+ univariate_feature_selection,
111
+ select_k_best_features,
112
+ remove_correlated_features,
113
+ # Abbreviated aliases
114
+ corr_filter,
115
+ var_filter,
116
+ chi2_filter,
117
+ mi_filter,
118
+ rfe,
119
+ forward_select,
120
+ backward_select,
121
+ feat_importance,
122
+ l1_select,
123
+ univariate_select,
124
+ select_k_best,
125
+ remove_corr,
126
+ )
127
+
128
+ from .interpretation import (
129
+ # Full names
130
+ feature_importance_scores,
131
+ permutation_importance,
132
+ partial_dependence,
133
+ shap_values_approximation,
134
+ lime_explanation,
135
+ decision_path_explanation,
136
+ model_coefficients_interpretation,
137
+ prediction_breakdown,
138
+ feature_contribution_analysis,
139
+ global_feature_importance,
140
+ local_feature_importance,
141
+ model_summary_statistics,
142
+ # Abbreviated aliases
143
+ feat_importance_scores,
144
+ perm_importance,
145
+ pdp,
146
+ shap_approx,
147
+ lime_explain,
148
+ decision_path,
149
+ coef_interpret,
150
+ pred_breakdown,
151
+ feat_contrib,
152
+ global_importance,
153
+ local_importance,
154
+ model_summary,
155
+ )
156
+
99
157
  __all__ = [
100
158
  # Metrics (full names)
101
159
  'accuracy_score',
@@ -179,4 +237,56 @@ __all__ = [
179
237
  'oob_score',
180
238
  'diversity',
181
239
  'blend',
240
+ # Feature Selection (full names)
241
+ 'correlation_filter',
242
+ 'variance_threshold_filter',
243
+ 'chi_square_filter',
244
+ 'mutual_information_filter',
245
+ 'recursive_feature_elimination',
246
+ 'forward_feature_selection',
247
+ 'backward_feature_elimination',
248
+ 'feature_importance_ranking',
249
+ 'l1_feature_selection',
250
+ 'univariate_feature_selection',
251
+ 'select_k_best_features',
252
+ 'remove_correlated_features',
253
+ # Feature Selection (aliases)
254
+ 'corr_filter',
255
+ 'var_filter',
256
+ 'chi2_filter',
257
+ 'mi_filter',
258
+ 'rfe',
259
+ 'forward_select',
260
+ 'backward_select',
261
+ 'feat_importance',
262
+ 'l1_select',
263
+ 'univariate_select',
264
+ 'select_k_best',
265
+ 'remove_corr',
266
+ # Interpretation (full names)
267
+ 'feature_importance_scores',
268
+ 'permutation_importance',
269
+ 'partial_dependence',
270
+ 'shap_values_approximation',
271
+ 'lime_explanation',
272
+ 'decision_path_explanation',
273
+ 'model_coefficients_interpretation',
274
+ 'prediction_breakdown',
275
+ 'feature_contribution_analysis',
276
+ 'global_feature_importance',
277
+ 'local_feature_importance',
278
+ 'model_summary_statistics',
279
+ # Interpretation (aliases)
280
+ 'feat_importance_scores',
281
+ 'perm_importance',
282
+ 'pdp',
283
+ 'shap_approx',
284
+ 'lime_explain',
285
+ 'decision_path',
286
+ 'coef_interpret',
287
+ 'pred_breakdown',
288
+ 'feat_contrib',
289
+ 'global_importance',
290
+ 'local_importance',
291
+ 'model_summary',
182
292
  ]