ilovetools 0.1.5__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ilovetools/__init__.py +1 -1
- ilovetools/ml/__init__.py +110 -0
- ilovetools/ml/ensemble.py +872 -0
- ilovetools/ml/feature_selection.py +971 -0
- {ilovetools-0.1.5.dist-info → ilovetools-0.1.7.dist-info}/METADATA +1 -1
- {ilovetools-0.1.5.dist-info → ilovetools-0.1.7.dist-info}/RECORD +9 -7
- {ilovetools-0.1.5.dist-info → ilovetools-0.1.7.dist-info}/WHEEL +0 -0
- {ilovetools-0.1.5.dist-info → ilovetools-0.1.7.dist-info}/licenses/LICENSE +0 -0
- {ilovetools-0.1.5.dist-info → ilovetools-0.1.7.dist-info}/top_level.txt +0 -0
ilovetools/__init__.py
CHANGED
ilovetools/ml/__init__.py
CHANGED
|
@@ -67,6 +67,64 @@ from .tuning import (
|
|
|
67
67
|
bayesopt,
|
|
68
68
|
)
|
|
69
69
|
|
|
70
|
+
from .ensemble import (
|
|
71
|
+
# Full names
|
|
72
|
+
voting_classifier,
|
|
73
|
+
voting_regressor,
|
|
74
|
+
bagging_predictions,
|
|
75
|
+
boosting_sequential,
|
|
76
|
+
stacking_ensemble,
|
|
77
|
+
weighted_average_ensemble,
|
|
78
|
+
majority_vote,
|
|
79
|
+
soft_vote,
|
|
80
|
+
bootstrap_sample,
|
|
81
|
+
out_of_bag_score,
|
|
82
|
+
ensemble_diversity,
|
|
83
|
+
blend_predictions,
|
|
84
|
+
# Abbreviated aliases
|
|
85
|
+
vote_clf,
|
|
86
|
+
vote_reg,
|
|
87
|
+
bagging,
|
|
88
|
+
boosting,
|
|
89
|
+
stacking,
|
|
90
|
+
weighted_avg,
|
|
91
|
+
hard_vote,
|
|
92
|
+
soft_vote_alias,
|
|
93
|
+
bootstrap,
|
|
94
|
+
oob_score,
|
|
95
|
+
diversity,
|
|
96
|
+
blend,
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
from .feature_selection import (
|
|
100
|
+
# Full names
|
|
101
|
+
correlation_filter,
|
|
102
|
+
variance_threshold_filter,
|
|
103
|
+
chi_square_filter,
|
|
104
|
+
mutual_information_filter,
|
|
105
|
+
recursive_feature_elimination,
|
|
106
|
+
forward_feature_selection,
|
|
107
|
+
backward_feature_elimination,
|
|
108
|
+
feature_importance_ranking,
|
|
109
|
+
l1_feature_selection,
|
|
110
|
+
univariate_feature_selection,
|
|
111
|
+
select_k_best_features,
|
|
112
|
+
remove_correlated_features,
|
|
113
|
+
# Abbreviated aliases
|
|
114
|
+
corr_filter,
|
|
115
|
+
var_filter,
|
|
116
|
+
chi2_filter,
|
|
117
|
+
mi_filter,
|
|
118
|
+
rfe,
|
|
119
|
+
forward_select,
|
|
120
|
+
backward_select,
|
|
121
|
+
feat_importance,
|
|
122
|
+
l1_select,
|
|
123
|
+
univariate_select,
|
|
124
|
+
select_k_best,
|
|
125
|
+
remove_corr,
|
|
126
|
+
)
|
|
127
|
+
|
|
70
128
|
__all__ = [
|
|
71
129
|
# Metrics (full names)
|
|
72
130
|
'accuracy_score',
|
|
@@ -124,4 +182,56 @@ __all__ = [
|
|
|
124
182
|
'early_stop',
|
|
125
183
|
'compare_models',
|
|
126
184
|
'bayesopt',
|
|
185
|
+
# Ensemble (full names)
|
|
186
|
+
'voting_classifier',
|
|
187
|
+
'voting_regressor',
|
|
188
|
+
'bagging_predictions',
|
|
189
|
+
'boosting_sequential',
|
|
190
|
+
'stacking_ensemble',
|
|
191
|
+
'weighted_average_ensemble',
|
|
192
|
+
'majority_vote',
|
|
193
|
+
'soft_vote',
|
|
194
|
+
'bootstrap_sample',
|
|
195
|
+
'out_of_bag_score',
|
|
196
|
+
'ensemble_diversity',
|
|
197
|
+
'blend_predictions',
|
|
198
|
+
# Ensemble (aliases)
|
|
199
|
+
'vote_clf',
|
|
200
|
+
'vote_reg',
|
|
201
|
+
'bagging',
|
|
202
|
+
'boosting',
|
|
203
|
+
'stacking',
|
|
204
|
+
'weighted_avg',
|
|
205
|
+
'hard_vote',
|
|
206
|
+
'soft_vote_alias',
|
|
207
|
+
'bootstrap',
|
|
208
|
+
'oob_score',
|
|
209
|
+
'diversity',
|
|
210
|
+
'blend',
|
|
211
|
+
# Feature Selection (full names)
|
|
212
|
+
'correlation_filter',
|
|
213
|
+
'variance_threshold_filter',
|
|
214
|
+
'chi_square_filter',
|
|
215
|
+
'mutual_information_filter',
|
|
216
|
+
'recursive_feature_elimination',
|
|
217
|
+
'forward_feature_selection',
|
|
218
|
+
'backward_feature_elimination',
|
|
219
|
+
'feature_importance_ranking',
|
|
220
|
+
'l1_feature_selection',
|
|
221
|
+
'univariate_feature_selection',
|
|
222
|
+
'select_k_best_features',
|
|
223
|
+
'remove_correlated_features',
|
|
224
|
+
# Feature Selection (aliases)
|
|
225
|
+
'corr_filter',
|
|
226
|
+
'var_filter',
|
|
227
|
+
'chi2_filter',
|
|
228
|
+
'mi_filter',
|
|
229
|
+
'rfe',
|
|
230
|
+
'forward_select',
|
|
231
|
+
'backward_select',
|
|
232
|
+
'feat_importance',
|
|
233
|
+
'l1_select',
|
|
234
|
+
'univariate_select',
|
|
235
|
+
'select_k_best',
|
|
236
|
+
'remove_corr',
|
|
127
237
|
]
|