ign-pdal-tools 1.15.6__py3-none-any.whl → 1.15.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ign-pdal-tools
3
- Version: 1.15.6
3
+ Version: 1.15.8
4
4
  Summary: Library for common LAS files manipulation with PDAL
5
5
  Author-email: Guillaume Liegard <guillaume.liegard@ign.fr>
6
6
  Description-Content-Type: text/markdown
@@ -1,14 +1,14 @@
1
- ign_pdal_tools-1.15.6.dist-info/licenses/LICENSE.md,sha256=iVzCFZTUXeiqP8bP474iuWZiWO_kDCD4SPh1Wiw125Y,1120
2
- pdaltools/_version.py,sha256=rbwL37ozKUuMooO5Jv8RL7L5YP6krgkxEC3KNUvyY6c,75
1
+ ign_pdal_tools-1.15.8.dist-info/licenses/LICENSE.md,sha256=iVzCFZTUXeiqP8bP474iuWZiWO_kDCD4SPh1Wiw125Y,1120
2
+ pdaltools/_version.py,sha256=ka-Hq8wFue3GxbOFYtvl29usecZ_BEmqujBzCGJyZ9U,75
3
3
  pdaltools/add_points_in_pointcloud.py,sha256=lDxePBBRTKSEKC3BgrVLWUEMN8vCM4xNgsJfbIz4GRw,12988
4
- pdaltools/color.py,sha256=yVSP1IjFsV5yAXYudaD76a8BM0hZAmMLMzjUjd7CNS0,9595
4
+ pdaltools/color.py,sha256=zUNN9BxpajgkisoQ_TC0wBEQqou3gKo8x1KH9EtoRnE,12495
5
5
  pdaltools/create_random_laz.py,sha256=w0P4e3-bzaiKl_osmyFdOcKODRUadU7G4ez9fLvCDrs,6028
6
6
  pdaltools/download_image.py,sha256=RgR9iHbw1kr1rb5aumbNwNyLk3BgM86EV3MssXiVaGU,7869
7
7
  pdaltools/las_add_buffer.py,sha256=WXUkMSRX8T-Xj5il9F_uv7uKSqwUmv5P3AUcHXQVQDE,11343
8
8
  pdaltools/las_clip.py,sha256=GvEOYu8RXV68e35kU8i42GwSkbo4P9TvmS6rkrdPmFM,1034
9
- pdaltools/las_comparison.py,sha256=AsmbdH8HF61lWHroZkez5x1h7B681RLWWZCHibDc3M4,4506
9
+ pdaltools/las_comparison.py,sha256=ZbWqAjDJ90r3bwzRzMY1nGbpPXMHb52AlQFn1Aoy4jA,7431
10
10
  pdaltools/las_info.py,sha256=xZlTsdLS3I9_xeqGJyOOpJNJrqF82JBhlMhtYabOuw0,9845
11
- pdaltools/las_merge.py,sha256=tcFVueV9X9nNEaoAl5zCduY5DETlBg63MAgP2SuKiNo,4121
11
+ pdaltools/las_merge.py,sha256=MYv4M9WM86Vqb-icPM6hGwdSxY6YuJxhpkR1FDouzsk,5692
12
12
  pdaltools/las_remove_dimensions.py,sha256=f8imGhN6LNTuQ1GMJQRzIIV3Wab_oRPOyEnKi1CgfiM,2318
13
13
  pdaltools/las_rename_dimension.py,sha256=AWYx0Jd5YHWng-CY2yIV8iRTR_bMxhvwGz1MO5sYTWc,2889
14
14
  pdaltools/pcd_info.py,sha256=NIAH5KGikVDQLlbCcw9FuaPqe20UZvRfkHsDZd5kmZA,3210
@@ -16,7 +16,7 @@ pdaltools/replace_area_in_pointcloud.py,sha256=V8aFRSxrqJtsUufoA_5g9ysPl-Wp17_TX
16
16
  pdaltools/replace_attribute_in_las.py,sha256=MHpIizSupgWtbizteoRH8FKDE049hrAh4v_OhmRmSPU,4318
17
17
  pdaltools/standardize_format.py,sha256=-ukrz5gY0mq071fN7EXbB9ANS44IEmgpKQrrjzOnqhE,4455
18
18
  pdaltools/unlock_file.py,sha256=3BplGrcKJ7lpPj1lHTG4ODeuGDXjmeoMeSl3q2Qn2XA,1980
19
- ign_pdal_tools-1.15.6.dist-info/METADATA,sha256=DRXg0EtK94BnLSbhA-7okBqdGRZbSPcVhC2HSNtLIh4,6146
20
- ign_pdal_tools-1.15.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
21
- ign_pdal_tools-1.15.6.dist-info/top_level.txt,sha256=KvGW0ZzqQbhCKzB5_Tp_buWMZyIgiO2M2krWF_ecOZc,10
22
- ign_pdal_tools-1.15.6.dist-info/RECORD,,
19
+ ign_pdal_tools-1.15.8.dist-info/METADATA,sha256=YtXPvSSqPe7WRsckKRF4hbCPaCH8TEagbz8QnMi1T8Y,6146
20
+ ign_pdal_tools-1.15.8.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
21
+ ign_pdal_tools-1.15.8.dist-info/top_level.txt,sha256=KvGW0ZzqQbhCKzB5_Tp_buWMZyIgiO2M2krWF_ecOZc,10
22
+ ign_pdal_tools-1.15.8.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
pdaltools/_version.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "1.15.6"
1
+ __version__ = "1.15.8"
2
2
 
3
3
 
4
4
  if __name__ == "__main__":
pdaltools/color.py CHANGED
@@ -31,7 +31,7 @@ def match_min_max_with_pixel_size(min_d: float, max_d: float, pixel_per_meter: f
31
31
  return min_d, max_d
32
32
 
33
33
 
34
- def color(
34
+ def color_from_stream(
35
35
  input_file: str,
36
36
  output_file: str,
37
37
  proj="",
@@ -156,28 +156,58 @@ def color(
156
156
  return tmp_ortho, tmp_ortho_irc
157
157
 
158
158
 
159
- def parse_args():
160
- parser = argparse.ArgumentParser("Colorize tool", formatter_class=argparse.RawTextHelpFormatter)
161
- parser.add_argument("--input", "-i", type=str, required=True, help="Input file")
162
- parser.add_argument("--output", "-o", type=str, default="", help="Output file")
163
- parser.add_argument(
164
- "--proj", "-p", type=str, default="", help="Projection, default will use projection from metadata input"
159
+ def color_from_files(
160
+ input_file: str,
161
+ output_file: str,
162
+ rgb_image: str,
163
+ irc_image: str,
164
+ color_rvb_enabled=True,
165
+ color_ir_enabled=True,
166
+ veget_index_file="",
167
+ vegetation_dim="Deviation",
168
+ ):
169
+ pipeline = pdal.Reader.las(filename=input_file)
170
+
171
+ writer_extra_dims = "all"
172
+
173
+ if veget_index_file and veget_index_file != "":
174
+ print(f"Remplissage du champ {vegetation_dim} à partir du fichier {veget_index_file}")
175
+ pipeline |= pdal.Filter.colorization(raster=veget_index_file, dimensions=f"{vegetation_dim}:1:256.0")
176
+ writer_extra_dims = [f"{vegetation_dim}=ushort"]
177
+
178
+ # Warning: the initial color is multiplied by 256 despite its initial 8-bits encoding
179
+ # which turns it to a 0 to 255*256 range.
180
+ # It is kept this way because of other dependencies that have been tuned to fit this range
181
+ if color_rvb_enabled:
182
+ pipeline |= pdal.Filter.colorization(raster=rgb_image, dimensions="Red:1:256.0, Green:2:256.0, Blue:3:256.0")
183
+ if color_ir_enabled:
184
+ pipeline |= pdal.Filter.colorization(raster=irc_image, dimensions="Infrared:1:256.0")
185
+
186
+ pipeline |= pdal.Writer.las(
187
+ filename=output_file, extra_dims=writer_extra_dims, minor_version="4", dataformat_id="8", forward="all"
165
188
  )
166
- parser.add_argument("--resolution", "-r", type=float, default=5, help="Resolution, in pixel per meter")
167
- parser.add_argument("--timeout", "-t", type=int, default=300, help="Timeout, in seconds")
168
- parser.add_argument("--rvb", action="store_true", help="Colorize RVB")
169
- parser.add_argument("--ir", action="store_true", help="Colorize IR")
170
- parser.add_argument(
171
- "--vegetation",
172
- type=str,
173
- default="",
174
- help="Vegetation file (raster), value will be stored in 'vegetation_dim' field",
189
+
190
+ print("Traitement du nuage de point")
191
+ pipeline.execute()
192
+
193
+
194
+ def argument_parser():
195
+ parser = argparse.ArgumentParser("Colorize tool")
196
+ subparsers = parser.add_subparsers(required=True)
197
+
198
+ # first command is 'from_stream'
199
+ from_stream = subparsers.add_parser("from_stream", help="Images are downloaded from streams")
200
+ from_stream.add_argument(
201
+ "--proj", "-p", type=str, default="", help="Projection, default will use projection from metadata input"
175
202
  )
176
- parser.add_argument(
177
- "--vegetation_dim", type=str, default="Deviation", help="name of the extra_dim uses for the vegetation value"
203
+ from_stream.add_argument("--timeout", "-t", type=int, default=300, help="Timeout, in seconds")
204
+ from_stream.add_argument("--rvb", action="store_true", help="Colorize RVB")
205
+ from_stream.add_argument("--ir", action="store_true", help="Colorize IR")
206
+ from_stream.add_argument("--resolution", "-r", type=float, default=5, help="Resolution, in pixel per meter")
207
+ from_stream.add_argument(
208
+ "--check-images", "-c", action="store_true", help="Check that downloaded image is not white"
178
209
  )
179
- parser.add_argument("--check-images", "-c", action="store_true", help="Check that downloaded image is not white")
180
- parser.add_argument(
210
+ from_stream.add_argument(
181
211
  "--stream-RGB",
182
212
  type=str,
183
213
  default="ORTHOIMAGERY.ORTHOPHOTOS",
@@ -186,27 +216,49 @@ default stream (ORTHOIMAGERY.ORTHOPHOTOS) let the server choose the resolution
186
216
  for 20cm resolution rasters, use HR.ORTHOIMAGERY.ORTHOPHOTOS
187
217
  for 50 cm resolution rasters, use ORTHOIMAGERY.ORTHOPHOTOS.BDORTHO""",
188
218
  )
189
- parser.add_argument(
219
+ from_stream.add_argument(
190
220
  "--stream-IRC",
191
221
  type=str,
192
222
  default="ORTHOIMAGERY.ORTHOPHOTOS.IRC",
193
223
  help="""WMS raster stream for IRC colorization. Default to ORTHOIMAGERY.ORTHOPHOTOS.IRC
194
224
  Documentation about possible stream : https://geoservices.ign.fr/services-web-experts-ortho""",
195
225
  )
196
- parser.add_argument(
226
+ from_stream.add_argument(
197
227
  "--size-max-GPF",
198
228
  type=int,
199
229
  default=5000,
200
230
  help="Maximum edge size (in pixels) of downloaded images."
201
231
  " If input file needs more, several images are downloaded and merged.",
202
232
  )
233
+ add_common_options(from_stream)
234
+ from_stream.set_defaults(func=from_stream_func)
203
235
 
204
- return parser.parse_args()
236
+ # second command is 'from_files'
237
+ from_files = subparsers.add_parser("from_files", help="Images are in directories from RGB/IRC")
238
+ from_files.add_argument("--image_RGB", type=str, required=True, help="RGB image filepath")
239
+ from_files.add_argument("--image_IRC", type=str, required=True, help="IRC image filepath")
240
+ add_common_options(from_files)
241
+ from_files.set_defaults(func=from_files_func)
205
242
 
243
+ return parser
206
244
 
207
- if __name__ == "__main__":
208
- args = parse_args()
209
- color(
245
+
246
+ def add_common_options(parser):
247
+ parser.add_argument("--input", "-i", type=str, required=True, help="Input file")
248
+ parser.add_argument("--output", "-o", type=str, default="", help="Output file")
249
+ parser.add_argument(
250
+ "--vegetation",
251
+ type=str,
252
+ default="",
253
+ help="Vegetation file (raster), value will be stored in 'vegetation_dim' field",
254
+ )
255
+ parser.add_argument(
256
+ "--vegetation_dim", type=str, default="Deviation", help="name of the extra_dim uses for the vegetation value"
257
+ )
258
+
259
+
260
+ def from_stream_func(args):
261
+ color_from_stream(
210
262
  input_file=args.input,
211
263
  output_file=args.output,
212
264
  proj=args.proj,
@@ -221,3 +273,33 @@ if __name__ == "__main__":
221
273
  stream_IRC=args.stream_IRC,
222
274
  size_max_gpf=args.size_max_GPF,
223
275
  )
276
+
277
+
278
+ def from_files_func(args):
279
+ if args.image_RGB and args.image_RGB != "":
280
+ color_rvb_enabled = True
281
+ else:
282
+ color_rvb_enabled = False
283
+ if args.image_IRC and args.image_IRC != "":
284
+ color_irc_enabled = True
285
+ else:
286
+ color_irc_enabled = False
287
+
288
+ if not color_rvb_enabled and not color_irc_enabled:
289
+ raise ValueError("At least one of --rvb or --ir must be provided")
290
+
291
+ color_from_files(
292
+ input_file=args.input,
293
+ output_file=args.output,
294
+ rgb_image=args.image_RGB,
295
+ irc_image=args.image_IRC,
296
+ color_rvb_enabled=color_rvb_enabled,
297
+ color_ir_enabled=color_irc_enabled,
298
+ veget_index_file=args.vegetation,
299
+ vegetation_dim=args.vegetation_dim,
300
+ )
301
+
302
+
303
+ if __name__ == "__main__":
304
+ args = argument_parser.parse_args()
305
+ args.func(args)
@@ -1,12 +1,13 @@
1
1
  import argparse
2
- from pathlib import Path
3
- from typing import Tuple
2
+ from typing import Tuple, Dict, Optional
4
3
 
5
4
  import laspy
6
5
  import numpy as np
7
6
 
7
+ from pathlib import Path
8
+
8
9
 
9
- def compare_las_dimensions(file1: Path, file2: Path, dimensions: list = None) -> Tuple[bool, int, float]:
10
+ def compare_las_dimensions(file1: Path, file2: Path, dimensions: list = None, precision: Optional[Dict[str, float]] = None) -> Tuple[bool, int, float]:
10
11
  """
11
12
  Compare specified dimensions between two LAS files.
12
13
  If no dimensions are specified, compares all available dimensions.
@@ -16,6 +17,8 @@ def compare_las_dimensions(file1: Path, file2: Path, dimensions: list = None) ->
16
17
  file1: Path to the first LAS file
17
18
  file2: Path to the second LAS file
18
19
  dimensions: List of dimension names to compare (optional)
20
+ precision: Dictionary mapping dimension names to tolerance values for float comparison.
21
+ If None or dimension not in dict, uses exact comparison (default: None)
19
22
 
20
23
  Returns:
21
24
  bool: True if all specified dimensions are identical, False otherwise
@@ -59,20 +62,42 @@ def compare_las_dimensions(file1: Path, file2: Path, dimensions: list = None) ->
59
62
  # Compare each dimension
60
63
  for dim in dimensions:
61
64
  try:
65
+
62
66
  # Get sorted dimension arrays
63
67
  dim1 = np.array(las1[dim])[sort_idx1]
64
68
  dim2 = np.array(las2[dim])[sort_idx2]
65
69
 
70
+ # Get precision for this dimension (if specified)
71
+ dim_precision = None
72
+ if precision is not None and dim in precision:
73
+ dim_precision = precision[dim]
74
+
66
75
  # Compare dimensions
67
- if not np.array_equal(dim1, dim2):
68
- # Find differences
69
- diff_indices = np.where(dim1 != dim2)[0]
70
- print(f"Found {len(diff_indices)} points with different {dim}:")
71
- for idx in diff_indices[:10]: # Show first 10 differences
72
- print(f"Point {idx}: file1={dim1[idx]}, file2={dim2[idx]}")
73
- if len(diff_indices) > 10:
74
- print(f"... and {len(diff_indices) - 10} more differences")
75
- return False, len(diff_indices), 100 * len(diff_indices) / len(las1)
76
+ if dim_precision is not None:
77
+ # Use tolerance-based comparison for floats
78
+ are_equal = np.allclose(dim1, dim2, rtol=0, atol=dim_precision)
79
+ if not are_equal:
80
+ # Find differences
81
+ diff_mask = ~np.isclose(dim1, dim2, rtol=0, atol=dim_precision)
82
+ diff_indices = np.where(diff_mask)[0]
83
+ print(f"Found {len(diff_indices)} points with different {dim} (tolerance={dim_precision}):")
84
+ for idx in diff_indices[:10]: # Show first 10 differences
85
+ diff_value = abs(dim1[idx] - dim2[idx])
86
+ print(f"Point {idx}: file1={dim1[idx]}, file2={dim2[idx]}, diff={diff_value}")
87
+ if len(diff_indices) > 10:
88
+ print(f"... and {len(diff_indices) - 10} more differences")
89
+ return False, len(diff_indices), 100 * len(diff_indices) / len(las1)
90
+ else:
91
+ # Exact comparison
92
+ if not np.array_equal(dim1, dim2):
93
+ # Find differences
94
+ diff_indices = np.where(dim1 != dim2)[0]
95
+ print(f"Found {len(diff_indices)} points with different {dim}:")
96
+ for idx in diff_indices[:10]: # Show first 10 differences
97
+ print(f"Point {idx}: file1={dim1[idx]}, file2={dim2[idx]}")
98
+ if len(diff_indices) > 10:
99
+ print(f"... and {len(diff_indices) - 10} more differences")
100
+ return False, len(diff_indices), 100 * len(diff_indices) / len(las1)
76
101
 
77
102
  except KeyError:
78
103
  print(f"Dimension '{dim}' not found in one or both files")
@@ -93,12 +118,32 @@ def compare_las_dimensions(file1: Path, file2: Path, dimensions: list = None) ->
93
118
 
94
119
  # Update main function to use the new compare function
95
120
  def main():
96
- parser = argparse.ArgumentParser(description="Compare dimensions between two LAS files")
121
+ parser = argparse.ArgumentParser(
122
+ description="Compare dimensions between two LAS files",
123
+ formatter_class=argparse.RawDescriptionHelpFormatter,
124
+ epilog="""
125
+ Examples:
126
+ # Compare all dimensions with exact match
127
+ python las_comparison.py file1.las file2.las
128
+
129
+ # Compare specific dimensions with precision per dimension
130
+ python las_comparison.py file1.las file2.las --dimensions X Y Z --precision X=0.001 Y=0.001 Z=0.0001
131
+
132
+ # Compare all dimensions with precision for specific ones
133
+ python las_comparison.py file1.las file2.las --precision X=0.001 Y=0.001
134
+ """
135
+ )
97
136
  parser.add_argument("file1", type=str, help="Path to first LAS file")
98
137
  parser.add_argument("file2", type=str, help="Path to second LAS file")
99
138
  parser.add_argument(
100
139
  "--dimensions", nargs="*", help="List of dimensions to compare. If not specified, compares all dimensions."
101
140
  )
141
+ parser.add_argument(
142
+ "--precision", nargs="*", metavar="DIM=VAL",
143
+ help="Tolerance for float comparison per dimension (format: DIMENSION=PRECISION). "
144
+ "Example: --precision X=0.001 Y=0.001 Z=0.0001. "
145
+ "Dimensions not specified will use exact comparison."
146
+ )
102
147
 
103
148
  args = parser.parse_args()
104
149
 
@@ -109,7 +154,18 @@ def main():
109
154
  print("Error: One or both files do not exist")
110
155
  exit(1)
111
156
 
112
- result = compare_las_dimensions(file1, file2, args.dimensions)
157
+ # Parse precision dictionary from command line arguments
158
+ precision_dict = None
159
+ if args.precision:
160
+ precision_dict = {}
161
+ for prec_spec in args.precision:
162
+ try:
163
+ dim_name, prec_value = prec_spec.split('=', 1)
164
+ precision_dict[dim_name] = float(prec_value)
165
+ except ValueError:
166
+ parser.error(f"Invalid precision format: '{prec_spec}'. Expected format: DIMENSION=PRECISION (e.g., X=0.001)")
167
+
168
+ result = compare_las_dimensions(file1, file2, args.dimensions, precision_dict)
113
169
  print(f"Dimensions comparison result: {'identical' if result[0] else 'different'}")
114
170
  return result
115
171
 
pdaltools/las_merge.py CHANGED
@@ -6,20 +6,25 @@ import pdal
6
6
  from pdaltools.las_info import parse_filename
7
7
 
8
8
 
9
- def create_filenames(file: str, tile_width: int = 1000, tile_coord_scale: int = 1000):
9
+ def create_filenames_suffixes(file: str, tile_width: int = 1000, tile_coord_scale: int = 1000):
10
10
  """Generate the name of the tiles around the input LIDAR tile
11
11
  It supposes that the file names are formatted as {prefix1}_{prefix2}_{coordx}_{coordy}_{suffix}
12
12
  with coordx and coordy having at least 4 digits
13
13
 
14
14
  For example Semis_2021_0000_1111_LA93_IGN69.las
15
15
 
16
+ Generates only the suffix part of the filename, for example, for file like above, it will generate:
17
+ _0000_1112_LA93_IGN69.las
18
+ _0001_1112_LA93_IGN69.las
19
+ ...
20
+
16
21
  Args:
17
22
  file(str): name of LIDAR file
18
23
  tile width (int): width of tiles in meters (usually 1000m)
19
24
  tile_coord_scale (int) : scale used in the filename to describe coordinates in meters
20
25
  (usually 1000m)
21
26
  Returns:
22
- list_input(list): List of LIDAR's name
27
+ list_input(list): List of LIDAR's filename suffix.
23
28
  """
24
29
 
25
30
  # Create name of LIDAR tiles who cercle the tile
@@ -27,42 +32,52 @@ def create_filenames(file: str, tile_width: int = 1000, tile_coord_scale: int =
27
32
  _prefix, coord_x, coord_y, _suffix = parse_filename(file)
28
33
  offset = int(tile_width / tile_coord_scale)
29
34
  # On left
30
- _tile_hl = f"{_prefix}_{(coord_x - offset):04d}_{(coord_y + offset):04d}_{_suffix}"
31
- _tile_ml = f"{_prefix}_{(coord_x - offset):04d}_{coord_y:04d}_{_suffix}"
32
- _tile_bl = f"{_prefix}_{(coord_x - offset):04d}_{(coord_y - offset):04d}_{_suffix}"
35
+ _tile_hl = f"_{(coord_x - offset):04d}_{(coord_y + offset):04d}_{_suffix}"
36
+ _tile_ml = f"_{(coord_x - offset):04d}_{coord_y:04d}_{_suffix}"
37
+ _tile_bl = f"_{(coord_x - offset):04d}_{(coord_y - offset):04d}_{_suffix}"
33
38
  # On Right
34
- _tile_hr = f"{_prefix}_{(coord_x + offset):04d}_{(coord_y + offset):04d}_{_suffix}"
35
- _tile_mr = f"{_prefix}_{(coord_x + offset):04d}_{coord_y:04d}_{_suffix}"
36
- _tile_br = f"{_prefix}_{(coord_x + offset):04d}_{(coord_y - offset):04d}_{_suffix}"
39
+ _tile_hr = f"_{(coord_x + offset):04d}_{(coord_y + offset):04d}_{_suffix}"
40
+ _tile_mr = f"_{(coord_x + offset):04d}_{coord_y:04d}_{_suffix}"
41
+ _tile_br = f"_{(coord_x + offset):04d}_{(coord_y - offset):04d}_{_suffix}"
37
42
  # Above
38
- _tile_a = f"{_prefix}_{coord_x:04d}_{(coord_y + offset):04d}_{_suffix}"
43
+ _tile_a = f"_{coord_x:04d}_{(coord_y + offset):04d}_{_suffix}"
39
44
  # Below
40
- _tile_b = f"{_prefix}_{coord_x:04d}_{(coord_y - offset):04d}_{_suffix}"
45
+ _tile_b = f"_{coord_x:04d}_{(coord_y - offset):04d}_{_suffix}"
41
46
  # Return the severals tile's names
42
47
  return _tile_hl, _tile_ml, _tile_bl, _tile_a, _tile_b, _tile_hr, _tile_mr, _tile_br
43
48
 
44
49
 
45
- def check_tiles_exist(list_las: list):
46
- """Check if pointclouds exist
50
+ def match_suffix_with_filenames(suffix_list: list, all_files: list, las_dir: str):
51
+ """Match suffix list with real filenames
47
52
  Args:
48
- list_las (list): Filenames of the tiles around the LIDAR tile
53
+ suffix_list (list): List of suffix patterns to match
54
+ all_files (list): List of all files in las_dir
55
+ las_dir (str): Directory of pointclouds
49
56
 
50
57
  Returns:
51
- li(List): Pruned list of filenames with only existing files
58
+ las_list(List): List of matched files
52
59
  """
53
- li = []
54
- for i in list_las:
55
- if not os.path.exists(i):
56
- logging.info(f"NOK : {i}")
57
- pass
60
+ las_list = []
61
+ for suffix in suffix_list:
62
+ matches = [filename for filename in all_files if filename.endswith(suffix)]
63
+ if len(matches) == 0:
64
+ logging.info(f"NOK : {suffix}")
58
65
  else:
59
- li.append(i)
60
- return li
66
+ # in case of multiple matches, select the most recent year (ex: Semis_2021_ before Semis_2020_ )
67
+ matches.sort(reverse=True)
68
+ selected = matches[0]
69
+ if len(matches) > 1:
70
+ logging.warning(f"Multiple matches for {suffix} : {matches} ; taking {selected}")
61
71
 
72
+ # Append full path
73
+ las_list.append(os.path.join(las_dir, selected))
74
+ return las_list
62
75
 
63
- def create_list(las_dir, input_file, tile_width=1000, tile_coord_scale=1000):
76
+
77
+ def create_tiles_list(all_files, las_dir, input_file, tile_width=1000, tile_coord_scale=1000):
64
78
  """Return the paths of 8 tiles around the tile + the input tile
65
79
  Args:
80
+ all_files (list): list of all files in las_dir
66
81
  las_dir (str): directory of pointclouds
67
82
  input_file (str): path to queried LIDAR tile
68
83
  tile_width (int): Width of a tile(in the reference unit: 1m)
@@ -70,19 +85,39 @@ def create_list(las_dir, input_file, tile_width=1000, tile_coord_scale=1000):
70
85
  1000 * 1m (with 1m being the reference)
71
86
 
72
87
  Returns:
73
- list_files(li): list of tiles
88
+ list_files: list of tiles
74
89
  """
75
90
 
76
- # Return list 8 tiles around the tile
77
- list_input = create_filenames(os.path.basename(input_file), tile_width, tile_coord_scale)
78
- # List pointclouds
79
- li = [os.path.join(las_dir, e) for e in list_input]
80
- # Keep only existing files
81
- li = check_tiles_exist(li)
91
+ # Return list 8 tiles around the tile, but only the suffix part of the name.
92
+ suffix_list = create_filenames_suffixes(os.path.basename(input_file), tile_width, tile_coord_scale)
93
+
94
+ # Match suffix patterns with real files
95
+ list_files = match_suffix_with_filenames(suffix_list, all_files, las_dir)
96
+
82
97
  # Appending queried tile to list
83
- li.append(input_file)
98
+ list_files.append(input_file)
99
+
100
+ return list_files
101
+
102
+
103
+ def create_list(las_dir, input_file, tile_width=1000, tile_coord_scale=1000):
104
+ """Return the paths of 8 tiles around the tile + the input tile
105
+ Args:
106
+ las_dir (str): directory of pointclouds
107
+ input_file (str): path to queried LIDAR tile
108
+ tile_width (int): Width of a tile(in the reference unit: 1m)
109
+ tile_coord_scale (int): Scale used in filename to describe coordinates (usually kilometers)
110
+ 1000 * 1m (with 1m being the reference)
111
+
112
+ Returns:
113
+ list_files: list of tiles
114
+ """
115
+
116
+ # list files on the disk
117
+ all_files = os.listdir(las_dir)
84
118
 
85
- return li
119
+ # call the function with the list of files
120
+ return create_tiles_list(all_files, las_dir, input_file, tile_width, tile_coord_scale)
86
121
 
87
122
 
88
123
  def las_merge(las_dir, input_file, merge_file, tile_width=1000, tile_coord_scale=1000):