ign-pdal-tools 1.11.1__py3-none-any.whl → 1.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ign-pdal-tools
3
- Version: 1.11.1
3
+ Version: 1.12.0
4
4
  Summary: Library for common LAS files manipulation with PDAL
5
5
  Author-email: Guillaume Liegard <guillaume.liegard@ign.fr>
6
6
  Description-Content-Type: text/markdown
@@ -1,9 +1,11 @@
1
- ign_pdal_tools-1.11.1.dist-info/licenses/LICENSE.md,sha256=iVzCFZTUXeiqP8bP474iuWZiWO_kDCD4SPh1Wiw125Y,1120
2
- pdaltools/_version.py,sha256=ePCDD63wucRpBvp1zzN9uerMLecQK4e65Z3lJKH3_4M,75
3
- pdaltools/add_points_in_pointcloud.py,sha256=13xl8tnoaW6FsRHBPa77-c6Olw8uUw2KBUGoz8JcbBg,12675
1
+ ign_pdal_tools-1.12.0.dist-info/licenses/LICENSE.md,sha256=iVzCFZTUXeiqP8bP474iuWZiWO_kDCD4SPh1Wiw125Y,1120
2
+ pdaltools/_version.py,sha256=uuG85nhWU5wpaYiHuTFYsaS18txZLNqRwMOK8z2G96k,75
3
+ pdaltools/add_points_in_pointcloud.py,sha256=6NclQeAFYyVz3kfJ114BEFKfM5nwWWC2c8iN4IpaPOc,12662
4
4
  pdaltools/color.py,sha256=vJgpb8dOvT5rnq5NdVOaMdGc_pKL3damLy4HwGvigJQ,14472
5
+ pdaltools/create_random_laz.py,sha256=RxRzMGZ33xoomu4eh-cLSj4tj5Gy41rBzk08lAKHHzg,5726
5
6
  pdaltools/las_add_buffer.py,sha256=rnFExAfi0KqlQpL4hDMh2aC08AcYdSHSB6WPG5RyFIc,11274
6
7
  pdaltools/las_clip.py,sha256=GvEOYu8RXV68e35kU8i42GwSkbo4P9TvmS6rkrdPmFM,1034
8
+ pdaltools/las_comparison.py,sha256=pq0fa_kOkysPBBYNNcGg9FFyRLT6IANdPjaGwQALwVU,4193
7
9
  pdaltools/las_info.py,sha256=lMKxKzsViptDENI1wOlANG4qOvdc19ixyasYKD-N1ck,9512
8
10
  pdaltools/las_merge.py,sha256=tcFVueV9X9nNEaoAl5zCduY5DETlBg63MAgP2SuKiNo,4121
9
11
  pdaltools/las_remove_dimensions.py,sha256=f8imGhN6LNTuQ1GMJQRzIIV3Wab_oRPOyEnKi1CgfiM,2318
@@ -12,7 +14,7 @@ pdaltools/pcd_info.py,sha256=NIAH5KGikVDQLlbCcw9FuaPqe20UZvRfkHsDZd5kmZA,3210
12
14
  pdaltools/replace_attribute_in_las.py,sha256=po1F-fi8s7iilqKWaryW4JRbsmdMOUe0yGvG3AEKxtk,4771
13
15
  pdaltools/standardize_format.py,sha256=Z09yhY_dRaX0uNO0K_Ml5ZD3XpVDv4Q2gIyZHXaplAQ,4849
14
16
  pdaltools/unlock_file.py,sha256=G2odk0cpp_X9r49Y90oK88v3qlihaMfg6acwmWqblik,1958
15
- ign_pdal_tools-1.11.1.dist-info/METADATA,sha256=JnMi78wrNuEEwzqfP9ql8AcyBVRZJmazi-fmHUHuKeA,5778
16
- ign_pdal_tools-1.11.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
17
- ign_pdal_tools-1.11.1.dist-info/top_level.txt,sha256=KvGW0ZzqQbhCKzB5_Tp_buWMZyIgiO2M2krWF_ecOZc,10
18
- ign_pdal_tools-1.11.1.dist-info/RECORD,,
17
+ ign_pdal_tools-1.12.0.dist-info/METADATA,sha256=UAKzHKeQ_jlZB_uwlRWWfeV2vJO1HVEXvIfMu7om554,5778
18
+ ign_pdal_tools-1.12.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
19
+ ign_pdal_tools-1.12.0.dist-info/top_level.txt,sha256=KvGW0ZzqQbhCKzB5_Tp_buWMZyIgiO2M2krWF_ecOZc,10
20
+ ign_pdal_tools-1.12.0.dist-info/RECORD,,
pdaltools/_version.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "1.11.1"
1
+ __version__ = "1.12.0"
2
2
 
3
3
 
4
4
  if __name__ == "__main__":
@@ -1,18 +1,15 @@
1
1
  import argparse
2
- from shutil import copy2
3
2
  import tempfile
3
+ from shutil import copy2
4
4
 
5
5
  import geopandas as gpd
6
6
  import laspy
7
7
  import numpy as np
8
- from pyproj import CRS
9
- from pyproj.exceptions import CRSError
8
+ import pdal
10
9
  from shapely.geometry import MultiPoint, Point, box
11
10
 
12
11
  from pdaltools.las_info import get_epsg_from_las, get_tile_bbox
13
12
 
14
- import pdal
15
-
16
13
 
17
14
  def parse_args(argv=None):
18
15
  parser = argparse.ArgumentParser("Add points from GeoJSON in LIDAR tile")
@@ -223,6 +220,9 @@ def generate_3d_points_from_lines(
223
220
  and Z coordinates are not available in the geometry.
224
221
  """
225
222
  # Check if altitude_column is provided and exists in the GeoDataFrame
223
+ if lines_gdf.empty:
224
+ return lines_gdf
225
+
226
226
  if altitude_column and (altitude_column not in lines_gdf.columns):
227
227
  raise ValueError("altitude_column must exist in the GeoDataFrame if provided.")
228
228
 
@@ -0,0 +1,146 @@
1
+ import numpy as np
2
+ import laspy
3
+ from pathlib import Path
4
+ import sys
5
+ import argparse
6
+ import pdal
7
+ from pyproj import CRS
8
+ from typing import List, Tuple, Union
9
+
10
+ def create_random_laz(output_file: str, point_format: int = 3, num_points: int = 100, crs: int = 2154,
11
+ center: Tuple[float, float] = (650000, 6810000),
12
+ extra_dims: List[Tuple[str, str]] = [],
13
+ ):
14
+ """
15
+ Create a test LAZ file with EPSG code and additional dimensions.
16
+
17
+ Args:
18
+ output_file: Path to save the LAZ file
19
+ point_format: Point format of the LAZ file (default: 3)
20
+ num_points: Number of points to generate
21
+ crs: EPSG code of the CRS (default: 2154)
22
+ center: Tuple of floats (x, y) of the center of the area to generate points in (default: (650000, 6810000) ; around Paris)
23
+ extra_dims: List of tuples (dimension_name, dimension_type) where type can be:
24
+ 'float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'
25
+ """
26
+
27
+ # Create a new point cloud
28
+ header = laspy.LasHeader(point_format=point_format, version="1.4")
29
+
30
+ # Map string types to numpy types
31
+ type_mapping = {
32
+ 'float32': np.float32,
33
+ 'float64': np.float64,
34
+ 'int8': np.int8,
35
+ 'int16': np.int16,
36
+ 'int32': np.int32,
37
+ 'int64': np.int64,
38
+ 'uint8': np.uint8,
39
+ 'uint16': np.uint16,
40
+ 'uint32': np.uint32,
41
+ 'uint64': np.uint64,
42
+ }
43
+
44
+ for dim_name, dim_type in extra_dims:
45
+ if dim_type not in type_mapping:
46
+ raise ValueError(f"Unsupported dimension type: {dim_type}. Supported types: {list(type_mapping.keys())}")
47
+
48
+ numpy_type = type_mapping[dim_type]
49
+ header.add_extra_dim(laspy.ExtraBytesParams(name=dim_name, type=numpy_type))
50
+
51
+ # Create point cloud
52
+ las = laspy.LasData(header)
53
+ las.header.add_crs(CRS.from_string(f"epsg:{crs}"))
54
+
55
+ # Generate random points in a small area
56
+ las.x = np.random.uniform(center[0] - 1000, center[0] + 1000, num_points)
57
+ las.y = np.random.uniform(center[1] - 1000, center[1] + 1000, num_points)
58
+ las.z = np.random.uniform(0, 200, num_points)
59
+
60
+ # Generate random intensity values
61
+ las.intensity = np.random.randint(0, 255, num_points)
62
+
63
+ # Generate random classification values
64
+ # 66 is the max value for classification of IGN LidarHD
65
+ # cf. https://geoservices.ign.fr/sites/default/files/2022-05/DT_LiDAR_HD_1-0.pdf
66
+ if point_format > 3:
67
+ num_classifications = 66
68
+ else:
69
+ num_classifications = 10
70
+ las.classification = np.random.randint(0, num_classifications, num_points)
71
+
72
+ # Generate random values for each extra dimension
73
+ for dim_name, dim_type in extra_dims:
74
+ numpy_type = type_mapping[dim_type]
75
+
76
+ # Generate appropriate random values based on the type
77
+ if numpy_type in [np.float32, np.float64]:
78
+ las[dim_name] = np.random.uniform(0, 10, num_points).astype(numpy_type)
79
+ elif numpy_type in [np.int8, np.int16, np.int32, np.int64]:
80
+ las[dim_name] = np.random.randint(-100, 100, num_points).astype(numpy_type)
81
+ elif numpy_type in [np.uint8, np.uint16, np.uint32, np.uint64]:
82
+ las[dim_name] = np.random.randint(0, 100, num_points).astype(numpy_type)
83
+
84
+ # Write to file
85
+ las.write(output_file)
86
+ dimensions = list(las.point_format.dimension_names)
87
+ return {
88
+ "output_file": output_file,
89
+ "num_points": num_points,
90
+ "dimensions": dimensions,
91
+ }
92
+
93
+
94
+ def test_output_file(result : dict, output_file: str):
95
+
96
+ # Validate output file path
97
+ output_path = Path(output_file)
98
+ if not output_path.exists():
99
+ raise ValueError(f"Error: Output file {output_file} does not exist")
100
+
101
+ # Print results
102
+ print(f"Successfully created test LAZ file at {result['output_file']}")
103
+ print(f"Number of points: {result['num_points']}")
104
+ print(f"Dimensions available: {result['dimensions']}")
105
+
106
+ # Print available dimensions using PDAL
107
+ pipeline = pdal.Pipeline() | pdal.Reader.las(result['output_file'])
108
+ pipeline.execute()
109
+ points = pipeline.arrays[0]
110
+ dimensions = list(points.dtype.fields.keys())
111
+ print("\nAvailable dimensions in input file:")
112
+ for dim in dimensions:
113
+ print(f"- {dim}")
114
+
115
+
116
+ def parse_args():
117
+ # Parse arguments (assuming argparse is used)
118
+ parser = argparse.ArgumentParser(description="Create a random LAZ file.")
119
+ parser.add_argument("--output_file", type=str, help="Path to save the LAZ file")
120
+ parser.add_argument("--point_format", type=int, default=3, help="Point format of the LAZ file")
121
+ parser.add_argument("--num_points", type=int, default=100, help="Number of points to generate")
122
+ parser.add_argument("--extra_dims", type=str, nargs="*", default=[], help="Extra dimensions in the format name:type")
123
+ parser.add_argument("--crs", type=int, default=2154, help="Projection code")
124
+ parser.add_argument("--center", type=str, default="650000,6810000", help="Center of the area to generate points in")
125
+ return parser.parse_args()
126
+
127
+
128
+ def main():
129
+
130
+ # Parse arguments
131
+ args = parse_args()
132
+
133
+ # Parse extra dimensions
134
+ extra_dims = [tuple(dim.split(":")) for dim in args.extra_dims]
135
+
136
+ # Parse center
137
+ center = tuple(map(float, args.center.split(",")))
138
+
139
+ # Call create_random_laz
140
+ result = create_random_laz(args.output_file, args.point_format, args.num_points, args.crs, center, extra_dims)
141
+
142
+ # Test output file
143
+ test_output_file(result, args.output_file)
144
+
145
+ if __name__ == "__main__":
146
+ main()
@@ -0,0 +1,105 @@
1
+ import laspy
2
+ from pathlib import Path
3
+ import numpy as np
4
+ import argparse
5
+
6
+ def compare_las_dimensions(file1: Path, file2: Path, dimensions: list = None) -> bool:
7
+ """
8
+ Compare specified dimensions between two LAS files.
9
+ If no dimensions are specified, compares all available dimensions.
10
+ Sorts points by x,y,z,gps_time coordinates before comparison to ensure point order consistency.
11
+
12
+ Args:
13
+ file1: Path to the first LAS file
14
+ file2: Path to the second LAS file
15
+ dimensions: List of dimension names to compare (optional)
16
+
17
+ Returns:
18
+ bool: True if all specified dimensions are identical, False otherwise
19
+ """
20
+ try:
21
+ # Read both LAS files
22
+ las1 = laspy.read(file1)
23
+ las2 = laspy.read(file2)
24
+
25
+ # Check if files have the same number of points
26
+ if len(las1) != len(las2):
27
+ print(f"Files have different number of points: {len(las1)} vs {len(las2)}")
28
+ return False
29
+
30
+ # Sort points by x,y,z,gps_time coordinates
31
+ # Create sorting indices
32
+ sort_idx1 = np.lexsort((las1.z, las1.y, las1.x, las1.gps_time))
33
+ sort_idx2 = np.lexsort((las2.z, las2.y, las2.x, las2.gps_time))
34
+
35
+ # If no dimensions specified, compare all dimensions
36
+ dimensions_las1 = sorted(las1.point_format.dimension_names)
37
+ dimensions_las2 = sorted(las2.point_format.dimension_names)
38
+
39
+ if dimensions is None:
40
+ if dimensions_las1 != dimensions_las2:
41
+ print("Files have different dimensions")
42
+ return False
43
+ dimensions = dimensions_las1
44
+ else:
45
+ for dim in dimensions:
46
+ if dim not in dimensions_las1 or dim not in dimensions_las2:
47
+ print(f"Dimension '{dim}' is not found in one or both files. Available dimensions: {las1.point_format.dimension_names}")
48
+ return False
49
+
50
+ # Compare each dimension
51
+ for dim in dimensions:
52
+ try:
53
+ # Get sorted dimension arrays
54
+ dim1 = np.array(las1[dim])[sort_idx1]
55
+ dim2 = np.array(las2[dim])[sort_idx2]
56
+
57
+ # Compare dimensions
58
+ if not np.array_equal(dim1, dim2):
59
+ # Find differences
60
+ diff_indices = np.where(dim1 != dim2)[0]
61
+ print(f"Found {len(diff_indices)} points with different {dim}:")
62
+ for idx in diff_indices[:10]: # Show first 10 differences
63
+ print(f"Point {idx}: file1={dim1[idx]}, file2={dim2[idx]}")
64
+ if len(diff_indices) > 10:
65
+ print(f"... and {len(diff_indices) - 10} more differences")
66
+ return False
67
+
68
+ except KeyError:
69
+ print(f"Dimension '{dim}' not found in one or both files")
70
+ return False
71
+
72
+ return True
73
+
74
+ except laspy.errors.LaspyException as e:
75
+ print(f"LAS file error: {str(e)}")
76
+ return False
77
+ except FileNotFoundError as e:
78
+ print(f"File not found: {str(e)}")
79
+ return False
80
+ except ValueError as e:
81
+ print(f"Value error: {str(e)}")
82
+ return False
83
+
84
+ # Update main function to use the new compare function
85
+ def main():
86
+ parser = argparse.ArgumentParser(description='Compare dimensions between two LAS files')
87
+ parser.add_argument('file1', type=str, help='Path to first LAS file')
88
+ parser.add_argument('file2', type=str, help='Path to second LAS file')
89
+ parser.add_argument('--dimensions', nargs='*', help='List of dimensions to compare. If not specified, compares all dimensions.')
90
+
91
+ args = parser.parse_args()
92
+
93
+ file1 = Path(args.file1)
94
+ file2 = Path(args.file2)
95
+
96
+ if not file1.exists() or not file2.exists():
97
+ print("Error: One or both files do not exist")
98
+ exit(1)
99
+
100
+ result = compare_las_dimensions(file1, file2, args.dimensions)
101
+ print(f"Dimensions comparison result: {'identical' if result else 'different'}")
102
+ return result
103
+
104
+ if __name__ == "__main__":
105
+ main()