icsDataValidation 1.0.415__py3-none-any.whl → 1.0.419__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,7 +4,7 @@ import datetime
4
4
  import numpy as np
5
5
 
6
6
  from pandas._testing import assert_frame_equal
7
- from decimal import Decimal
7
+ from decimal import Decimal, InvalidOperation, getcontext
8
8
 
9
9
  from icsDataValidation.utils.logger_util import configure_dev_ops_logger
10
10
  from icsDataValidation.utils.pandas_util import get_diff_dataframes, get_diff_dict_from_diff_dataframes
@@ -166,16 +166,31 @@ class ComparisonService(TestingToolParams):
166
166
  del trgt_columns_aggregate['TESTATM_ERRORS']
167
167
 
168
168
  if self.result_params.src_row_count != 0 and self.result_params.trgt_row_count != 0:
169
- aggregation_differences_trgt_minus_src_not_boolean = {
170
- k: round(Decimal(trgt_columns_aggregate[k][1])
171
- - Decimal(src_columns_aggregate[k][1]), self.numeric_scale)
172
- for k in src_columns_aggregate.keys()
173
- if k in trgt_columns_aggregate
174
- and str(src_columns_aggregate[k][1]) != str(trgt_columns_aggregate[k][1])
175
- and src_columns_aggregate[k][1] != trgt_columns_aggregate[k][1]
176
- and src_columns_aggregate[k][0].upper() != 'AGGREGATEBOOLEAN'
177
- and trgt_columns_aggregate[k][0].upper() != 'AGGREGATEBOOLEAN'
178
- }
169
+ try:
170
+ aggregation_differences_trgt_minus_src_not_boolean = {
171
+ k: round(Decimal(trgt_columns_aggregate[k][1])
172
+ - Decimal(src_columns_aggregate[k][1]), self.numeric_scale)
173
+ for k in src_columns_aggregate.keys()
174
+ if k in trgt_columns_aggregate
175
+ and str(src_columns_aggregate[k][1]) != str(trgt_columns_aggregate[k][1])
176
+ and src_columns_aggregate[k][1] != trgt_columns_aggregate[k][1]
177
+ and src_columns_aggregate[k][0].upper() != 'AGGREGATEBOOLEAN'
178
+ and trgt_columns_aggregate[k][0].upper() != 'AGGREGATEBOOLEAN'
179
+ }
180
+ except InvalidOperation as e:
181
+ getcontext().prec = 100 # sets the precision of Decimal to a higher value - due to the limitations of the decimal module when handling such large numbers with high precision
182
+ aggregation_differences_trgt_minus_src_not_boolean = {
183
+ k: round(Decimal(trgt_columns_aggregate[k][1])
184
+ - Decimal(src_columns_aggregate[k][1]), self.numeric_scale)
185
+ for k in src_columns_aggregate.keys()
186
+ if k in trgt_columns_aggregate
187
+ and str(src_columns_aggregate[k][1]) != str(trgt_columns_aggregate[k][1])
188
+ and src_columns_aggregate[k][1] != trgt_columns_aggregate[k][1]
189
+ and src_columns_aggregate[k][0].upper() != 'AGGREGATEBOOLEAN'
190
+ and trgt_columns_aggregate[k][0].upper() != 'AGGREGATEBOOLEAN'
191
+ }
192
+
193
+
179
194
  aggregation_differences_trgt_minus_src_boolean = {
180
195
  k: str(
181
196
  int(trgt_columns_aggregate[k][1].split('_',1)[0])
@@ -0,0 +1,20 @@
1
+ Metadata-Version: 2.4
2
+ Name: icsDataValidation
3
+ Version: 1.0.419
4
+ Summary: Add your description here
5
+ Author-email: initions <ICSMC_EXT_PYPIORG@accenture.com>
6
+ License: MIT
7
+ Requires-Python: >=3.11
8
+ Description-Content-Type: text/markdown
9
+ Requires-Dist: azure-storage-blob==12.13.1
10
+ Requires-Dist: boto3==1.26.154
11
+ Requires-Dist: cloe-util-snowflake-connector==1.0.5
12
+ Requires-Dist: databricks-sdk==0.29.0
13
+ Requires-Dist: databricks-sql-connector==3.0.1
14
+ Requires-Dist: numpy==1.26.3
15
+ Requires-Dist: oracledb==2.5.0
16
+ Requires-Dist: pandas==2.2.2
17
+ Requires-Dist: pyexasol==0.24.0
18
+ Requires-Dist: pyodbc
19
+ Requires-Dist: python-dotenv>=1.0.1
20
+ Requires-Dist: teradatasql==17.20.0.10
@@ -16,7 +16,7 @@ icsDataValidation/input_parameters/testing_tool_params.py,sha256=trVZmxd2hsJRBWg
16
16
  icsDataValidation/output_parameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  icsDataValidation/output_parameters/result_params.py,sha256=5Mk9L9zWaxUqcKwLZQ539lVUp0b0s-YUmSA3PBgbqfs,2833
18
18
  icsDataValidation/services/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
- icsDataValidation/services/comparison_service.py,sha256=CPTVPxd1VKSJRBy4gsne-hrlWvf8UAbPfWn1XD-rMNQ,43448
19
+ icsDataValidation/services/comparison_service.py,sha256=xd3FuiJ9WN37pPTlEOzlVlq12_mjY6ny26vnYi-OhCw,44992
20
20
  icsDataValidation/services/initialization_service.py,sha256=AHbJrq_LjMPFoeOJC2pi2ZZ1xkL8njSZn38psc3do60,6687
21
21
  icsDataValidation/services/result_service.py,sha256=edD6aejIi5P7qDNHKnN46KrN5tfzwqnw5TB35SvFAWU,28396
22
22
  icsDataValidation/services/system_service.py,sha256=GErl_Zx_DaajXTTyfJJ5_xqpd2nLnfnRHcPDa_OVF58,3518
@@ -36,7 +36,7 @@ icsDataValidation/utils/logger_util.py,sha256=xS48_FFMot_hyQgJY8DUeRTn5jpdvRt5QI
36
36
  icsDataValidation/utils/pandas_util.py,sha256=D_g7Xw7BIS2E-1ZhJIvp62K5xuKjIkj-7TxH4HN_8SI,6505
37
37
  icsDataValidation/utils/parallelization_util.py,sha256=6P0YcQLmunW_fHR4f5-kdncZbOlxxqKyk6ZAFQQEd2k,2088
38
38
  icsDataValidation/utils/sql_util.py,sha256=0c-BInElSsRmXUedfLP_h9Wsiscv9aic7IIc5f15Uzo,396
39
- icsdatavalidation-1.0.415.dist-info/METADATA,sha256=__Y5L82M3S2KEC1JQphdG8bkfNJxEJGMq1NgLHWLjPc,24619
40
- icsdatavalidation-1.0.415.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
41
- icsdatavalidation-1.0.415.dist-info/top_level.txt,sha256=BqWUGJb4J7ZybpDMeuGHxEHGHwXXJEIURd9pBybHzTM,18
42
- icsdatavalidation-1.0.415.dist-info/RECORD,,
39
+ icsdatavalidation-1.0.419.dist-info/METADATA,sha256=DFfV06xG1WzDcBigFRlfcKjEVrc1TV9ucLHpNPtDcfg,661
40
+ icsdatavalidation-1.0.419.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
41
+ icsdatavalidation-1.0.419.dist-info/top_level.txt,sha256=BqWUGJb4J7ZybpDMeuGHxEHGHwXXJEIURd9pBybHzTM,18
42
+ icsdatavalidation-1.0.419.dist-info/RECORD,,
@@ -1,298 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: icsDataValidation
3
- Version: 1.0.415
4
- Summary: Add your description here
5
- Author-email: initions <ICSMC_EXT_PYPIORG@accenture.com>
6
- License: MIT
7
- Requires-Python: >=3.11
8
- Description-Content-Type: text/markdown
9
- Requires-Dist: azure-storage-blob==12.13.1
10
- Requires-Dist: boto3==1.26.154
11
- Requires-Dist: cloe-util-snowflake-connector==1.0.5
12
- Requires-Dist: databricks-sdk==0.29.0
13
- Requires-Dist: databricks-sql-connector==3.0.1
14
- Requires-Dist: numpy==1.26.3
15
- Requires-Dist: oracledb==2.5.0
16
- Requires-Dist: pandas==2.2.2
17
- Requires-Dist: pyexasol==0.24.0
18
- Requires-Dist: pyodbc
19
- Requires-Dist: python-dotenv>=1.0.1
20
- Requires-Dist: teradatasql==17.20.0.10
21
-
22
- # icsDV - initions Data Validation Tool
23
-
24
- ## Introduction
25
-
26
- The icsDataValidation tool identifies data mismatches between two databases.
27
- The functionalities are specifically geared to support migration projects.
28
- It helps to find data issues in tables and views in comparison of a source and a target system.
29
-
30
- ### What is "generic" about the tool?
31
-
32
- The icsDataValidation tool (icsDV) is in particular structered in a way that it is easily expandable.
33
- The main code is used by all different database options.
34
- Specifics for each supported database are implemented in a database service per database.
35
-
36
- The different database services are very similar.
37
- They hold the same methods with the same input and output parameters.
38
- Each method is aligned with the syntax and the settings of the database it is created for.
39
- Each core implementation includes connections setup, object comparison functionality and the result preparation.
40
-
41
- ### Supported Databases
42
-
43
- The icsDV supports comparisons between the following databases:
44
-
45
- - Snowflake
46
- - Teradata
47
- - Azure SQL Server
48
- - Exasol
49
- - Oracle
50
- - Databricks with and without Unity Catalog
51
-
52
- Comparison results can be written to either Snowflake or Databricks.
53
-
54
- ### Features
55
-
56
- The key features of the tool are:
57
-
58
- - Comparison of tables and views between a source and a target system.
59
- - Pipeline integration in Azure DevOps or GitLab
60
- - Multiple verification/comparison steps:
61
- - Row count comparison
62
- - Column names comparison
63
- - Aggregation comparison (depending on data type)
64
- - "group by" comparison
65
- - Pandas DataFrame comparison (with a threshold for the size of the object)
66
- - Pandas DataFrame sample comparison (with a random sample of the object)
67
- - Detailed representation of the comparison result
68
- - "high-level" result (for each pipeline/execution)
69
- - "object-level" result (for each table/view)
70
- - "column-level" result (for each column)
71
- - Parallelization for performance enhancement of the comparison of a large number of objects
72
- - Input testsets (white-listing of objects)
73
- - Object filter (black-listing of objects)
74
- - Object mappings between the source and the target system
75
- - Comparison result saved and displayed in multiple instances
76
- - saved as JSON files in the repository
77
- - export to result tables in the target system (Snowflake or Databricks)
78
- - export to Azure Blob Storage or AWS S3 Bucket
79
-
80
- ### Repository Structure
81
-
82
- The repository is structured in the following sections:
83
-
84
- - **icsDataValidation**
85
- > This is where all code files are stored.
86
-
87
- - **icsDataValidation/main.py**
88
- > Entry point for python.
89
-
90
- - **icsDataValidation/core**
91
- > Main code files for the parts independent on the source and target system.
92
-
93
- - **icsDataValidation/services/database_services**
94
- > Database services for all supported systems can be found here.
95
- Each file contains a class that is identically structured in comparison to the other database service classes.
96
- Each database service class contains methods to query metadata, create aggregations, and retrieve data for the comparison step.
97
-
98
- - **icsDataValidation/connection_setups**
99
- > The connection setups are database dependent.
100
- They define how the credentials for the database connections are retrieved.
101
-
102
- - **examples/comparison_results**
103
- > The comparison results are saved here.
104
- One JSON file with all results is saved for each execution/pipeline run.
105
- Additionally there are live comparison results saved for each compared object as a failsafe.
106
-
107
- - **examples**
108
- > This folder contains all files defining a specific validation setup.
109
- - A file named `migration_config.json` contains configurations about the source system, the target system and the mapping of objects between both. It contains the blacklists and "group by" aggregation settings.
110
- - A file named `ics_data_validation_config.json` specifies the source system, the target system and the results system. Most importantly, this includes the names of the results tables and the connection configurations (Server, Port, Secrets) of source and target system.
111
- - A file named `manual_execution_params.py` is only relevant for local execution of the code. It contains settings which would otherwise be defined in the pipeline setup, i.e. limits on the size of objects to compare and the numeric precision.
112
- - The folder `testsets` contains JSON files specifying whitelists of objects to compare.
113
-
114
- For all the files here, empty `*.template.*` files are available and may serve as a starting point.
115
- This repo stores only template files.
116
- The actual files used for each setup should not be committed here.
117
- They are stored in [a separate repository.](https://dev.azure.com/initions-consulting/icsDataValidation/_git/icsDataValidation%20-%20workflow%20demo).
118
-
119
- - **examples/pipeline**
120
- > Files defining the pipelines that execute the icsDV are stored here. For example, YML files for Azure DevOps pipelines.
121
-
122
- ## icsDV - Execution Manual
123
-
124
- ## icsDV - Input Parameters
125
-
126
- There are four types of input parameters:
127
-
128
- 1. Pipeline Parameters - which are defined as input parameters of a pipeline (Azure DevOps Pipeline or Gitlab Pipeline).
129
- 2. Manual Execution Parameters - defined in the code (testing_tool.py).
130
- They correspond to the Pipeline Parameters and are used when executing the code directly without a pipeline instead of the Pipeline Parameters.
131
- 3. Global Parameters - directly defined in the TestingToolParams class. They are used in pipeline runs and for manual executions.
132
- 4. Environmental Parameters - Stored either in Azure DevOps in a variable group, in Gitlab, or, for manual executions, in a `*.env` file in a location that can be specified in the `manual_execution_params.py`.
133
-
134
- Additionally the parameters can be categorized into 3 groups:
135
-
136
- 1. Setup Parameters - these are parameters which are usually just set once when setting up the icsDV.
137
- 2. Configuration Parameters - are used to configure the general settings but can be adjusted to the conditions of the workload on the fly.
138
- 3. Execution Parameters - are set individually for each execution of the icsDV, e.g. the selection of objects to be tested.
139
-
140
- ### Setup Parameters
141
-
142
- Stored in `ics_data_validation_config.json`:
143
-
144
- | Parameter | Description | Input Type |
145
- |---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
146
- | source_system_selection | Name of the source system as defined in the database_config.json as a key. | Pipeline Parameter or Manual Execution Parameter |
147
- | target_system_selection | Name of the target system as defined in the database_config.json as a key. | Pipeline Parameter or Manual Execution Parameter |
148
- | result_system_selection | Name of the result system as defined in the database_config.json as a key. | Pipeline Parameter or Manual Execution Parameter |
149
- | azure_devops_pipeline | Azure DevOps Pipeline support. Set to "True" to push the changes of a run to the GIT repository. | Global Parameter - TestingToolParams |
150
- | gitlab_pipeline | Gitlab Pipeline support. Set to "True" to push the changes of a run to the GIT repository. | Global Parameter - TestingToolParams |
151
- | result_database_name | Name of the database or catalog the results are written to | Global Parameter - TestingToolParams |
152
- | result_schema_name | Name of the schema the results are written to | Global Parameter - TestingToolParams |
153
- | result_table_highlevel_name | Name of the high-level results table | Global Parameter - TestingToolParams |
154
- | result_table_objectlevel_name | Name of the object-level results table | Global Parameter - TestingToolParams |
155
- | result_table_columnlevel_name | Name of the column-level results table | Global Parameter - TestingToolParams |
156
- | result_meta_data_schema_name | Name of the schema the full results are written to | Global Parameter - TestingToolParams |
157
- | result_table_name | Name of the table the full results are written to | Global Parameter - TestingToolParams |
158
- | result_live_table_name | Name of the table the live results are written to | Global Parameter - TestingToolParams |
159
- | results_folder_name | Folder that in which the results are stored in JSON format. Default: `examples/comparison_results/` | Global Parameter - TestingToolParams |
160
- | remaining_mapping_objects_folder_name | Output folder that holds information about source system objects which are not covered by the mapping and are therefor not included in the comparison. Default: `examples/remaining_mapping_objects/` | Global Parameter - TestingToolParams |
161
- | testset_folder_name | Folder that holds the test set files in JSON format. Default: `examples/testsets/` | Global Parameter - TestingToolParams |
162
- | stage_schema | Name of the Snowflake Schema where the stage is created to upload the comparison results to Snowflake. Only needed if the `upload_result_to_result_database` functionality is used with Snowflake as target system. | Global Parameter - TestingToolParams |
163
- | stage_name_prefix | Prefix of the name of the Snowflake Stage which is used to upload the comparison results to Snowflake. The name is complemented by a run_guid which is a unique uuid for each icsDV execution. Only needed if the `upload_result_to_result_database` functionality is used. | Global Parameter - TestingToolParams |
164
- | container_name | Name of the Azure Storage Container to upload the comparison results into the blob storage. Note: Only needed if the `upload_result_to_blob` functionality is used. | Global Parameter - TestingToolParams |
165
- | bucket_name | Name of the AWS S3 Bucket to upload the comparison results into the AWS. Note: Only needed if the `upload_result_to_bucket` functionality is used. | Global Parameter - TestingToolParams |
166
-
167
- ### Configuration Parameters
168
-
169
- Stored in `manual_execution_params.py`:
170
-
171
- | Parameter | Description | Input Type |
172
- |----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
173
- | ENV_FILEPATH | Absolute path to the `*.env` file containing secrets, passwords and tokens. | Pipeline Parameter or Manual Execution Parameters |
174
- | UPLOAD_RESULT_TO_BLOB | Set to "True" to upload the comparison results to an Azure Blob Storage. An `azure_storage_connection_string` is needed if set to "True". | Pipeline Parameter or Manual Execution Parameters |
175
- | UPLOAD_RESULT_TO_BUCKET | Set to "True" to upload the comparison results to an AWS S3 Bucket. An `aws_bucket_access_key` and an `aws_bucket_secret_key` is needed if set to "True". | Pipeline Parameter or Manual Execution Parameter |
176
- | UPLOAD_RESULT_TO_RESULT_DATABASE | Set to "True" to upload the comparison results to Snowflake or Databricks. A `result_system_selection` is needed if set to "True". | Pipeline Parameter or Manual Execution Parameter |
177
- | MAX_OBJECT_SIZE | Limits Pandas comparison to objects of a size smaller than `MAX_OBJECT_SIZE` bytes. Data type is String. Default: `str(-1)`, no limit. | Pipeline Parameter or Manual Execution Parameter |
178
- | MAX_ROW_NUMBER | Limits Pandas comparison to objects with less than `MAX_ROW_NUMBER` rows. Data type is String. Default: `str(-1)`, no limit. | Pipeline Parameter or Manual Execution Parameter |
179
- | EXECUTE_GROUP_BY_COMPARISON | Set to "True" to execute group-by comparisons. See sec. "Group-By-Aggregation" for details. | Pipeline Parameter or Manual Execution Parameter |
180
- | USE_GROUP_BY_COLUMNS | Set to "True" to activate group-by columns. See sec. "Group-By-Aggregation" for details. | Pipeline Parameter or Manual Execution Parameter |
181
- | MIN_GROUP_BY_COUNT_DISTINCT | Minimum expected number of group-by counts. See sec. "Group-By-Aggregation" for details. | Pipeline Parameter or Manual Execution Parameter |
182
- | MAX_GROUP_BY_COUNT_DISTINCT | Maximum expected number of group-by counts. See sec. "Group-By-Aggregation" for details. | Pipeline Parameter or Manual Execution Parameter |
183
- | MAX_GROUP_BY_SIZE | Maximum size of the group-by query. See sec. "Group-By-Aggregation" for details. | Pipeline Parameter or Manual Execution Parameter |
184
- | NUMERIC_SCALE | Number of digits to compare. Data type is String. Default: `str(2)`, i.e. deviations below 0.01 are tolerated. | Pipeline Parameter or Manual Execution Parameter |
185
-
186
- ### Execution Parameters
187
-
188
- Stored in `manual_execution_params.py`:
189
-
190
- | Parameter | Description | Input Type |
191
- |-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
192
- | DATABASE_NAME | Filters the test set on a specific database/catalog. For no filter set "None" as a Manual Execution Parameter and leave it empty as a Pipeline Parameter. | Pipeline Parameter or Manual Execution Parameter |
193
- | SCHEMA_NAME | Filters the test set on a specific schema. For no filter set "None" as a Manual Execution Parameter and leave it empty as a Pipeline Parameter. | Pipeline Parameter or Manual Execution Parameter |
194
- | TESTSET_FILE_NAMES | File names of the test set as defined in the folder testset_folder_name (see Setup Parameters) as JSON files. | Pipeline Parameter or Manual Execution Parameter |
195
- | OBJECT_TYPE_RESTRICTION | Filters the testset to only tables (`"include_only_tables"`), only views (`"include_only_views"`) or all tables and views (`"include_all"`). | Pipeline Parameter or Manual Execution Parameter |
196
- | MAX_NUMBER_OF_THREADS | Maximum number of threads used. Values larget than the default, `str(1)`, activate parallelization. | Pipeline Parameter or Manual Execution Parameter |
197
-
198
- ## icsDV - Configuration
199
-
200
- ### Blacklists
201
-
202
- ### Whitelists (Testsets)
203
-
204
- ### Mapping
205
-
206
- ### Group-By-Aggregation
207
-
208
- The Group-By-Aggregation is a feature to pinpoint the differences in the data.
209
- It can be activiated by setting the parameter `EXECUTE_GROUP_BY_COMPARISON` to TRUE.
210
- If activated an additional comparison step is performed.
211
- Each table is queried with a group-by-statement including aggregations depending on the data type.
212
- Those aggregations are consequently compared.
213
- As a result the differences in the data can be narrowed down to certain grouping values.
214
-
215
- There are three options to define the column over which the group-by is executed.
216
-
217
- 1. "group-by-columns-per-table" defined as multiple lists for specific tables. Activated with the `USE_GROUP_BY_COLUMNS` parameter and `GROUP_BY_COLUMNS_PER_TABLE` defined in the `migration_config.json`.
218
- 2. "group-by-columns" from a predifined list for all tables by a validation. Activated with the `USE_GROUP_BY_COLUMNS` parameter and `GROUP_BY_COLUMNS` defined in the `migration_config.json`.
219
- 3. "group-by-columns" evaluated from all existing columns by a validation
220
-
221
- The validation consists of a number of tests and can be configured by a number of parameters to either easily find columns to group by over or to only select columns which add a definite value for pinpointing the differences in the data.
222
-
223
- The validation tests for the "group-by-columns" are:
224
-
225
- 1. Number of distinct values of the column is more than 1.
226
- 2. Number of distinct values of the column is less than the rowcount of the table.
227
- 3. Number of distinct values of the column exceeds the `MIN_GROUP_BY_COUNT_DISTINCT` parameter.
228
- 4. Number of distinct values of the column is below the `MAX_GROUP_BY_COUNT_DISTINCT` parameter.
229
- 5. The size of the expected result of the group-by-query is below the `MAX_GROUP_BY_SIZE` parameter.
230
- (The size is defined by "Number of distinct values" * "Number of columns")
231
-
232
- All tests are executed on source and target.
233
-
234
- > Note: The group by comparison can be activated by setting the `execute_group_by_comparison` parameter to TRUE.
235
- The `migration_config.json` has to include the follwing keys when the parameter use_group_by_columns is set to TRUE.
236
-
237
- "GROUP_BY_AGGREGATION":{
238
- "GROUP_BY_COLUMNS_PER_TABLE": {},
239
- "GROUP_BY_COLUMNS":[]
240
- }
241
- The values of those keys can be empty.
242
-
243
- ## icsDV - Comparison Results
244
-
245
- ### JSON Results
246
-
247
- - Complete Comparison Result JSONs
248
- - Live Comparison Result JSONs
249
-
250
- ### Target System Result Tables
251
-
252
- - High-Level Result
253
- - Object-Level Result
254
- - Column-Level Result
255
-
256
- ### Result Export in a File Storage
257
-
258
- ## icsDV - Setup
259
-
260
- ### Code setup
261
-
262
- - To handle the code, we recommend using VS Code.
263
- - The code is written in python. The tool is compatible with version 3.11
264
- - It is recommended to use a project-specific python environment.
265
- You can create one with `python -m venv .env` in the root folder of this repo.
266
- After creating it, you should activate it (`source .env/bin/activate`), select the python binary `.env/bin/python` therein as your python interpreter in VSC and make sure that python libraries are read from and installed to this environment, i.e. `export PYTHONPATH=$(pwd)/.env/lib/python3.8/site-packages`.
267
- - In this environment, install the packages listed in the `requirements.txt` and the `requirements-dev.txt`. i.e. run `pip install -r requirements.txt`.
268
-
269
- ### Setup for manual execution
270
-
271
- ### Setup as Azure DevOps pipeline
272
-
273
- ### Setup as GitLab pipeline
274
-
275
- ## authentication
276
-
277
- The following auth methods to snowflake are supported:
278
-
279
- - password, provided via PASSWORD_NAME
280
- - private key with/without encryption, provided via PRIVATE_KEY_NAME with/without PRIVATE_KEY_PASSPHRASE_NAME
281
- - path to private key file with/without encryption, provided via PRIVATE_KEY_FILE_PATH with/without PRIVATE_KEY_FILE_PASSWORD
282
-
283
- ## devcontainer
284
-
285
- run with uv as follows in devcontainer:
286
- ```bash
287
- uv run -s icsDataValidation/main.py
288
- ```
289
-
290
- Inside the [devcontainer config](.devcontainer/devcontainer.json) the mounts setting is used to bring a .env from the host system into the devcontainer.
291
-
292
- ```bash
293
- "mounts": [
294
- "source=/home/Documents/Generic_Testing_Tool/generic_testing_tool_password.env,target=/workspaces/icsDataValidation/examples/generic_testing_tool_password.env,type=bind"
295
- ]
296
- ```
297
-
298
- To use this feature either create the .env under the source path on your host or adjust this path to another path on the host system. The target path do no need adjustment!