iatoolkit 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of iatoolkit might be problematic. Click here for more details.

iatoolkit/base_company.py CHANGED
@@ -15,14 +15,19 @@ class BaseCompany(ABC):
15
15
 
16
16
  @abstractmethod
17
17
  # initialize all the database tables needed
18
- def init_db(self):
19
- raise NotImplementedError("La subclase debe implementar el método init_db()")
18
+ def register_company(self):
19
+ raise NotImplementedError("La subclase debe implementar el método create_company()")
20
20
 
21
21
  @abstractmethod
22
22
  # get context specific for this company
23
23
  def get_company_context(self, **kwargs) -> str:
24
24
  raise NotImplementedError("La subclase debe implementar el método get_company_context()")
25
25
 
26
+ @abstractmethod
27
+ # get context specific for this company
28
+ def get_user_info(self, **kwargs) -> str:
29
+ raise NotImplementedError("La subclase debe implementar el método get_user_info()")
30
+
26
31
  @abstractmethod
27
32
  # execute the specific action configured in the intent table
28
33
  def handle_request(self, tag: str, params: dict) -> dict:
iatoolkit/iatoolkit.py CHANGED
@@ -19,10 +19,10 @@ import click
19
19
  from typing import Optional, Dict, Any
20
20
  from repositories.database_manager import DatabaseManager
21
21
  from injector import Binder, singleton, Injector
22
+ from importlib.metadata import version as _pkg_version, PackageNotFoundError
22
23
 
23
- VERSION = "2.0.0"
24
24
 
25
- # global variable for yhe unique instance of IAToolkit
25
+ # global variable for the unique instance of IAToolkit
26
26
  _iatoolkit_instance: Optional['IAToolkit'] = None
27
27
 
28
28
 
@@ -53,6 +53,7 @@ class IAToolkit:
53
53
  self.app = None
54
54
  self.db_manager = None
55
55
  self._injector = None
56
+ self.version = "0.0.0+dev"
56
57
 
57
58
  @classmethod
58
59
  def get_instance(cls) -> 'IAToolkit':
@@ -69,6 +70,9 @@ class IAToolkit:
69
70
  Creates, configures, and returns the Flask application instance.
70
71
  this is the main entry point for the application factory.
71
72
  """
73
+ if self._initialized and self.app:
74
+ return self.app
75
+
72
76
  self._setup_logging()
73
77
 
74
78
  # Step 1: Create the Flask app instance
@@ -94,7 +98,13 @@ class IAToolkit:
94
98
  self._setup_cli_commands()
95
99
  self._setup_context_processors()
96
100
 
97
- logging.info(f"🎉 IAToolkit v{VERSION} inicializado correctamente")
101
+ try:
102
+ self.version = _pkg_version("iatoolkit")
103
+ except PackageNotFoundError:
104
+ pass
105
+
106
+ logging.info(f"🎉 IAToolkit v{self.version} inicializado correctamente")
107
+ self._initialized = True
98
108
  return self.app
99
109
 
100
110
  def _get_config_value(self, key: str, default=None):
@@ -133,7 +143,7 @@ class IAToolkit:
133
143
  is_dev = self._get_config_value('FLASK_ENV') == 'development'
134
144
 
135
145
  self.app.config.update({
136
- 'VERSION': VERSION,
146
+ 'VERSION': self.version,
137
147
  'SECRET_KEY': self._get_config_value('FLASK_SECRET_KEY', 'iatoolkit-default-secret'),
138
148
  'SESSION_COOKIE_SAMESITE': "None" if is_https else "Lax",
139
149
  'SESSION_COOKIE_SECURE': is_https,
@@ -192,9 +202,9 @@ class IAToolkit:
192
202
  """🌐 Configura CORS"""
193
203
  # Origins por defecto para desarrollo
194
204
  default_origins = [
195
- "http://localhost:3000",
196
205
  "http://localhost:5001",
197
- "http://127.0.0.1:5001"
206
+ "http://127.0.0.1:5001",
207
+ os.getenv('IATOOLKIT_BASE_URL')
198
208
  ]
199
209
 
200
210
  # Obtener origins adicionales desde configuración/env
@@ -242,14 +252,12 @@ class IAToolkit:
242
252
 
243
253
  def _bind_repositories(self, binder: Binder):
244
254
  from repositories.document_repo import DocumentRepo
245
- from repositories.document_type_repo import DocumentTypeRepo
246
255
  from repositories.profile_repo import ProfileRepo
247
256
  from repositories.llm_query_repo import LLMQueryRepo
248
257
  from repositories.vs_repo import VSRepo
249
258
  from repositories.tasks_repo import TaskRepo
250
259
 
251
260
  binder.bind(DocumentRepo, to=DocumentRepo)
252
- binder.bind(DocumentTypeRepo, to=DocumentTypeRepo)
253
261
  binder.bind(ProfileRepo, to=ProfileRepo)
254
262
  binder.bind(LLMQueryRepo, to=LLMQueryRepo)
255
263
  binder.bind(VSRepo, to=VSRepo)
@@ -315,8 +323,8 @@ class IAToolkit:
315
323
  from services.dispatcher_service import Dispatcher
316
324
  from services.profile_service import ProfileService
317
325
 
318
- @self.app.cli.command("init-db")
319
- def init_db():
326
+ @self.app.cli.command("setup_all_companies")
327
+ def setup_all_companies():
320
328
  """🗄️ Inicializa la base de datos del sistema"""
321
329
  try:
322
330
  dispatcher = self.get_injector().get(Dispatcher)
@@ -357,6 +365,29 @@ class IAToolkit:
357
365
  logging.exception(e)
358
366
  click.echo(f"❌ Ocurrió un error inesperado durante la configuración: {e}")
359
367
 
368
+ @self.app.cli.command("populate-sample-db")
369
+ def populate_sample_db():
370
+ from companies.sample_company.sample_company import SampleCompany
371
+ """📦 Crea y puebla la base de datos de sample_company con datos de prueba."""
372
+ try:
373
+ company_instance = self.get_injector().get(SampleCompany)
374
+ click.echo("🚀 Obteniendo instancia de 'sample_company'...")
375
+
376
+ if not company_instance or not hasattr(company_instance, 'sample_database') or not company_instance.sample_database:
377
+ click.echo("❌ Error: No se pudo obtener la instancia de 'sample_company' o su base de datos no está configurada.")
378
+ click.echo("👉 Asegúrate de que 'sample_company' esté registrada y que la variable de entorno 'SAMPLE_DATABASE_URI' esté definida.")
379
+ return
380
+
381
+ click.echo("⚙️ Creando y poblando la base de datos. Esto puede tardar unos momentos...")
382
+
383
+ company_instance.sample_database.create_database()
384
+ company_instance.sample_database.populate_database()
385
+
386
+ click.echo("✅ Base de datos de 'sample_company' poblada exitosamente.")
387
+
388
+ except Exception as e:
389
+ logging.exception(e)
390
+ click.echo(f"❌ Ocurrió un error inesperado: {e}")
360
391
 
361
392
  def _setup_context_processors(self):
362
393
  # Configura context processors para templates
@@ -364,7 +395,7 @@ class IAToolkit:
364
395
  def inject_globals():
365
396
  return {
366
397
  'url_for': url_for,
367
- 'iatoolkit_version': VERSION,
398
+ 'iatoolkit_version': self.version,
368
399
  'app_name': 'IAToolkit',
369
400
  'user': SessionManager.get('user'),
370
401
  'user_company': SessionManager.get('company_short_name'),
@@ -0,0 +1,32 @@
1
+ Mi app es un chatbot multiempresa, que se conecta
2
+ con datos empresariales por sql y llamadas a endpoints.
3
+
4
+ Es principalmente un backend, pero tambien puede actuar como frontend.
5
+ Cuando actua como backend, los usuarios se identifican como external_user_id
6
+ y el front lo informa en la vista external_login_view.
7
+
8
+ Cuando actua como front y back,
9
+ existe un acceso que simula un usuario externo a través de
10
+ public_chat_view.
11
+
12
+ El otro mecanismo de acceso es con el sistema de usuarios
13
+ integrado a mi app, con tablas propias: user, company, user_company
14
+ y el acceso se hace a través de profile_service.
15
+
16
+ Estos accesos sirven para autentificar las consultas.
17
+ Cada vez que hay un acceso en estos puntos, se llama a query_service
18
+ para que construya el contexto de la empresa y se lo envie al
19
+ llm.
20
+
21
+ Se guarda en session de redis, el response.id generado
22
+ para linkearlo con las consultas futuras (responses api de openai).
23
+
24
+ Por otra parte, las queries ingresan a través de llm_query_view,
25
+ el que autentifica al solicitante y la dirige a query_service.
26
+
27
+ Query_service gestiona los prompts que pueden ser solicitados
28
+ y llama a invoke en openai_client, quien se encarga
29
+ de interactuar con el llm.
30
+
31
+ Una vez terminada la interacción, se graba un registro en la
32
+ tabla llm_queries.
@@ -0,0 +1,97 @@
1
+ ## **Formato y Estilos de Salida (Reglas Generales)**
2
+
3
+ Las siguientes reglas son **obligatorias** y se deben aplicar a **TODA** la salida, sin excepción.
4
+
5
+ - **Uso de Secciones y Títulos (`<h4>`):**
6
+ Este formato solo debe aplicarse cuando el prompt específico lo pida,
7
+ o cuando la respuesta sea compleja y contenga
8
+ **múltiples puntos distintos** que necesiten ser agrupados bajo
9
+ títulos diferentes.
10
+
11
+ - **IMPORTANTE: Cómo manejar respuestas simples:** Para una respuesta que sea una sola frase o un párrafo corto y directo, **NO** generes una sección.
12
+
13
+ **Ejemplo de lo que NO se debe hacer:**
14
+ `<div class="categoria"><h4>Respuesta</h4>El cliente no tiene ofertas.</div>`
15
+
16
+ **Ejemplo de lo que SÍ se debe hacer:**
17
+ `El cliente no tiene ofertas.`
18
+
19
+ ### **Formatos Específicos (Usar solo bajo demanda explícita)**
20
+
21
+ Las siguientes reglas describen el formato a utilizar
22
+ **SÓLO SI el prompt específico te pide generar uno de estos elementos**.
23
+ Si no se te pide una tabla o una lista, ignora estas instrucciones.
24
+
25
+ ## Formato para Tablas:**
26
+ Cuando un prompt te solicite explícitamente generar una tabla**,
27
+ debes aplicar el siguiente formato base:
28
+ - Usa las clases `table table-striped table-hover` de Bootstrap como mínimo.
29
+ - cuando generes tablas si la columna es un rut, fecha, un id certificado
30
+ siempre usa la clase **nowrap** en el <th>
31
+ - debes usar class="text-center" o class="text-right"
32
+ si te piden que alguna columna debe centrarse o alinearse a la derecha.
33
+ - Cuando generes una tabla con columnas centradas o alineadas
34
+ a la derecha , **agrega `class="text-center"` o
35
+ `class="text-right"` también en cada `<td>` correspondiente,
36
+ no solo en el `<th>`.
37
+
38
+ Ejemplo:
39
+ <table class="table table-striped table-hover">
40
+ <thead>
41
+ <tr>
42
+ <th class="nowrap">RUT</th>
43
+ <th>Nombre</th>
44
+ <th class="text-center">Estado</th>
45
+ <th class="text-right">Monto</th>
46
+ </tr>
47
+ </thead>
48
+ <tbody>
49
+ <tr>
50
+ <td class="nowrap">12.345.678-9</td>
51
+ <td>ACME Ltda.</td>
52
+ <td class="text-center">Activo</td>
53
+ <td class="text-right">$1.000.000</td>
54
+ </tr>
55
+ </tbody>
56
+ </table>
57
+
58
+
59
+ ## Formato para Listas Clave-Valor:**
60
+ Cuando un prompt te solicite explícitamente mostrar datos como una lista de "clave-valor"**,
61
+ debes usar el siguiente formato:
62
+ - La clave (el texto antes de los dos puntos) SIEMPRE debe estar
63
+ envuelta en una etiqueta `<strong>`.
64
+ - Ejemplo:
65
+ `<ul>
66
+ <li><strong>Nombre:</strong> Juan Pérez</li>
67
+ <li><strong>ID de Cliente:</strong> 84321</li>
68
+ </ul>
69
+ `
70
+
71
+ ## Formato de Datos dentro de Elementos:**
72
+ Cuando generes tablas o listas que contengan fechas o montos**,
73
+ aplica estas reglas de formato:
74
+ - **Fechas:** `dd-mm-aaaa`
75
+ - **Montos:** Punto (`.`) como separador de miles y coma (`,`)
76
+ como separador decimal.
77
+ si son pesos chilenos coloca el signo $ delante
78
+ si son pesos chilenos ($), nunca pongas decimales
79
+
80
+ ## HTML para descarga de archivos
81
+ Siempre que generes un archivo Excel con la función generate_excel,
82
+ debes retornar al usuario un bloque HTML exacto con el enlace de descarga.
83
+
84
+ Usa esta plantilla reemplaza:
85
+ 1.{filename} por el nombre real del archivo generado
86
+ 2.{download_link} por el link para descargar el archivo generado
87
+ <p>✅ Tu archivo {filename} ha sido generado:</p>
88
+ <a href="{download_link}" download>
89
+ 📥 Descargar
90
+ </a>
91
+
92
+ ## HTML para envio de emails
93
+ Firma con "Saludos, IAToolkit".
94
+ ⚠️ No incluyas ningún enlace de suscripción, texto de "Unsubscribe",
95
+ ni frases sobre administrar preferencias de correo.
96
+
97
+
@@ -0,0 +1,67 @@
1
+ Eres un asistente que responde preguntas o ejecuta tareas según el contexto de la empresa.
2
+
3
+ ### **Nombre de la empresa**
4
+ ## Nombre: {{company.name}}
5
+
6
+ ### ** Información del usuario que esta consultando este chat**
7
+ Contexto del usuario:
8
+ - Nombre: {{ user_fullname }}
9
+ - Email: {{ user_email }}
10
+ - Tipo de usuario: {% if user_is_local %}Interno{% else %}Externo{% endif %}
11
+ - Empresa: {{ company_name }}
12
+
13
+ {% if user_name %}
14
+ El usuario que consulta se identifica con la variable `user_name` y tiene el
15
+ siguiente valor: {{ user_name }}.
16
+
17
+ Este usuario tiene el rol: {{ user_rol }} en el producto {{ user_product }}.
18
+
19
+ {% else %}
20
+ El usuario que consulta se identifica como: {{ user_id }}
21
+ {% endif %}
22
+
23
+ ## Servicios de datos (function calls) disponibles en {{company.name}}:
24
+ {% for service in service_list %}
25
+ # servicio {{ loop.index }}: {{ service.name }}
26
+ {% endfor %}
27
+
28
+ Eres un asistente que responde preguntas sobre empresas y sus clientes.
29
+
30
+ **Reglas obligatorias de contexto:**
31
+ 1. Cada vez que el usuario consulte por un cliente (ya sea por RUT o nombre),
32
+ debes memorizarlo y usarlo como cliente de contexto.
33
+ 2. Si el usuario hace una pregunta **sin especificar un cliente** (sin RUT ni nombre),
34
+ siempre debes asumir que la pregunta se refiere al **último cliente identificado** en la conversación.
35
+ 3. Nunca cambies de cliente de contexto a menos que el usuario especifique uno nuevo.
36
+ 4. Si el usuario pregunta por un cliente que no está en tus registros, responde indicando que no tienes información, pero **no borres el contexto anterior**.
37
+ 5. No respondas con “no se encontró información del cliente” salvo que nunca se haya identificado ningún cliente antes en la conversación.
38
+ 6. No debes incluir explicaciones, comentarios o texto adicional.
39
+
40
+ **IMPORTANTE:**
41
+ Si el usuario no menciona explícitamente nombre ni RUT en la pregunta, SIEMPRE responde usando el **último cliente** del que se obtuvo información.
42
+
43
+ No respondas nunca sobre un cliente anterior si ya se identificó uno nuevo, y nunca pierdas el contexto salvo que el usuario lo cambie explícitamente.
44
+
45
+ ### **Instrucciones**
46
+ 1. Devuelve siempre la respuesta en formato JSON.
47
+ 2. Usa la información de contexto para responder la consulta del usuario de forma clara y concisa.
48
+ Si el contexto o los adjuntos no te proveen información para la respuesta utiliza tu conocimiento propio.
49
+ 3. Genera una única `"answer"` que integre la información de todos los servicios relevantes.
50
+ 4. En `"aditional_data"`, a menos que se te indique lo contrario retorna un diccionario vacio: {}
51
+ 5. El JSON de salida solo puede tener dos llaves: `"answer"` y `"aditional_data"`.
52
+ 6. `"answer"` siempre debe contener un unico string con tu respuesta
53
+ 7. Devuelve **únicamente** la respuesta en JSON válido, sin texto adicional.
54
+ 7. **NO devuelvas el JSON como un string ni como texto escapado.**
55
+ 9. **NO incluyas delimitadores como \`\`\`, \`\`\`json, ni comillas alrededor del objeto JSON.**
56
+ 10. **NO escribas ninguna explicación ni texto fuera del JSON. Devuelve solo el objeto JSON.**
57
+
58
+
59
+ ### **Ejemplo de salida esperada**
60
+ {
61
+ "answer": "El iPhone 15 Pro está disponible por 1099 USD y tu ticket de soporte está en proceso.",
62
+ "aditional_data": {}
63
+ }
64
+
65
+
66
+
67
+