hyper-py-photometry 0.1.4__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
hyper_py/run_hyper.py CHANGED
@@ -13,8 +13,12 @@ warnings.filterwarnings("ignore", message=".*more axes \\(4\\) than the image it
13
13
  warnings.filterwarnings("ignore", message=".*Set MJD-OBS to.*")
14
14
 
15
15
  # Import the main entry point of the package
16
- from hyper_py.hyper import start_hyper
17
-
16
+ try:
17
+ from hyper_py.hyper import start_hyper
18
+ except ModuleNotFoundError:
19
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
20
+ from hyper_py.hyper import start_hyper
21
+
18
22
  # importlib.resources for packaged data (fallback to importlib_resources on older Python)
19
23
  try:
20
24
  from importlib.resources import files as ir_files
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hyper-py-photometry
3
- Version: 0.1.4
3
+ Version: 0.1.5
4
4
  Summary: HYPER: Hybrid Photometry Photometry and Extraction Routine
5
5
  Author-email: Alessio Traficante <alessio.traficante@inaf.it>
6
6
  Project-URL: Homepage, https://github.com/alessio-traficante/hyper-py
@@ -21,6 +21,7 @@ Dynamic: license-file
21
21
  # 💫 `Hyper-py`: Hybrid Photometry Photometry and Extraction Routine in Python
22
22
 
23
23
  **Authors:** Alessio Traficante; Fabrizio De Angelis; Alice Nucara; Milena Benedettini
24
+
24
25
  **Original reference:** Traficante et al. (2015), *MNRAS, 451, 3089*
25
26
 
26
27
  ---
@@ -72,7 +73,17 @@ control:
72
73
 
73
74
  If `parallel_maps` is set to `false`, the pipeline will run in serial mode.
74
75
 
76
+ ### 💡 Tips & Tricks
75
77
 
78
+ - **Create a virtual environment before installation**
79
+ For convenience, you could set up a Python virtual environment before working with the code.
80
+ <br>Eg.
81
+ ```bash
82
+ python -m venv .venv
83
+ source .venv/bin/activate # Linux / macOS
84
+ .venv\Scripts\activate # Windows
85
+ ```
86
+ P.S.: Remember to activate it every time you work with the code! :)
76
87
  ## 🛠️ Installation
77
88
  You can install and use `Hyper-py` in two different ways, depending on your needs:
78
89
 
@@ -120,12 +131,12 @@ pip install -r requirements.txt
120
131
 
121
132
  `Hyper-py` requires a configuration file named **`hyper_config.yaml`** in order to run.
122
133
 
123
- >The first time you run `Hyper-py` a new hyper_config.yaml will be created automatically in the CWD, then you must setup all paths and paramenters.<br>
134
+ >The first time you run `Hyper-py` a new hyper_config.yaml will be created automatically in the Current Working Directory (CWD), then you must setup all paths and parameters.<br>
124
135
  >If you already have a configuration file ready or you have moved the new configuration file to a different folder, provide the path as argument.
125
136
 
126
137
  If no path is provided, the application will look for it in this order:
127
- 1. Path passed as CLI argument
128
- 2. `hyper_config.yaml` in the current working directory (CWD)
138
+ 1. Path passed as Command Line Interface (CLI) argument
139
+ 2. `hyper_config.yaml` in the CWD
129
140
  3. User configuration directory
130
141
  - Linux/macOS: `~/.config/hyper-py/hyper_config.yaml`
131
142
  - Windows: `%APPDATA%\HyperPy\hyper_config.yaml`
@@ -140,7 +151,7 @@ If no path is provided, the application will look for it in this order:
140
151
  | Priority | Location | Description |
141
152
  |----------|--------------------------------------------|-----------------------------------------------------------------------------|
142
153
  | 1 | CLI argument | Path explicitly provided by the user, e.g. `hyper-py /path/to/hyper_config.yaml`. |
143
- | 2 | Current Working Directory (CWD) | Looks for `./hyper_config.yaml` in the folder where the command is executed. |
154
+ | 2 | CWD | Looks for `./hyper_config.yaml` in the folder where the command is executed. |
144
155
  | 3 | User configuration directory | - **Linux/macOS:** `~/.config/hyper-py/hyper_config.yaml`<br> - **Windows:** `%APPDATA%\HyperPy\hyper_config.yaml` |
145
156
  | 4 | Auto-generated in CWD if none is found | A new `hyper_config.yaml` is created, copied from the package template (`assets/default_config.yaml`). |
146
157
 
@@ -180,9 +191,7 @@ python -m hyper_py path/to/hyper_config.yaml
180
191
  ```
181
192
  This runs the main process using the configuration file specified.
182
193
 
183
- II) If installed via pip:
184
-
185
- Once the .whl package is installed (e.g., via pip install hyper_py-X.X.X-py3-none-any.whl), you can run it directly:
194
+ II) If installed via pip you can run it directly:
186
195
  ```bash
187
196
  hyper_py path/to/hyper_config.yaml
188
197
  ```
@@ -201,7 +210,7 @@ To run or debug the source code using Visual Studio Code:
201
210
  - Open the project folder in VS Code.
202
211
  - Make sure the Python extension is installed.
203
212
  - Press Ctrl+Shift+P (or Cmd+Shift+P on macOS) and run Python: Select Interpreter.
204
- - Choose the Hyper Conda environment (or another where the dependencies are installed).
213
+ - If you have set up an environment, choose the one where the dependencies are installed.
205
214
 
206
215
  ### 2. Run and debug the code
207
216
 
@@ -243,8 +252,8 @@ The `hyper_config.yaml` file controls all aspects of the Hyper-py pipeline. Belo
243
252
  |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
244
253
  | `paths.input.dir_maps` | Directory containing input map files. | `./maps` | REQUIRED |
245
254
  | `paths.output.dir_root` | Root directory for output data. | `./output` | REQUIRED |
246
- | `paths.output.dir_table_out`| Subdirectory of `dir_root` for photometry output tables. | `params` | REQUIRED |
247
- | `paths.output.dir_region_out`| Subdirectory of `dir_root` for region files (output). | `regions` | REQUIRED |
255
+ | `paths.output.dir_table_out`| Subdirectory of `dir_root` for photometry tables. | `params` | REQUIRED |
256
+ | `paths.output.dir_region_out`| Subdirectory of `dir_root` for region files. | `regions` | REQUIRED |
248
257
  | `paths.output.dir_log_out` | Subdirectory of `dir_root` for log files. | `logs` | REQUIRED |
249
258
 
250
259
  ### File Names
@@ -252,8 +261,8 @@ The `hyper_config.yaml` file controls all aspects of the Hyper-py pipeline. Belo
252
261
  | Entry | Description | Default | Type |
253
262
  |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
254
263
  | `files.file_map_name` | Input FITS map(s) list for analysis (in `dir_maps`). | `maps_list.txt` | REQUIRED |
255
- | `files.file_table_base` | Base filename for photometry output tables (in `dir_table_out`). | `params` | REQUIRED |
256
- | `files.file_region_base` | Base filename for output ellipse region files (in `dir_region_out`). | `region_files` | REQUIRED |
264
+ | `files.file_table_base` | Base filename for photometry tables (in `dir_table_out`). | `params` | REQUIRED |
265
+ | `files.file_region_base` | Base filename for ellipse region files (in `dir_region_out`). | `region_files` | REQUIRED |
257
266
  | `files.file_log_name` | Name of the global log file (in `dir_log_out`). | `hyper_py.log` | REQUIRED |
258
267
 
259
268
  ### Pipeline Control
@@ -288,17 +297,21 @@ The `hyper_config.yaml` file controls all aspects of the Hyper-py pipeline. Belo
288
297
  | `detection.roundlim` | Allowed source roundness range (min, max for DAOFIND). | `[-4.0, 4.0]` | ADVANCED |
289
298
  | `detection.sharplim` | Allowed source sharpness range (min, max for DAOFIND). | `[-2.0, 2.0]` | ADVANCED |
290
299
  | `detection.use_fixed_source_table`| Use external IPAC table for peak/aperture (`True`/`False`). | `False` | OPTIONAL |
291
- | `detection.fixed_source_table_path` | Path to an external IPAC table with source information (in `dir_root`). The table must have **6 columns**:
300
+ | `detection.fixed_source_table_path` | Path to an external IPAC table with source information (in `dir_root`). The table must have **6 columns**| `source_table.txt` | OPTIONAL |
301
+ | `detection.fixed_peaks` | Use fixed peaks instead of automatic (`True`/`False`). | `False` | OPTIONAL |
302
+ | `detection.xcen_fix` | Fixed peak X coordinates (deg; used if `fixed_peaks` is `True`). | `[1.0, 1.0]` | OPTIONAL |
303
+ | `detection.ycen_fix` | Fixed peak Y coordinates (deg; used if `fixed_peaks` is `True`). | `[1.0, 1.0]` | OPTIONAL |
304
+
305
+ Columns description for the external IPAC table with source information (only if detection.use_fixed_source_table is `True`):
306
+
292
307
  - **ID**: Source identifier
293
308
  - **xcen**: X coordinate (in map units, e.g. degrees or pixels)
294
309
  - **ycen**: Y coordinate (in map units, e.g. degrees or pixels)
295
- - **fwhm_1**: Major axis FWHM (arcsec)
296
- - **fwhm_2**: Minor axis FWHM (arcsec)
310
+ - **fwhm_1**: Major axis FWHM (arcsec, used as minimum radius for aperture photometry)
311
+ - **fwhm_2**: Minor axis FWHM (arcsec, used as minimum radius for aperture photometry)
297
312
  - **PA**: Position angle (degrees, East of North)
298
- The code will use only `xcen` and `ycen` if `detection.fixed_peaks = true`, only `fwhm_1`, `fwhm_2`, and `PA` if `photometry.fixed_radius = true`, or both sets of parameters if both options are enabled. | `source_table.txt` | OPTIONAL |
299
- | `detection.fixed_peaks` | Use fixed peaks instead of automatic (`True`/`False`). | `False` | OPTIONAL |
300
- | `detection.xcen_fix` | Fixed peak X coordinates (deg; used if `fixed_peaks` is `True`). | `[1.0, 1.0]` | OPTIONAL |
301
- | `detection.ycen_fix` | Fixed peak Y coordinates (deg; used if `fixed_peaks` is `True`). | `[1.0, 1.0]` | OPTIONAL |
313
+
314
+ The code will use only `xcen` and `ycen` if `detection.fixed_peaks = true`, only `fwhm_1`, `fwhm_2`, and `PA` if `photometry.fixed_radius = true`, or both sets of parameters if both options are enabled.
302
315
 
303
316
  ### Photometry Settings
304
317
 
@@ -316,32 +329,47 @@ The `hyper_config.yaml` file controls all aspects of the Hyper-py pipeline. Belo
316
329
  | Entry | Description | Default | Type |
317
330
  |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
318
331
  | `fit_options.fit_method` | Optimization algorithm for Gaussian fitting. | `"least_squares"`| ADVANCED |
319
- | `fit_options.loss` | Specifies the loss function used during Gaussian fitting optimization.
332
+ | `fit_options.loss` | Specifies the loss function used during Gaussian fitting optimization. | `"linear"` | ADVANCED |
333
+
334
+ Loss function options:
320
335
  - `"linear"`: Standard least-squares loss (minimizes squared residuals; most common for well-behaved data).
321
336
  - `"soft_l1"`: Soft L1 loss, less sensitive to outliers than linear; combines properties of L1 and L2 norms.
322
337
  - `"huber"`: Huber loss, robust to outliers; behaves like linear for small residuals and like L1 for large residuals.
323
338
  - `"cauchy"`: Cauchy loss, strongly suppresses the influence of outliers.
324
- Choose a robust loss (e.g., `"huber"` or `"cauchy"`) if your data contains significant outliers or non-Gaussian noise. | `"linear"` | ADVANCED |
339
+ Choose a robust loss (e.g., `"huber"` or `"cauchy"`) if your data contains significant outliers or non-Gaussian noise.
340
+
341
+ | Entry | Description | Default | Type |
342
+ |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
325
343
  | `fit_options.f_scale` | Relevant for `soft_l1`, `huber`, `cauchy` loss functions. | `0.1` | ADVANCED |
326
344
  | `fit_options.max_nfev` | Maximum number of function evaluations. | `50000` | ADVANCED |
327
345
  | `fit_options.xtol` | Tolerance on parameter change for convergence. | `1e-8` | ADVANCED |
328
346
  | `fit_options.ftol` | Tolerance on cost function change for convergence. | `1e-8` | ADVANCED |
329
347
  | `fit_options.gtol` | Tolerance on gradient orthogonality. | `1e-8` | ADVANCED |
330
- | `fit_options.weights` | Specifies the weighting scheme used during Gaussian fitting.
348
+ | `fit_options.weights` | Specifies the weighting scheme used during Gaussian fitting. | `"snr"` | OPTIONAL |
349
+
350
+ Weighting scheme options:
331
351
  - `"null"`: No weighting; all pixels are treated equally.
332
352
  - `"inverse_rms"`: Weights are set as the inverse of the RMS noise, giving less weight to noisier pixels.
333
353
  - `"snr"`: Weights are proportional to the signal-to-noise ratio (SNR) of each pixel.
334
354
  - `"power_snr"`: Weights are proportional to the SNR raised to a user-defined power (`fit_options.power_snr`).
335
355
  - `"map"`: Weights are set equal to the user-provided input map.
336
356
  - `"mask"`: Weights are set to zero for masked pixels and one elsewhere, effectively ignoring masked regions.
337
- Choose the scheme that best matches your data quality and analysis goals. | `"snr"` | OPTIONAL |
357
+ Choose the scheme that best matches your data quality and analysis goals.
358
+
359
+ | Entry | Description | Default | Type |
360
+ |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
338
361
  | `fit_options.power_snr` | SNR exponent for weighting (if `weights` is `"power_snr"`). | `5` | OPTIONAL |
339
362
  | `fit_options.calc_covar` | Estimate parameter covariance matrix (`True`/`False`). | `False` | ADVANCED |
340
- | `fit_options.min_method` | Criterion used to select the best fit among multiple solutions:
363
+ | `fit_options.min_method` | Criterion used to select the best fit among multiple solutions | `"nmse"` | ADVANCED |
364
+
365
+ Selection criterion to identify the best fit:
341
366
  - `"nmse"`: Normalized Mean Squared Error; selects the fit with the lowest mean squared residuals normalized by the data variance.
342
367
  - `"redchi"`: Reduced Chi-Squared; selects the fit with the lowest reduced chi-squared statistic, accounting for the number of degrees of freedom.
343
368
  - `"bic"`: Bayesian Information Criterion; selects the fit with the lowest BIC value, which penalizes model complexity to avoid overfitting.
344
- Choose the method that best matches your scientific goals and data characteristics. | `"nmse"` | ADVANCED |
369
+ Choose the method that best matches your scientific goals and data characteristics.
370
+
371
+ | Entry | Description | Default | Type |
372
+ |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
345
373
  | `fit_options.verbose` | Print full fit report (`True`/`False`). | `False` | ADVANCED |
346
374
  | `fit_options.use_l2_regularization`| Enable L2 regularization on background terms (`True`/`False`). | `True` | ADVANCED |
347
375
  | `fit_options.lambda_l2` | Regularization strength. | `1e-4` | ADVANCED |
@@ -353,7 +381,7 @@ The `hyper_config.yaml` file controls all aspects of the Hyper-py pipeline. Belo
353
381
 
354
382
  | Entry | Description | Default | Type |
355
383
  |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
356
- | `background.fit_gauss_and_bg_separately`| Estimate Gaussian and background separately (`True`/`False`). | `True` | OPTIONAL |
384
+ | `background.fit_gauss_and_bg_separately`| Estimate Gaussian and background separately (`True`/`False`). | `True` | REQUIRED |
357
385
  | `background.pol_orders_separate` | Polynomial orders for separated background subtraction. | `[0, 1, 2]` | OPTIONAL |
358
386
  | `background.fix_min_box` | Minimum box size for variable-size background fitting, expressed as a multiple of the source FWHM (half-size increment). **If set to `0`, the background is estimated over the entire map.** | `3` | OPTIONAL |
359
387
  | `background.fix_max_box` | Maximum box size (multiple of FWHMs) for background fitting. | `5` | OPTIONAL |
@@ -364,10 +392,10 @@ The `hyper_config.yaml` file controls all aspects of the Hyper-py pipeline. Belo
364
392
 
365
393
  | Entry | Description | Default | Type |
366
394
  |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
367
- | `fits_output.fits_fitting` | Save best fit model group FITS files (`True`/`False`). | `False` | OPTIONAL |
395
+ | `fits_output.fits_fitting` | Save best fit model and original group FITS files (`True`/`False`). | `False` | OPTIONAL |
368
396
  | `fits_output.fits_deblended` | Save deblended per-source FITS files (`True`/`False`). | `False` | OPTIONAL |
369
397
  | `fits_output.fits_bg_separate` | Save best fit background separated model group FITS files (`True`/`False`).| `False` | OPTIONAL |
370
- | `fits_output.fits_output_dir_fitting`| Subdirectory of `dir_root` for fitting FITS files. | `fits/fitting` | OPTIONAL |
398
+ | `fits_output.fits_output_dir_fitting`| Subdirectory of `dir_root` for best model and original FITS files. | `fits/fitting` | OPTIONAL |
371
399
  | `fits_output.fits_output_dir_deblended`| Subdirectory of `dir_root` for deblended FITS files. | `fits/deblended`| OPTIONAL |
372
400
  | `fits_output.fits_output_dir_bg_separate`| Subdirectory of `dir_root` for background FITS files. | `fits/bg_separate`| OPTIONAL |
373
401
 
@@ -377,8 +405,8 @@ The `hyper_config.yaml` file controls all aspects of the Hyper-py pipeline. Belo
377
405
  |----------------------|-----------------------------------------------------------------------------|-----------------|-----------|
378
406
  | `visualization.visualize_fitting` | Visualize final Gaussian+background fit (`True`/`False`). | `False` | OPTIONAL |
379
407
  | `visualization.visualize_deblended` | Visualize per-source blended maps (`True`/`False`). | `False` | OPTIONAL |
380
- | `visualization.visualize_bg_separate` | Visualize background model from masked fit (`True`/`False`). | `False` | OPTIONAL |
381
- | `visualization.output_dir_fitting` | Subdirectory of `dir_root` for fitting plots. | `plots/fitting` | OPTIONAL |
408
+ | `visualization.visualize_bg_separate` | Visualize background separated model (`True`/`False`). | `False` | OPTIONAL |
409
+ | `visualization.output_dir_fitting` | Subdirectory of `dir_root` for best model and original FITS plots. | `plots/fitting` | OPTIONAL |
382
410
  | `visualization.output_dir_deblended` | Subdirectory of `dir_root` for deblended plots. | `plots/deblended`| OPTIONAL |
383
411
  | `visualization.output_dir_bg_separate` | Subdirectory of `dir_root` for background plots. | `plots/bg_separate`| OPTIONAL |
384
412
 
@@ -395,7 +423,7 @@ All entries can be customized in your `hyper_config.yaml`. If an entry is omitte
395
423
  |-------------------------------|-------------|
396
424
  | `run_hyper.py` | Main launcher for multi-map analysis (parallel or serial)
397
425
  | `hyper.py` | Core logic for initializing the code run
398
- | `single_map.py` | Core logic for running detection + photometry on one map
426
+ | `single_map.py` | Core logic for running detection + photometry on each map
399
427
  | `config.py` | YAML parser with access interface
400
428
  | `logger.py` | Custom logger supporting log file + screen separation
401
429
  | `paths_io.py` | Handles file path construction for input/output files
@@ -483,12 +511,12 @@ To ensure compatibility with Hyper-py, each input FITS file (2D map or 3D datacu
483
511
  - Common values for `CTYPE1`/`CTYPE2` are `'RA---SIN'`, `'RA---TAN'`, `'DEC--SIN'`, `'DEC--TAN'`, `'GLON--CAR'`, `'GLAT--CAR'`.
484
512
  - For cubes, `CTYPE3` can be `'VRAD'` (velocity), `'VELO-LSR'`, or `'FREQ'` (frequency).
485
513
  - **Units:**
486
- - `CUNIT1`/`CUNIT2`: `'deg'` (degrees), `'arcsec'` (arcseconds)
487
- - `CUNIT3`: `'km s-1'` (velocity), `'Hz'` (frequency)
488
- - `BUNIT`: `'Jy'`, `'Jy/beam'`, `'beam-1 Jy'`, `'MJy/sr'` (must match your science case)
514
+ - `CUNIT1`/`CUNIT2`: `'deg'` (degrees), `'arcsec'` (arcseconds).
515
+ - `CUNIT3`: `'km s-1'` (velocity), `'Hz'` (frequency).
516
+ - `BUNIT`: `'Jy'`, `'Jy/beam'`, `'beam-1 Jy'`, `'MJy/sr'` (must match your science case).
489
517
  - **Beam Parameters:**
490
- - `BMAJ`, `BMIN`: Beam size in degrees (convert from arcsec if needed: 1 arcsec = 1/3600 deg)
491
- - `BPA`: Beam position angle in degrees
518
+ - `BMAJ`, `BMIN`: Beam size in degrees (convert from arcsec if needed: 1 arcsec = 1/3600 deg).
519
+ - `BPA`: Beam position angle in degrees.
492
520
  - **Other:**
493
521
  - Additional header keywords may be present, but the above are required for Hyper-py to interpret the map/cube correctly.
494
522
 
@@ -550,3 +578,25 @@ BPA = 0.0
550
578
  OBJECT = 'Datacube for Hyper-py test'
551
579
  END
552
580
  ```
581
+
582
+ ## 🔬 Test Mode
583
+
584
+ In order to quickly test the full functionality of **Hyper_py**, a dedicated **test mode** is available.
585
+
586
+ You can run the code in test mode by executing the `test_hyper.py` script located in the `test/` folder:
587
+
588
+ ```bash
589
+ python test/test_hyper.py
590
+ ```
591
+
592
+ When launched, the script will:
593
+ - Automatically generate a minimal working config.yaml file;
594
+ - Analyze two synthetic 2D maps and one synthetic datacube with 4 slices;
595
+ - Run the analysis using 2 parallel cores (if available);
596
+ - Generate all intermediate and final FITS files and diagnostic plots, including:
597
+ - Background models;
598
+ - Gaussian + background fits;
599
+ - Residual maps;
600
+ - Photometric results.
601
+
602
+ This mode is designed to validate the installation and ensure that all the core functionalities of the pipeline are working properly. It is particularly useful for new users, developers, or during CI testing.
@@ -15,14 +15,14 @@ hyper_py/logger.py,sha256=He18tjVOvG7_OVGY6262wj30HExoEa7vCFO6WziHSFk,2864
15
15
  hyper_py/map_io.py,sha256=QHYsMFOA1Jzmx-ou_CFHAdRLXl00ynf2dYK8PZGh2CQ,2363
16
16
  hyper_py/paths_io.py,sha256=fUl0GjwUZLEDXZAUlLK88DB6mBQ_il7fIa-vvKVUxRI,3770
17
17
  hyper_py/photometry.py,sha256=4oCRZy8FVjV9BZL5f85LlcNnXuNq0wgtGAm8_cL5f9w,3869
18
- hyper_py/run_hyper.py,sha256=ZQYEuvU_SFsmLn7g61a169dGS3jL-NhHHdi7jckqQ0s,5220
18
+ hyper_py/run_hyper.py,sha256=ed2n7yf8mLATWXtjPxOAs1odiBcUsDsEU4bwDiXd24w,5388
19
19
  hyper_py/single_map.py,sha256=YXlMiixK-CLfiFjmLiqP8RkKu6JkekEDjVi-3bQu05w,28831
20
20
  hyper_py/survey.py,sha256=ymOJk-H4Bf515OwSNFkmODKk7x3MteT6l51ylaYy9Cg,2807
21
21
  hyper_py/visualization.py,sha256=AJRuR_Y-_AaZ2NwX1w07lRABV0C2-w8QP1tSqs9_kvk,5662
22
22
  hyper_py/assets/default_config.yaml,sha256=64DJtYhwHX6XkbOyuGMmn51WwjK0uJpNafRe8CwkkO4,10616
23
- hyper_py_photometry-0.1.4.dist-info/licenses/LICENSE,sha256=aB7cqE2-X_8mxy-EmQuVMkKmP8DQA2BnQaqD5k5C5nE,584
24
- hyper_py_photometry-0.1.4.dist-info/METADATA,sha256=5UAU7QFSUTBQvj69foClDPRWSmeMdKSFSmprRENP-Rc,34599
25
- hyper_py_photometry-0.1.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
26
- hyper_py_photometry-0.1.4.dist-info/entry_points.txt,sha256=0AVwuatL0ri5juy_Ccgt_9Bd4V0McpOrWSSnNX8cCzs,120
27
- hyper_py_photometry-0.1.4.dist-info/top_level.txt,sha256=Pw-Iuf0SQwcibLdOwx4RkmEas3I6s0Ym_D0_oUnXEr4,9
28
- hyper_py_photometry-0.1.4.dist-info/RECORD,,
23
+ hyper_py_photometry-0.1.5.dist-info/licenses/LICENSE,sha256=aB7cqE2-X_8mxy-EmQuVMkKmP8DQA2BnQaqD5k5C5nE,584
24
+ hyper_py_photometry-0.1.5.dist-info/METADATA,sha256=iduEhNj98qoQyvPUvP3-SjRM0RFRMCLSqx3Yj3WB0aE,37007
25
+ hyper_py_photometry-0.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
26
+ hyper_py_photometry-0.1.5.dist-info/entry_points.txt,sha256=0AVwuatL0ri5juy_Ccgt_9Bd4V0McpOrWSSnNX8cCzs,120
27
+ hyper_py_photometry-0.1.5.dist-info/top_level.txt,sha256=Pw-Iuf0SQwcibLdOwx4RkmEas3I6s0Ym_D0_oUnXEr4,9
28
+ hyper_py_photometry-0.1.5.dist-info/RECORD,,