hyhound 1.0.2a1__cp39-cp39-linux_armv6l.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of hyhound might be problematic. Click here for more details.

hyhound/__init__.py ADDED
@@ -0,0 +1,8 @@
1
+ """
2
+ Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.
3
+ """
4
+
5
+ __version__ = "1.0.2a1"
6
+
7
+ from ._hyhound import * # noqa: F403
8
+ from ._hyhound import __version__ as __c_version__ # noqa: F401
hyhound/_hyhound.py ADDED
@@ -0,0 +1,14 @@
1
+ import contextlib, importlib, os, sys
2
+
3
+ _variant = os.getenv("HYHOUND_VARIANT")
4
+ if _variant is None:
5
+ _variant = "generic"
6
+ with contextlib.suppress(ModuleNotFoundError):
7
+ from ._dispatch import get_dispatch_name
8
+
9
+ _variant = get_dispatch_name()
10
+
11
+ _target_name = __name__ + "_" + _variant
12
+ _target = importlib.import_module(_target_name, package=__package__)
13
+ setattr(_target, "variant", _variant)
14
+ sys.modules[__name__] = _target
hyhound/_hyhound.pyi ADDED
@@ -0,0 +1,235 @@
1
+ from typing import Annotated, overload
2
+
3
+ import numpy
4
+ from numpy.typing import NDArray
5
+
6
+
7
+ build_time: str = '2025-10-05T22:30:09Z'
8
+
9
+ commit_hash: str = 'ab5d1ca1f14486665601ffa9462f4ff7215ae3bc'
10
+
11
+ @overload
12
+ def update_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')]) -> None:
13
+ """
14
+ Cholesky factorization update. Overwrites its arguments.
15
+
16
+ L̃L̃ᵀ + ÃÃᵀ = LLᵀ + AAᵀ
17
+
18
+ Parameters
19
+ ----------
20
+ L : (k × n), lower-trapezoidal, Fortran order
21
+ On entry, the original Cholesky factor L.
22
+ On exit, contains the updated Cholesky factor L̃.
23
+
24
+ A : (k × m), rectangular, Fortran order
25
+ On entry, the update matrix A.
26
+ On exit, contains the k-n bottom rows of the remaining update matrix Ã
27
+ (the top n rows of à are implicitly zero).
28
+ The top n rows of A are overwritten by Householder reflectors and are generally not useful.
29
+ """
30
+
31
+ @overload
32
+ def update_cholesky_inplace(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')]) -> None: ...
33
+
34
+ @overload
35
+ def downdate_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')]) -> None:
36
+ """
37
+ Cholesky factorization downdate. Overwrites its arguments.
38
+
39
+ L̃L̃ᵀ - ÃÃᵀ = LLᵀ - AAᵀ
40
+
41
+ Parameters
42
+ ----------
43
+ L : (k × n), lower-trapezoidal, Fortran order
44
+ On entry, the original Cholesky factor L.
45
+ On exit, contains the updated Cholesky factor L̃.
46
+
47
+ A : (k × m), rectangular, Fortran order
48
+ On entry, the downdate matrix A.
49
+ On exit, contains the k-n bottom rows of the remaining downdate matrix Ã
50
+ (the top n rows of à are implicitly zero).
51
+ The top n rows of A are overwritten by Householder reflectors and are generally not useful.
52
+ """
53
+
54
+ @overload
55
+ def downdate_cholesky_inplace(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')]) -> None: ...
56
+
57
+ @overload
58
+ def update_cholesky_sign_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> None:
59
+ """
60
+ Cholesky factorization update with signed columns. Overwrites its arguments.
61
+
62
+ L̃L̃ᵀ + ÃSÃᵀ = LLᵀ + ASAᵀ,
63
+ where S = np.diag(np.copysign(np.ones(m), signs)) and signs contains ±0.
64
+
65
+ Parameters
66
+ ----------
67
+ L : (k × n), lower-trapezoidal, Fortran order
68
+ On entry, the original Cholesky factor L.
69
+ On exit, contains the updated Cholesky factor L̃.
70
+
71
+ A : (k × m), rectangular, Fortran order
72
+ On entry, the update matrix A.
73
+ On exit, contains the k-n bottom rows of the remaining update matrix Ã
74
+ (the top n rows of à are implicitly zero).
75
+ The top n rows of A are overwritten by Householder reflectors and are generally not useful.
76
+
77
+ signs : m-vector
78
+ Signs that determine whether a column of A is added (+0) or removed (-0).
79
+ Values other than ±0 are not allowed.
80
+ """
81
+
82
+ @overload
83
+ def update_cholesky_sign_inplace(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> None: ...
84
+
85
+ @overload
86
+ def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> None:
87
+ """
88
+ Cholesky factorization update with diagonal scaling. Overwrites its arguments.
89
+
90
+ L̃L̃ᵀ + ÃDÃᵀ = LLᵀ + ADAᵀ,
91
+ where D = np.diag(diag).
92
+
93
+ Parameters
94
+ ----------
95
+ L : (k × n), lower-trapezoidal, Fortran order
96
+ On entry, the original Cholesky factor L.
97
+ On exit, contains the updated Cholesky factor L̃.
98
+
99
+ A : (k × m), rectangular, Fortran order
100
+ On entry, the update matrix A.
101
+ On exit, contains the k-n bottom rows of the remaining update matrix Ã
102
+ (the top n rows of à are implicitly zero).
103
+ The top n rows of A are overwritten by Householder reflectors and are generally not useful.
104
+
105
+ diag : m-vector
106
+ Scale factors corresponding to the columns of A.
107
+ """
108
+
109
+ @overload
110
+ def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> None: ...
111
+
112
+ @overload
113
+ def update_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple:
114
+ """
115
+ Cholesky factorization update. Returns updated copies.
116
+
117
+ L̃L̃ᵀ + ÃÃᵀ = LLᵀ + AAᵀ
118
+
119
+ Parameters
120
+ ----------
121
+ L : (k × n), lower-trapezoidal
122
+ The original Cholesky factor.
123
+
124
+ A : (k × m), rectangular
125
+ The update matrix.
126
+
127
+ Returns
128
+ -------
129
+ L̃ : (k × n)
130
+ The updated Cholesky factor.
131
+
132
+ A_rem : (k × m)
133
+ Contains the k-n bottom rows of the remaining update matrix Ã.
134
+ The top n rows of à are zero (not stored explicitly).
135
+ The top n rows of A_rem contain Householder reflectors and are generally not useful.
136
+ """
137
+
138
+ @overload
139
+ def update_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple: ...
140
+
141
+ @overload
142
+ def downdate_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple:
143
+ """
144
+ Cholesky factorization downdate. Returns updated copies.
145
+
146
+ L̃L̃ᵀ - ÃÃᵀ = LLᵀ - AAᵀ
147
+
148
+ Parameters
149
+ ----------
150
+ L : (k × n), lower-trapezoidal
151
+ The original Cholesky factor.
152
+
153
+ A : (k × m), rectangular
154
+ The downdate matrix.
155
+
156
+ Returns
157
+ -------
158
+ L̃ : (k × n)
159
+ The updated Cholesky factor.
160
+
161
+ A_rem : (k × m)
162
+ Contains the k-n bottom rows of the remaining downdate matrix Ã.
163
+ The top n rows of à are zero (not stored explicitly).
164
+ The top n rows of A_rem contain Householder reflectors and are generally not useful.
165
+ """
166
+
167
+ @overload
168
+ def downdate_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple: ...
169
+
170
+ @overload
171
+ def update_cholesky_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple:
172
+ """
173
+ Cholesky factorization update with signed columns. Returns updated copies.
174
+
175
+ L̃L̃ᵀ + ÃSÃᵀ = LLᵀ + ASAᵀ,
176
+ where S = np.diag(np.copysign(np.ones(m), signs)) and signs contains ±0.
177
+
178
+ Parameters
179
+ ----------
180
+ L : (k × n), lower-trapezoidal
181
+ The original Cholesky factor.
182
+
183
+ A : (k × m), rectangular
184
+ The update matrix.
185
+
186
+ signs : m-vector
187
+ Signs that determine whether a column of A is added (+0) or removed (-0).
188
+ Values other than ±0 are not allowed.
189
+
190
+ Returns
191
+ -------
192
+ L̃ : (k × n)
193
+ The updated Cholesky factor.
194
+
195
+ A_rem : (k × m)
196
+ Contains the k-n bottom rows of the remaining update matrix Ã.
197
+ The top n rows of à are zero (not stored explicitly).
198
+ The top n rows of A_rem contain Householder reflectors and are generally not useful.
199
+ """
200
+
201
+ @overload
202
+ def update_cholesky_sign(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple: ...
203
+
204
+ @overload
205
+ def update_cholesky_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple:
206
+ """
207
+ Cholesky factorization update with diagonal scaling. Returns updated copies.
208
+
209
+ L̃L̃ᵀ + ÃDÃᵀ = LLᵀ + ADAᵀ,
210
+ where D = np.diag(diag).
211
+
212
+ Parameters
213
+ ----------
214
+ L : (k × n), lower-trapezoidal
215
+ The original Cholesky factor.
216
+
217
+ A : (k × m), rectangular
218
+ The update matrix.
219
+
220
+ diag : m-vector
221
+ Scale factors corresponding to the columns of A.
222
+
223
+ Returns
224
+ -------
225
+ L̃ : (k × n)
226
+ The updated Cholesky factor.
227
+
228
+ A_rem : (k × m)
229
+ Contains the k-n bottom rows of the remaining update matrix Ã.
230
+ The top n rows of à are zero (not stored explicitly).
231
+ The top n rows of A_rem contain Householder reflectors and are generally not useful.
232
+ """
233
+
234
+ @overload
235
+ def update_cholesky_diag(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple: ...
Binary file
hyhound/py.typed ADDED
File without changes
@@ -0,0 +1,98 @@
1
+ Metadata-Version: 2.4
2
+ Name: hyhound
3
+ Version: 1.0.2a1
4
+ Summary: Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.
5
+ Keywords: linear-algebra,cholesky,update,downdate,matrix
6
+ Author-Email: Pieter P <pieter.p.dev@outlook.com>
7
+ License-Expression: LGPL-3.0-or-later
8
+ License-File: LICENSE
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: Intended Audience :: Science/Research
11
+ Classifier: Topic :: Scientific/Engineering
12
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Classifier: Programming Language :: Python :: 3.13
19
+ Classifier: Programming Language :: Python :: 3.14
20
+ Classifier: Operating System :: POSIX :: Linux
21
+ Classifier: Operating System :: Microsoft :: Windows
22
+ Classifier: Operating System :: MacOS
23
+ Classifier: Typing :: Typed
24
+ Project-URL: Documentation, https://kul-optec.github.io/hyhound
25
+ Project-URL: Source, https://github.com/kul-optec/hyhound
26
+ Project-URL: Bug Tracker, https://github.com/kul-optec/hyhound/issues
27
+ Requires-Python: >=3.9
28
+ Requires-Dist: numpy<3
29
+ Provides-Extra: test
30
+ Requires-Dist: pytest<9,>=7.2.0; extra == "test"
31
+ Description-Content-Type: text/x-rst
32
+
33
+ .. image:: https://img.shields.io/badge/arXiv-Preprint-b31b1b
34
+ :target: https://arxiv.org/abs/2503.15372v1
35
+ :alt: arXiv Preprint
36
+
37
+ .. image:: https://github.com/kul-optec/hyhound/actions/workflows/linux.yml/badge.svg
38
+ :target: https://github.com/kul-optec/hyhound/actions/workflows/linux.yml
39
+ :alt: CI: Linux
40
+
41
+ .. image:: https://img.shields.io/pypi/dm/hyhound?label=PyPI&logo=python
42
+ :target: https://pypi.org/project/hyhound
43
+ :alt: PyPI Downloads
44
+
45
+
46
+ hyhound
47
+ =======
48
+
49
+ **Hy**\perbolic **Ho**\useholder transformations for **U**\p- ‘**n**’ **D**\owndating Cholesky factorizations.
50
+
51
+
52
+ Purpose
53
+ -------
54
+
55
+ Given a Cholesky factor :math:`L` of a dense matrix :math:`H`, the
56
+ ``hyhound::update_cholesky`` function computes the Cholesky factor
57
+ :math:`\tilde L` of the matrix
58
+
59
+ .. math::
60
+
61
+ \tilde H = \tilde L \tilde L^\top = H + A \Sigma A^\top,
62
+
63
+ where :math:`H,\tilde H\in\mathbb{R}^{n\times n}` with :math:`H \succ 0`
64
+ and :math:`\tilde H \succ 0`, :math:`A \in \mathbb{R}^{n\times m}`,
65
+ :math:`\Sigma \in \mathbb{R}^{m\times m}` diagonal,
66
+ and :math:`L, \tilde L\in\mathbb{R}^{n\times n}` lower triangular.
67
+
68
+ Computing :math:`\tilde L` in this way is done in
69
+ :math:`mn^2 + \mathcal{O}(n^2 + mn)` operations rather than the
70
+ :math:`\tfrac16 n^3 + \tfrac12 mn^2 + \mathcal{O}(n^2 + mn)` operations
71
+ required for the explicit evaluation and factorization of :math:`\tilde H`.
72
+ When :math:`m \ll n`, this results in a considerable speedup over full
73
+ factorization, enabling efficient low-rank updates of Cholesky
74
+ factorizations, for use in e.g. iterative algorithms for numerical
75
+ optimization.
76
+
77
+ Additionally, hyhound includes efficient routines for updating
78
+ factorizations of the Riccati recursion for optimal control problems.
79
+
80
+
81
+ Preprint
82
+ --------
83
+
84
+ The paper describing the algorithms in this repository can be found on arXiv:
85
+ `https://arxiv.org/abs/2503.15372v1 <https://arxiv.org/abs/2503.15372v1>`_
86
+
87
+ .. code-block:: bibtex
88
+
89
+ @misc{pas_blocked_2025,
90
+ title = {Blocked {Cholesky} factorization updates of the {Riccati} recursion using hyperbolic {Householder} transformations},
91
+ url = {http://arxiv.org/abs/2503.15372},
92
+ doi = {10.48550/arXiv.2503.15372},
93
+ publisher = {arXiv},
94
+ author = {Pas, Pieter and Patrinos, Panagiotis},
95
+ month = mar,
96
+ year = {2025},
97
+ note = {Accepted for publication in the Proceedings of CDC 2025}
98
+ }
@@ -0,0 +1,12 @@
1
+ hyhound/__init__.py,sha256=Tr4dRGgdW-p6XjKI35GhTZs__u4x2W1-MbnGgklHraw,224
2
+ hyhound/_dispatch.cpython-39-arm-linux-gnueabihf.so,sha256=QSUs4EMutRfis1ladatCCS-bGrb2dY5r98yERoCgRP8,9620
3
+ hyhound/_hyhound.py,sha256=Qq4QcfETX6JJ8bta2vX4JM2dA9BZtHvfmhOiztQOPWU,446
4
+ hyhound/_hyhound.pyi,sha256=FYMsgReExWKPbFNDBpEX_VSVMIwizn8IodQeXIr1txs,10480
5
+ hyhound/_hyhound_generic.cpython-39-arm-linux-gnueabihf.so,sha256=045D5757JxaquQRK95r3WsPSEFHm9VJ9vAnyvDsH2EY,802864
6
+ hyhound/libnanobind-hyhound.so,sha256=mEcShAQ2wnXNeXjCetiB-d4DW2EXpI9EI9pyLjFdiAk,299664
7
+ hyhound/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ hyhound-1.0.2a1.dist-info/METADATA,sha256=Vbl_u4t1EIqbSddPclr_MkpGfRZe7fuskdMu55UfVZE,3745
9
+ hyhound-1.0.2a1.dist-info/WHEEL,sha256=o_F7pRSYYuMBU2Z9-dwRIC3BPWGqpVTfzWFz0Ba7rBI,94
10
+ hyhound-1.0.2a1.dist-info/entry_points.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ hyhound-1.0.2a1.dist-info/licenses/LICENSE,sha256=46mU2C5kSwOnkqkw9XQAJlhBL2JAf1_uCD8lVcXyMRg,7652
12
+ hyhound-1.0.2a1.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: distlib 0.4.0
3
+ Root-Is-Purelib: false
4
+ Tag: cp39-cp39-linux_armv6l
File without changes
@@ -0,0 +1,165 @@
1
+ GNU LESSER GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+
9
+ This version of the GNU Lesser General Public License incorporates
10
+ the terms and conditions of version 3 of the GNU General Public
11
+ License, supplemented by the additional permissions listed below.
12
+
13
+ 0. Additional Definitions.
14
+
15
+ As used herein, "this License" refers to version 3 of the GNU Lesser
16
+ General Public License, and the "GNU GPL" refers to version 3 of the GNU
17
+ General Public License.
18
+
19
+ "The Library" refers to a covered work governed by this License,
20
+ other than an Application or a Combined Work as defined below.
21
+
22
+ An "Application" is any work that makes use of an interface provided
23
+ by the Library, but which is not otherwise based on the Library.
24
+ Defining a subclass of a class defined by the Library is deemed a mode
25
+ of using an interface provided by the Library.
26
+
27
+ A "Combined Work" is a work produced by combining or linking an
28
+ Application with the Library. The particular version of the Library
29
+ with which the Combined Work was made is also called the "Linked
30
+ Version".
31
+
32
+ The "Minimal Corresponding Source" for a Combined Work means the
33
+ Corresponding Source for the Combined Work, excluding any source code
34
+ for portions of the Combined Work that, considered in isolation, are
35
+ based on the Application, and not on the Linked Version.
36
+
37
+ The "Corresponding Application Code" for a Combined Work means the
38
+ object code and/or source code for the Application, including any data
39
+ and utility programs needed for reproducing the Combined Work from the
40
+ Application, but excluding the System Libraries of the Combined Work.
41
+
42
+ 1. Exception to Section 3 of the GNU GPL.
43
+
44
+ You may convey a covered work under sections 3 and 4 of this License
45
+ without being bound by section 3 of the GNU GPL.
46
+
47
+ 2. Conveying Modified Versions.
48
+
49
+ If you modify a copy of the Library, and, in your modifications, a
50
+ facility refers to a function or data to be supplied by an Application
51
+ that uses the facility (other than as an argument passed when the
52
+ facility is invoked), then you may convey a copy of the modified
53
+ version:
54
+
55
+ a) under this License, provided that you make a good faith effort to
56
+ ensure that, in the event an Application does not supply the
57
+ function or data, the facility still operates, and performs
58
+ whatever part of its purpose remains meaningful, or
59
+
60
+ b) under the GNU GPL, with none of the additional permissions of
61
+ this License applicable to that copy.
62
+
63
+ 3. Object Code Incorporating Material from Library Header Files.
64
+
65
+ The object code form of an Application may incorporate material from
66
+ a header file that is part of the Library. You may convey such object
67
+ code under terms of your choice, provided that, if the incorporated
68
+ material is not limited to numerical parameters, data structure
69
+ layouts and accessors, or small macros, inline functions and templates
70
+ (ten or fewer lines in length), you do both of the following:
71
+
72
+ a) Give prominent notice with each copy of the object code that the
73
+ Library is used in it and that the Library and its use are
74
+ covered by this License.
75
+
76
+ b) Accompany the object code with a copy of the GNU GPL and this license
77
+ document.
78
+
79
+ 4. Combined Works.
80
+
81
+ You may convey a Combined Work under terms of your choice that,
82
+ taken together, effectively do not restrict modification of the
83
+ portions of the Library contained in the Combined Work and reverse
84
+ engineering for debugging such modifications, if you also do each of
85
+ the following:
86
+
87
+ a) Give prominent notice with each copy of the Combined Work that
88
+ the Library is used in it and that the Library and its use are
89
+ covered by this License.
90
+
91
+ b) Accompany the Combined Work with a copy of the GNU GPL and this license
92
+ document.
93
+
94
+ c) For a Combined Work that displays copyright notices during
95
+ execution, include the copyright notice for the Library among
96
+ these notices, as well as a reference directing the user to the
97
+ copies of the GNU GPL and this license document.
98
+
99
+ d) Do one of the following:
100
+
101
+ 0) Convey the Minimal Corresponding Source under the terms of this
102
+ License, and the Corresponding Application Code in a form
103
+ suitable for, and under terms that permit, the user to
104
+ recombine or relink the Application with a modified version of
105
+ the Linked Version to produce a modified Combined Work, in the
106
+ manner specified by section 6 of the GNU GPL for conveying
107
+ Corresponding Source.
108
+
109
+ 1) Use a suitable shared library mechanism for linking with the
110
+ Library. A suitable mechanism is one that (a) uses at run time
111
+ a copy of the Library already present on the user's computer
112
+ system, and (b) will operate properly with a modified version
113
+ of the Library that is interface-compatible with the Linked
114
+ Version.
115
+
116
+ e) Provide Installation Information, but only if you would otherwise
117
+ be required to provide such information under section 6 of the
118
+ GNU GPL, and only to the extent that such information is
119
+ necessary to install and execute a modified version of the
120
+ Combined Work produced by recombining or relinking the
121
+ Application with a modified version of the Linked Version. (If
122
+ you use option 4d0, the Installation Information must accompany
123
+ the Minimal Corresponding Source and Corresponding Application
124
+ Code. If you use option 4d1, you must provide the Installation
125
+ Information in the manner specified by section 6 of the GNU GPL
126
+ for conveying Corresponding Source.)
127
+
128
+ 5. Combined Libraries.
129
+
130
+ You may place library facilities that are a work based on the
131
+ Library side by side in a single library together with other library
132
+ facilities that are not Applications and are not covered by this
133
+ License, and convey such a combined library under terms of your
134
+ choice, if you do both of the following:
135
+
136
+ a) Accompany the combined library with a copy of the same work based
137
+ on the Library, uncombined with any other library facilities,
138
+ conveyed under the terms of this License.
139
+
140
+ b) Give prominent notice with the combined library that part of it
141
+ is a work based on the Library, and explaining where to find the
142
+ accompanying uncombined form of the same work.
143
+
144
+ 6. Revised Versions of the GNU Lesser General Public License.
145
+
146
+ The Free Software Foundation may publish revised and/or new versions
147
+ of the GNU Lesser General Public License from time to time. Such new
148
+ versions will be similar in spirit to the present version, but may
149
+ differ in detail to address new problems or concerns.
150
+
151
+ Each version is given a distinguishing version number. If the
152
+ Library as you received it specifies that a certain numbered version
153
+ of the GNU Lesser General Public License "or any later version"
154
+ applies to it, you have the option of following the terms and
155
+ conditions either of that published version or of any later version
156
+ published by the Free Software Foundation. If the Library as you
157
+ received it does not specify a version number of the GNU Lesser
158
+ General Public License, you may choose any version of the GNU Lesser
159
+ General Public License ever published by the Free Software Foundation.
160
+
161
+ If the Library as you received it specifies that a proxy can decide
162
+ whether future versions of the GNU Lesser General Public License shall
163
+ apply, that proxy's public statement of acceptance of any version is
164
+ permanent authorization for you to choose that version for the
165
+ Library.