hyhound 1.0.2a1__cp311-cp311-linux_armv6l.whl → 1.0.2a2__cp311-cp311-linux_armv6l.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of hyhound might be problematic. Click here for more details.
- hyhound/__init__.py +1 -1
- hyhound/_dispatch.cpython-311-arm-linux-gnueabihf.so +0 -0
- hyhound/_hyhound.pyi +202 -22
- hyhound/_hyhound_generic.cpython-311-arm-linux-gnueabihf.so +0 -0
- {hyhound-1.0.2a1.dist-info → hyhound-1.0.2a2.dist-info}/METADATA +1 -1
- hyhound-1.0.2a2.dist-info/RECORD +12 -0
- hyhound-1.0.2a1.dist-info/RECORD +0 -12
- {hyhound-1.0.2a1.dist-info → hyhound-1.0.2a2.dist-info}/WHEEL +0 -0
- {hyhound-1.0.2a1.dist-info → hyhound-1.0.2a2.dist-info}/entry_points.txt +0 -0
- {hyhound-1.0.2a1.dist-info → hyhound-1.0.2a2.dist-info}/licenses/LICENSE +0 -0
hyhound/__init__.py
CHANGED
|
Binary file
|
hyhound/_hyhound.pyi
CHANGED
|
@@ -4,9 +4,9 @@ import numpy
|
|
|
4
4
|
from numpy.typing import NDArray
|
|
5
5
|
|
|
6
6
|
|
|
7
|
-
build_time: str = '2025-10-
|
|
7
|
+
build_time: str = '2025-10-23T15:57:52Z'
|
|
8
8
|
|
|
9
|
-
commit_hash: str = '
|
|
9
|
+
commit_hash: str = '42a4b5c0c28b2ca237982197d54851054b584a80'
|
|
10
10
|
|
|
11
11
|
@overload
|
|
12
12
|
def update_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')]) -> None:
|
|
@@ -24,8 +24,7 @@ def update_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(Non
|
|
|
24
24
|
A : (k × m), rectangular, Fortran order
|
|
25
25
|
On entry, the update matrix A.
|
|
26
26
|
On exit, contains the k-n bottom rows of the remaining update matrix Ã
|
|
27
|
-
(the top n rows of à are
|
|
28
|
-
The top n rows of A are overwritten by Householder reflectors and are generally not useful.
|
|
27
|
+
(the top n rows of à are zero).
|
|
29
28
|
"""
|
|
30
29
|
|
|
31
30
|
@overload
|
|
@@ -47,8 +46,7 @@ def downdate_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(N
|
|
|
47
46
|
A : (k × m), rectangular, Fortran order
|
|
48
47
|
On entry, the downdate matrix A.
|
|
49
48
|
On exit, contains the k-n bottom rows of the remaining downdate matrix Ã
|
|
50
|
-
(the top n rows of à are
|
|
51
|
-
The top n rows of A are overwritten by Householder reflectors and are generally not useful.
|
|
49
|
+
(the top n rows of à are zero).
|
|
52
50
|
"""
|
|
53
51
|
|
|
54
52
|
@overload
|
|
@@ -71,8 +69,7 @@ def update_cholesky_sign_inplace(L: Annotated[NDArray[numpy.float64], dict(shape
|
|
|
71
69
|
A : (k × m), rectangular, Fortran order
|
|
72
70
|
On entry, the update matrix A.
|
|
73
71
|
On exit, contains the k-n bottom rows of the remaining update matrix Ã
|
|
74
|
-
(the top n rows of à are
|
|
75
|
-
The top n rows of A are overwritten by Householder reflectors and are generally not useful.
|
|
72
|
+
(the top n rows of à are zero).
|
|
76
73
|
|
|
77
74
|
signs : m-vector
|
|
78
75
|
Signs that determine whether a column of A is added (+0) or removed (-0).
|
|
@@ -99,8 +96,7 @@ def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float64], dict(shape
|
|
|
99
96
|
A : (k × m), rectangular, Fortran order
|
|
100
97
|
On entry, the update matrix A.
|
|
101
98
|
On exit, contains the k-n bottom rows of the remaining update matrix Ã
|
|
102
|
-
(the top n rows of à are
|
|
103
|
-
The top n rows of A are overwritten by Householder reflectors and are generally not useful.
|
|
99
|
+
(the top n rows of à are zero).
|
|
104
100
|
|
|
105
101
|
diag : m-vector
|
|
106
102
|
Scale factors corresponding to the columns of A.
|
|
@@ -110,7 +106,7 @@ def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float64], dict(shape
|
|
|
110
106
|
def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> None: ...
|
|
111
107
|
|
|
112
108
|
@overload
|
|
113
|
-
def update_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple:
|
|
109
|
+
def update_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
114
110
|
"""
|
|
115
111
|
Cholesky factorization update. Returns updated copies.
|
|
116
112
|
|
|
@@ -132,14 +128,20 @@ def update_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None)
|
|
|
132
128
|
A_rem : (k × m)
|
|
133
129
|
Contains the k-n bottom rows of the remaining update matrix Ã.
|
|
134
130
|
The top n rows of à are zero (not stored explicitly).
|
|
135
|
-
The top n rows of A_rem contain Householder reflectors
|
|
131
|
+
The top n rows of A_rem contain Householder reflectors.
|
|
132
|
+
|
|
133
|
+
W : (r × n)
|
|
134
|
+
The upper triangular Householder representations generated during the
|
|
135
|
+
Cholesky factorization update. Together with the top n rows of A_rem,
|
|
136
|
+
this can be used to apply the block Householder transformation to other matrices.
|
|
137
|
+
The number of rows depends on the block size and is architecture-dependent.
|
|
136
138
|
"""
|
|
137
139
|
|
|
138
140
|
@overload
|
|
139
|
-
def update_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple: ...
|
|
141
|
+
def update_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
140
142
|
|
|
141
143
|
@overload
|
|
142
|
-
def downdate_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple:
|
|
144
|
+
def downdate_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
143
145
|
"""
|
|
144
146
|
Cholesky factorization downdate. Returns updated copies.
|
|
145
147
|
|
|
@@ -161,14 +163,20 @@ def downdate_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, Non
|
|
|
161
163
|
A_rem : (k × m)
|
|
162
164
|
Contains the k-n bottom rows of the remaining downdate matrix Ã.
|
|
163
165
|
The top n rows of à are zero (not stored explicitly).
|
|
164
|
-
The top n rows of A_rem contain Householder reflectors
|
|
166
|
+
The top n rows of A_rem contain Householder reflectors.
|
|
167
|
+
|
|
168
|
+
W : (r × n)
|
|
169
|
+
The upper triangular Householder representations generated during the
|
|
170
|
+
Cholesky factorization update. Together with the top n rows of A_rem,
|
|
171
|
+
this can be used to apply the block Householder transformation to other matrices.
|
|
172
|
+
The number of rows depends on the block size and is architecture-dependent.
|
|
165
173
|
"""
|
|
166
174
|
|
|
167
175
|
@overload
|
|
168
|
-
def downdate_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple: ...
|
|
176
|
+
def downdate_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
169
177
|
|
|
170
178
|
@overload
|
|
171
|
-
def update_cholesky_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple:
|
|
179
|
+
def update_cholesky_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
172
180
|
"""
|
|
173
181
|
Cholesky factorization update with signed columns. Returns updated copies.
|
|
174
182
|
|
|
@@ -195,14 +203,20 @@ def update_cholesky_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None,
|
|
|
195
203
|
A_rem : (k × m)
|
|
196
204
|
Contains the k-n bottom rows of the remaining update matrix Ã.
|
|
197
205
|
The top n rows of à are zero (not stored explicitly).
|
|
198
|
-
The top n rows of A_rem contain Householder reflectors
|
|
206
|
+
The top n rows of A_rem contain Householder reflectors.
|
|
207
|
+
|
|
208
|
+
W : (r × n)
|
|
209
|
+
The upper triangular Householder representations generated during the
|
|
210
|
+
Cholesky factorization update. Together with the top n rows of A_rem,
|
|
211
|
+
this can be used to apply the block Householder transformation to other matrices.
|
|
212
|
+
The number of rows depends on the block size and is architecture-dependent.
|
|
199
213
|
"""
|
|
200
214
|
|
|
201
215
|
@overload
|
|
202
|
-
def update_cholesky_sign(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple: ...
|
|
216
|
+
def update_cholesky_sign(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
203
217
|
|
|
204
218
|
@overload
|
|
205
|
-
def update_cholesky_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple:
|
|
219
|
+
def update_cholesky_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
206
220
|
"""
|
|
207
221
|
Cholesky factorization update with diagonal scaling. Returns updated copies.
|
|
208
222
|
|
|
@@ -228,8 +242,174 @@ def update_cholesky_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None,
|
|
|
228
242
|
A_rem : (k × m)
|
|
229
243
|
Contains the k-n bottom rows of the remaining update matrix Ã.
|
|
230
244
|
The top n rows of à are zero (not stored explicitly).
|
|
231
|
-
The top n rows of A_rem contain Householder reflectors
|
|
245
|
+
The top n rows of A_rem contain Householder reflectors.
|
|
246
|
+
|
|
247
|
+
W : (r × n)
|
|
248
|
+
The upper triangular Householder representations generated during the
|
|
249
|
+
Cholesky factorization update. Together with the top n rows of A_rem,
|
|
250
|
+
this can be used to apply the block Householder transformation to other matrices.
|
|
251
|
+
The number of rows depends on the block size and is architecture-dependent.
|
|
252
|
+
"""
|
|
253
|
+
|
|
254
|
+
@overload
|
|
255
|
+
def update_cholesky_diag(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
256
|
+
|
|
257
|
+
@overload
|
|
258
|
+
def update_apply_householder(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
259
|
+
"""
|
|
260
|
+
Apply a block Householder transformation generated during a Cholesky
|
|
261
|
+
factorization update. Returns updated copies.
|
|
262
|
+
|
|
263
|
+
(L̃ Ã) = (L A) Q
|
|
264
|
+
|
|
265
|
+
where Q is the block Householder transformation represented by W and B.
|
|
266
|
+
|
|
267
|
+
Parameters
|
|
268
|
+
----------
|
|
269
|
+
L : (l × n), rectangular
|
|
270
|
+
Matrix to apply the transformation to.
|
|
271
|
+
|
|
272
|
+
A : (l × m), rectangular
|
|
273
|
+
Matrix to apply the transformation to.
|
|
274
|
+
|
|
275
|
+
W : (r × n)
|
|
276
|
+
The upper triangular Householder representations generated during the
|
|
277
|
+
Cholesky factorization update.
|
|
278
|
+
|
|
279
|
+
B : (k × m), rectangular
|
|
280
|
+
The Householder reflector vectors generated during the Cholesky
|
|
281
|
+
factorization update.
|
|
282
|
+
|
|
283
|
+
Returns
|
|
284
|
+
-------
|
|
285
|
+
L̃ : (l × n)
|
|
286
|
+
The updated matrix L.
|
|
287
|
+
|
|
288
|
+
à : (l × m)
|
|
289
|
+
The updated matrix A.
|
|
290
|
+
"""
|
|
291
|
+
|
|
292
|
+
@overload
|
|
293
|
+
def update_apply_householder(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
294
|
+
|
|
295
|
+
@overload
|
|
296
|
+
def downdate_apply_householder(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
297
|
+
"""
|
|
298
|
+
Apply a block Householder transformation generated during a Cholesky
|
|
299
|
+
factorization downdate. Returns updated copies.
|
|
300
|
+
|
|
301
|
+
(L̃ Ã) = (L A) Q
|
|
302
|
+
|
|
303
|
+
where Q is the block Householder transformation represented by W and B.
|
|
304
|
+
|
|
305
|
+
Parameters
|
|
306
|
+
----------
|
|
307
|
+
L : (l × n), rectangular
|
|
308
|
+
Matrix to apply the transformation to.
|
|
309
|
+
|
|
310
|
+
A : (l × m), rectangular
|
|
311
|
+
Matrix to apply the transformation to.
|
|
312
|
+
|
|
313
|
+
W : (r × n)
|
|
314
|
+
The upper triangular Householder representations generated during the
|
|
315
|
+
Cholesky factorization downdate.
|
|
316
|
+
|
|
317
|
+
B : (k × m), rectangular
|
|
318
|
+
The Householder reflector vectors generated during the Cholesky
|
|
319
|
+
factorization downdate.
|
|
320
|
+
|
|
321
|
+
Returns
|
|
322
|
+
-------
|
|
323
|
+
L̃ : (l × n)
|
|
324
|
+
The updated matrix L.
|
|
325
|
+
|
|
326
|
+
à : (l × m)
|
|
327
|
+
The updated matrix A.
|
|
328
|
+
"""
|
|
329
|
+
|
|
330
|
+
@overload
|
|
331
|
+
def downdate_apply_householder(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
332
|
+
|
|
333
|
+
@overload
|
|
334
|
+
def update_apply_householder_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
335
|
+
"""
|
|
336
|
+
Apply a block Householder transformation generated during a Cholesky
|
|
337
|
+
factorization update with signed columns. Returns updated copies.
|
|
338
|
+
|
|
339
|
+
(L̃ Ã) = (L A) Q
|
|
340
|
+
|
|
341
|
+
where Q is the block Householder transformation represented by W, B and signs.
|
|
342
|
+
|
|
343
|
+
Parameters
|
|
344
|
+
----------
|
|
345
|
+
L : (l × n), rectangular
|
|
346
|
+
Matrix to apply the transformation to.
|
|
347
|
+
|
|
348
|
+
A : (l × m), rectangular
|
|
349
|
+
Matrix to apply the transformation to.
|
|
350
|
+
|
|
351
|
+
signs : m-vector
|
|
352
|
+
Signs that determine whether a column of A was added (+0) or removed (-0).
|
|
353
|
+
Values other than ±0 are not allowed.
|
|
354
|
+
|
|
355
|
+
W : (r × n)
|
|
356
|
+
The upper triangular Householder representations generated during the
|
|
357
|
+
Cholesky factorization update.
|
|
358
|
+
|
|
359
|
+
B : (k × m), rectangular
|
|
360
|
+
The Householder reflector vectors generated during the Cholesky
|
|
361
|
+
factorization update.
|
|
362
|
+
|
|
363
|
+
Returns
|
|
364
|
+
-------
|
|
365
|
+
L̃ : (l × n)
|
|
366
|
+
The updated matrix L.
|
|
367
|
+
|
|
368
|
+
à : (l × m)
|
|
369
|
+
The updated matrix A.
|
|
370
|
+
"""
|
|
371
|
+
|
|
372
|
+
@overload
|
|
373
|
+
def update_apply_householder_sign(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
374
|
+
|
|
375
|
+
@overload
|
|
376
|
+
def update_apply_householder_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
|
|
377
|
+
"""
|
|
378
|
+
Apply a block Householder transformation generated during a Cholesky
|
|
379
|
+
factorization update with diagonal scaling. Returns updated copies.
|
|
380
|
+
|
|
381
|
+
(L̃ Ã) = (L A) Q
|
|
382
|
+
|
|
383
|
+
where Q is the block Householder transformation represented by W, B and diag.
|
|
384
|
+
|
|
385
|
+
Parameters
|
|
386
|
+
----------
|
|
387
|
+
L : (l × n), rectangular
|
|
388
|
+
Matrix to apply the transformation to.
|
|
389
|
+
|
|
390
|
+
A : (l × m), rectangular
|
|
391
|
+
Matrix to apply the transformation to.
|
|
392
|
+
|
|
393
|
+
diag : m-vector
|
|
394
|
+
Scale factors corresponding to the columns of A used when generating the
|
|
395
|
+
Householder transformation.
|
|
396
|
+
|
|
397
|
+
W : (r × n)
|
|
398
|
+
The upper triangular Householder representations generated during the
|
|
399
|
+
Cholesky factorization update.
|
|
400
|
+
|
|
401
|
+
B : (k × m), rectangular
|
|
402
|
+
The Householder reflector vectors generated during the Cholesky
|
|
403
|
+
factorization update.
|
|
404
|
+
|
|
405
|
+
Returns
|
|
406
|
+
-------
|
|
407
|
+
L̃ : (l × n)
|
|
408
|
+
The updated matrix L.
|
|
409
|
+
|
|
410
|
+
à : (l × m)
|
|
411
|
+
The updated matrix A.
|
|
232
412
|
"""
|
|
233
413
|
|
|
234
414
|
@overload
|
|
235
|
-
def
|
|
415
|
+
def update_apply_householder_diag(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
|
|
Binary file
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: hyhound
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.2a2
|
|
4
4
|
Summary: Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.
|
|
5
5
|
Keywords: linear-algebra,cholesky,update,downdate,matrix
|
|
6
6
|
Author-Email: Pieter P <pieter.p.dev@outlook.com>
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
hyhound/__init__.py,sha256=Zaudvv2SHXm3CNeT9lEskzoQIFWCgUxMr-9vtT1D8LE,224
|
|
2
|
+
hyhound/_dispatch.cpython-311-arm-linux-gnueabihf.so,sha256=VD3GwgMzvLWKlWypE2JTQ8TNeTo14PqBv4ACS--KfbI,9620
|
|
3
|
+
hyhound/_hyhound.py,sha256=Qq4QcfETX6JJ8bta2vX4JM2dA9BZtHvfmhOiztQOPWU,446
|
|
4
|
+
hyhound/_hyhound.pyi,sha256=pcMOy75joVVBcf39lHELrqAp49tw2ik7s4RC0a_HNeY,21853
|
|
5
|
+
hyhound/_hyhound_generic.cpython-311-arm-linux-gnueabihf.so,sha256=2zm9CAXQLdAf_Ev0y0jIZBXMOrxaFZS_Ve6Lpx-YxLQ,916532
|
|
6
|
+
hyhound/libnanobind-hyhound.so,sha256=da3pwjrHjO-7bPopwKTS3wyoeTNNJ6yduTmUlmswNOo,299680
|
|
7
|
+
hyhound/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
8
|
+
hyhound-1.0.2a2.dist-info/METADATA,sha256=l66nPRJavK2UBz0FbNEdg9yK0LYH7CDq0LsQ3RS3mgI,3745
|
|
9
|
+
hyhound-1.0.2a2.dist-info/WHEEL,sha256=vrDZWvvKrbRZNgncoC7ql0cGiIc-_66Qk5DwM-R7gAU,96
|
|
10
|
+
hyhound-1.0.2a2.dist-info/entry_points.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
|
+
hyhound-1.0.2a2.dist-info/licenses/LICENSE,sha256=46mU2C5kSwOnkqkw9XQAJlhBL2JAf1_uCD8lVcXyMRg,7652
|
|
12
|
+
hyhound-1.0.2a2.dist-info/RECORD,,
|
hyhound-1.0.2a1.dist-info/RECORD
DELETED
|
@@ -1,12 +0,0 @@
|
|
|
1
|
-
hyhound/__init__.py,sha256=Tr4dRGgdW-p6XjKI35GhTZs__u4x2W1-MbnGgklHraw,224
|
|
2
|
-
hyhound/_dispatch.cpython-311-arm-linux-gnueabihf.so,sha256=sqFUfO8vaBnrDI_jTRHZuIt0eATFuz7fKE_4JoV128I,9620
|
|
3
|
-
hyhound/_hyhound.py,sha256=Qq4QcfETX6JJ8bta2vX4JM2dA9BZtHvfmhOiztQOPWU,446
|
|
4
|
-
hyhound/_hyhound.pyi,sha256=FYMsgReExWKPbFNDBpEX_VSVMIwizn8IodQeXIr1txs,10480
|
|
5
|
-
hyhound/_hyhound_generic.cpython-311-arm-linux-gnueabihf.so,sha256=3CCpOWGKT9PDcRlSWCtoh9Aynq_g4rsQtOZVpe2TCbA,802864
|
|
6
|
-
hyhound/libnanobind-hyhound.so,sha256=da3pwjrHjO-7bPopwKTS3wyoeTNNJ6yduTmUlmswNOo,299680
|
|
7
|
-
hyhound/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
8
|
-
hyhound-1.0.2a1.dist-info/METADATA,sha256=Vbl_u4t1EIqbSddPclr_MkpGfRZe7fuskdMu55UfVZE,3745
|
|
9
|
-
hyhound-1.0.2a1.dist-info/WHEEL,sha256=vrDZWvvKrbRZNgncoC7ql0cGiIc-_66Qk5DwM-R7gAU,96
|
|
10
|
-
hyhound-1.0.2a1.dist-info/entry_points.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
|
-
hyhound-1.0.2a1.dist-info/licenses/LICENSE,sha256=46mU2C5kSwOnkqkw9XQAJlhBL2JAf1_uCD8lVcXyMRg,7652
|
|
12
|
-
hyhound-1.0.2a1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|