hyhound 1.0.2a1__cp310-cp310-linux_armv6l.whl → 1.0.2a2__cp310-cp310-linux_armv6l.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of hyhound might be problematic. Click here for more details.

hyhound/__init__.py CHANGED
@@ -2,7 +2,7 @@
2
2
  Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.
3
3
  """
4
4
 
5
- __version__ = "1.0.2a1"
5
+ __version__ = "1.0.2a2"
6
6
 
7
7
  from ._hyhound import * # noqa: F403
8
8
  from ._hyhound import __version__ as __c_version__ # noqa: F401
hyhound/_hyhound.pyi CHANGED
@@ -4,9 +4,9 @@ import numpy
4
4
  from numpy.typing import NDArray
5
5
 
6
6
 
7
- build_time: str = '2025-10-05T22:30:09Z'
7
+ build_time: str = '2025-10-23T15:57:52Z'
8
8
 
9
- commit_hash: str = 'ab5d1ca1f14486665601ffa9462f4ff7215ae3bc'
9
+ commit_hash: str = '42a4b5c0c28b2ca237982197d54851054b584a80'
10
10
 
11
11
  @overload
12
12
  def update_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu')]) -> None:
@@ -24,8 +24,7 @@ def update_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(Non
24
24
  A : (k × m), rectangular, Fortran order
25
25
  On entry, the update matrix A.
26
26
  On exit, contains the k-n bottom rows of the remaining update matrix Ã
27
- (the top n rows of à are implicitly zero).
28
- The top n rows of A are overwritten by Householder reflectors and are generally not useful.
27
+ (the top n rows of à are zero).
29
28
  """
30
29
 
31
30
  @overload
@@ -47,8 +46,7 @@ def downdate_cholesky_inplace(L: Annotated[NDArray[numpy.float64], dict(shape=(N
47
46
  A : (k × m), rectangular, Fortran order
48
47
  On entry, the downdate matrix A.
49
48
  On exit, contains the k-n bottom rows of the remaining downdate matrix Ã
50
- (the top n rows of à are implicitly zero).
51
- The top n rows of A are overwritten by Householder reflectors and are generally not useful.
49
+ (the top n rows of à are zero).
52
50
  """
53
51
 
54
52
  @overload
@@ -71,8 +69,7 @@ def update_cholesky_sign_inplace(L: Annotated[NDArray[numpy.float64], dict(shape
71
69
  A : (k × m), rectangular, Fortran order
72
70
  On entry, the update matrix A.
73
71
  On exit, contains the k-n bottom rows of the remaining update matrix Ã
74
- (the top n rows of à are implicitly zero).
75
- The top n rows of A are overwritten by Householder reflectors and are generally not useful.
72
+ (the top n rows of à are zero).
76
73
 
77
74
  signs : m-vector
78
75
  Signs that determine whether a column of A is added (+0) or removed (-0).
@@ -99,8 +96,7 @@ def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float64], dict(shape
99
96
  A : (k × m), rectangular, Fortran order
100
97
  On entry, the update matrix A.
101
98
  On exit, contains the k-n bottom rows of the remaining update matrix Ã
102
- (the top n rows of à are implicitly zero).
103
- The top n rows of A are overwritten by Householder reflectors and are generally not useful.
99
+ (the top n rows of à are zero).
104
100
 
105
101
  diag : m-vector
106
102
  Scale factors corresponding to the columns of A.
@@ -110,7 +106,7 @@ def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float64], dict(shape
110
106
  def update_cholesky_diag_inplace(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu')], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> None: ...
111
107
 
112
108
  @overload
113
- def update_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple:
109
+ def update_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
114
110
  """
115
111
  Cholesky factorization update. Returns updated copies.
116
112
 
@@ -132,14 +128,20 @@ def update_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None)
132
128
  A_rem : (k × m)
133
129
  Contains the k-n bottom rows of the remaining update matrix Ã.
134
130
  The top n rows of à are zero (not stored explicitly).
135
- The top n rows of A_rem contain Householder reflectors and are generally not useful.
131
+ The top n rows of A_rem contain Householder reflectors.
132
+
133
+ W : (r × n)
134
+ The upper triangular Householder representations generated during the
135
+ Cholesky factorization update. Together with the top n rows of A_rem,
136
+ this can be used to apply the block Householder transformation to other matrices.
137
+ The number of rows depends on the block size and is architecture-dependent.
136
138
  """
137
139
 
138
140
  @overload
139
- def update_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple: ...
141
+ def update_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
140
142
 
141
143
  @overload
142
- def downdate_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple:
144
+ def downdate_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
143
145
  """
144
146
  Cholesky factorization downdate. Returns updated copies.
145
147
 
@@ -161,14 +163,20 @@ def downdate_cholesky(L: Annotated[NDArray[numpy.float64], dict(shape=(None, Non
161
163
  A_rem : (k × m)
162
164
  Contains the k-n bottom rows of the remaining downdate matrix Ã.
163
165
  The top n rows of à are zero (not stored explicitly).
164
- The top n rows of A_rem contain Householder reflectors and are generally not useful.
166
+ The top n rows of A_rem contain Householder reflectors.
167
+
168
+ W : (r × n)
169
+ The upper triangular Householder representations generated during the
170
+ Cholesky factorization update. Together with the top n rows of A_rem,
171
+ this can be used to apply the block Householder transformation to other matrices.
172
+ The number of rows depends on the block size and is architecture-dependent.
165
173
  """
166
174
 
167
175
  @overload
168
- def downdate_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple: ...
176
+ def downdate_cholesky(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
169
177
 
170
178
  @overload
171
- def update_cholesky_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple:
179
+ def update_cholesky_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
172
180
  """
173
181
  Cholesky factorization update with signed columns. Returns updated copies.
174
182
 
@@ -195,14 +203,20 @@ def update_cholesky_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None,
195
203
  A_rem : (k × m)
196
204
  Contains the k-n bottom rows of the remaining update matrix Ã.
197
205
  The top n rows of à are zero (not stored explicitly).
198
- The top n rows of A_rem contain Householder reflectors and are generally not useful.
206
+ The top n rows of A_rem contain Householder reflectors.
207
+
208
+ W : (r × n)
209
+ The upper triangular Householder representations generated during the
210
+ Cholesky factorization update. Together with the top n rows of A_rem,
211
+ this can be used to apply the block Householder transformation to other matrices.
212
+ The number of rows depends on the block size and is architecture-dependent.
199
213
  """
200
214
 
201
215
  @overload
202
- def update_cholesky_sign(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple: ...
216
+ def update_cholesky_sign(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
203
217
 
204
218
  @overload
205
- def update_cholesky_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple:
219
+ def update_cholesky_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
206
220
  """
207
221
  Cholesky factorization update with diagonal scaling. Returns updated copies.
208
222
 
@@ -228,8 +242,174 @@ def update_cholesky_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None,
228
242
  A_rem : (k × m)
229
243
  Contains the k-n bottom rows of the remaining update matrix Ã.
230
244
  The top n rows of à are zero (not stored explicitly).
231
- The top n rows of A_rem contain Householder reflectors and are generally not useful.
245
+ The top n rows of A_rem contain Householder reflectors.
246
+
247
+ W : (r × n)
248
+ The upper triangular Householder representations generated during the
249
+ Cholesky factorization update. Together with the top n rows of A_rem,
250
+ this can be used to apply the block Householder transformation to other matrices.
251
+ The number of rows depends on the block size and is architecture-dependent.
252
+ """
253
+
254
+ @overload
255
+ def update_cholesky_diag(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
256
+
257
+ @overload
258
+ def update_apply_householder(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
259
+ """
260
+ Apply a block Householder transformation generated during a Cholesky
261
+ factorization update. Returns updated copies.
262
+
263
+ (L̃ Ã) = (L A) Q
264
+
265
+ where Q is the block Householder transformation represented by W and B.
266
+
267
+ Parameters
268
+ ----------
269
+ L : (l × n), rectangular
270
+ Matrix to apply the transformation to.
271
+
272
+ A : (l × m), rectangular
273
+ Matrix to apply the transformation to.
274
+
275
+ W : (r × n)
276
+ The upper triangular Householder representations generated during the
277
+ Cholesky factorization update.
278
+
279
+ B : (k × m), rectangular
280
+ The Householder reflector vectors generated during the Cholesky
281
+ factorization update.
282
+
283
+ Returns
284
+ -------
285
+ L̃ : (l × n)
286
+ The updated matrix L.
287
+
288
+ Ã : (l × m)
289
+ The updated matrix A.
290
+ """
291
+
292
+ @overload
293
+ def update_apply_householder(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
294
+
295
+ @overload
296
+ def downdate_apply_householder(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
297
+ """
298
+ Apply a block Householder transformation generated during a Cholesky
299
+ factorization downdate. Returns updated copies.
300
+
301
+ (L̃ Ã) = (L A) Q
302
+
303
+ where Q is the block Householder transformation represented by W and B.
304
+
305
+ Parameters
306
+ ----------
307
+ L : (l × n), rectangular
308
+ Matrix to apply the transformation to.
309
+
310
+ A : (l × m), rectangular
311
+ Matrix to apply the transformation to.
312
+
313
+ W : (r × n)
314
+ The upper triangular Householder representations generated during the
315
+ Cholesky factorization downdate.
316
+
317
+ B : (k × m), rectangular
318
+ The Householder reflector vectors generated during the Cholesky
319
+ factorization downdate.
320
+
321
+ Returns
322
+ -------
323
+ L̃ : (l × n)
324
+ The updated matrix L.
325
+
326
+ Ã : (l × m)
327
+ The updated matrix A.
328
+ """
329
+
330
+ @overload
331
+ def downdate_apply_householder(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
332
+
333
+ @overload
334
+ def update_apply_householder_sign(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
335
+ """
336
+ Apply a block Householder transformation generated during a Cholesky
337
+ factorization update with signed columns. Returns updated copies.
338
+
339
+ (L̃ Ã) = (L A) Q
340
+
341
+ where Q is the block Householder transformation represented by W, B and signs.
342
+
343
+ Parameters
344
+ ----------
345
+ L : (l × n), rectangular
346
+ Matrix to apply the transformation to.
347
+
348
+ A : (l × m), rectangular
349
+ Matrix to apply the transformation to.
350
+
351
+ signs : m-vector
352
+ Signs that determine whether a column of A was added (+0) or removed (-0).
353
+ Values other than ±0 are not allowed.
354
+
355
+ W : (r × n)
356
+ The upper triangular Householder representations generated during the
357
+ Cholesky factorization update.
358
+
359
+ B : (k × m), rectangular
360
+ The Householder reflector vectors generated during the Cholesky
361
+ factorization update.
362
+
363
+ Returns
364
+ -------
365
+ L̃ : (l × n)
366
+ The updated matrix L.
367
+
368
+ Ã : (l × m)
369
+ The updated matrix A.
370
+ """
371
+
372
+ @overload
373
+ def update_apply_householder_sign(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], signs: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
374
+
375
+ @overload
376
+ def update_apply_householder_diag(L: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float64], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float64], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float64], dict(shape=(None, None), order='F')]]:
377
+ """
378
+ Apply a block Householder transformation generated during a Cholesky
379
+ factorization update with diagonal scaling. Returns updated copies.
380
+
381
+ (L̃ Ã) = (L A) Q
382
+
383
+ where Q is the block Householder transformation represented by W, B and diag.
384
+
385
+ Parameters
386
+ ----------
387
+ L : (l × n), rectangular
388
+ Matrix to apply the transformation to.
389
+
390
+ A : (l × m), rectangular
391
+ Matrix to apply the transformation to.
392
+
393
+ diag : m-vector
394
+ Scale factors corresponding to the columns of A used when generating the
395
+ Householder transformation.
396
+
397
+ W : (r × n)
398
+ The upper triangular Householder representations generated during the
399
+ Cholesky factorization update.
400
+
401
+ B : (k × m), rectangular
402
+ The Householder reflector vectors generated during the Cholesky
403
+ factorization update.
404
+
405
+ Returns
406
+ -------
407
+ L̃ : (l × n)
408
+ The updated matrix L.
409
+
410
+ Ã : (l × m)
411
+ The updated matrix A.
232
412
  """
233
413
 
234
414
  @overload
235
- def update_cholesky_diag(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)]) -> tuple: ...
415
+ def update_apply_householder_diag(L: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], A: Annotated[NDArray[numpy.float32], dict(shape=(None, None), device='cpu', writable=False)], diag: Annotated[NDArray[numpy.float32], dict(shape=(None,), order='A', device='cpu', writable=False)], W: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)], B: Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F', device='cpu', writable=False)]) -> tuple[Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')], Annotated[NDArray[numpy.float32], dict(shape=(None, None), order='F')]]: ...
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hyhound
3
- Version: 1.0.2a1
3
+ Version: 1.0.2a2
4
4
  Summary: Hyperbolic Householder transformations for Up- and Downdating Cholesky factorizations.
5
5
  Keywords: linear-algebra,cholesky,update,downdate,matrix
6
6
  Author-Email: Pieter P <pieter.p.dev@outlook.com>
@@ -0,0 +1,12 @@
1
+ hyhound/__init__.py,sha256=Zaudvv2SHXm3CNeT9lEskzoQIFWCgUxMr-9vtT1D8LE,224
2
+ hyhound/_dispatch.cpython-310-arm-linux-gnueabihf.so,sha256=dxyYZivkFMp_0oSdIoGZ_a2J6ZGOZe6Sw8YIy0bS56o,9620
3
+ hyhound/_hyhound.py,sha256=Qq4QcfETX6JJ8bta2vX4JM2dA9BZtHvfmhOiztQOPWU,446
4
+ hyhound/_hyhound.pyi,sha256=pcMOy75joVVBcf39lHELrqAp49tw2ik7s4RC0a_HNeY,21853
5
+ hyhound/_hyhound_generic.cpython-310-arm-linux-gnueabihf.so,sha256=uuUB4gAuCbFzsOSzDZWim04mN6yMtMkB9-fG-10QTpE,916532
6
+ hyhound/libnanobind-hyhound.so,sha256=4fhyCSDK3lyF7x-lI5y1bNcaTh-3u-PO4L4SnGqrJHI,299664
7
+ hyhound/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ hyhound-1.0.2a2.dist-info/METADATA,sha256=l66nPRJavK2UBz0FbNEdg9yK0LYH7CDq0LsQ3RS3mgI,3745
9
+ hyhound-1.0.2a2.dist-info/WHEEL,sha256=bjGf3-Ep9LM1r6aUkCHLphZ86Eqzbqb1ROGeLbvmdNg,96
10
+ hyhound-1.0.2a2.dist-info/entry_points.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ hyhound-1.0.2a2.dist-info/licenses/LICENSE,sha256=46mU2C5kSwOnkqkw9XQAJlhBL2JAf1_uCD8lVcXyMRg,7652
12
+ hyhound-1.0.2a2.dist-info/RECORD,,
@@ -1,12 +0,0 @@
1
- hyhound/__init__.py,sha256=Tr4dRGgdW-p6XjKI35GhTZs__u4x2W1-MbnGgklHraw,224
2
- hyhound/_dispatch.cpython-310-arm-linux-gnueabihf.so,sha256=P7355wvpoDxqzPXR1v7PGfFDZ4nK6cka_czQqHuBMbQ,9620
3
- hyhound/_hyhound.py,sha256=Qq4QcfETX6JJ8bta2vX4JM2dA9BZtHvfmhOiztQOPWU,446
4
- hyhound/_hyhound.pyi,sha256=FYMsgReExWKPbFNDBpEX_VSVMIwizn8IodQeXIr1txs,10480
5
- hyhound/_hyhound_generic.cpython-310-arm-linux-gnueabihf.so,sha256=-PXww0UOvfjYQ4fLusuteEP3Lt714-Wf10yg43AEFw4,802864
6
- hyhound/libnanobind-hyhound.so,sha256=4fhyCSDK3lyF7x-lI5y1bNcaTh-3u-PO4L4SnGqrJHI,299664
7
- hyhound/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- hyhound-1.0.2a1.dist-info/METADATA,sha256=Vbl_u4t1EIqbSddPclr_MkpGfRZe7fuskdMu55UfVZE,3745
9
- hyhound-1.0.2a1.dist-info/WHEEL,sha256=bjGf3-Ep9LM1r6aUkCHLphZ86Eqzbqb1ROGeLbvmdNg,96
10
- hyhound-1.0.2a1.dist-info/entry_points.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- hyhound-1.0.2a1.dist-info/licenses/LICENSE,sha256=46mU2C5kSwOnkqkw9XQAJlhBL2JAf1_uCD8lVcXyMRg,7652
12
- hyhound-1.0.2a1.dist-info/RECORD,,