hydroserverpy 0.2.5__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of hydroserverpy might be problematic. Click here for more details.
- hydroserverpy/__init__.py +6 -15
- hydroserverpy/core/endpoints/__init__.py +9 -0
- hydroserverpy/core/endpoints/base.py +146 -0
- hydroserverpy/core/endpoints/data_loaders.py +93 -0
- hydroserverpy/core/endpoints/data_sources.py +93 -0
- hydroserverpy/core/endpoints/datastreams.py +225 -0
- hydroserverpy/core/endpoints/observed_properties.py +111 -0
- hydroserverpy/core/endpoints/processing_levels.py +111 -0
- hydroserverpy/core/endpoints/result_qualifiers.py +111 -0
- hydroserverpy/core/endpoints/sensors.py +111 -0
- hydroserverpy/core/endpoints/things.py +261 -0
- hydroserverpy/core/endpoints/units.py +111 -0
- hydroserverpy/{components → core/schemas}/__init__.py +1 -2
- hydroserverpy/core/schemas/base.py +124 -0
- hydroserverpy/core/schemas/data_loaders.py +73 -0
- hydroserverpy/core/schemas/data_sources.py +223 -0
- hydroserverpy/core/schemas/datastreams.py +330 -0
- hydroserverpy/core/schemas/observed_properties.py +43 -0
- hydroserverpy/core/schemas/processing_levels.py +31 -0
- hydroserverpy/core/schemas/result_qualifiers.py +26 -0
- hydroserverpy/core/schemas/sensors.py +68 -0
- hydroserverpy/core/schemas/things.py +346 -0
- hydroserverpy/core/schemas/units.py +29 -0
- hydroserverpy/core/service.py +200 -0
- hydroserverpy/etl/__init__.py +21 -0
- hydroserverpy/etl/extractors/__init__.py +0 -0
- hydroserverpy/etl/extractors/base.py +13 -0
- hydroserverpy/etl/extractors/ftp_extractor.py +50 -0
- hydroserverpy/etl/extractors/http_extractor.py +84 -0
- hydroserverpy/etl/extractors/local_file_extractor.py +25 -0
- hydroserverpy/etl/hydroserver_etl.py +40 -0
- hydroserverpy/etl/loaders/__init__.py +0 -0
- hydroserverpy/etl/loaders/base.py +13 -0
- hydroserverpy/etl/loaders/hydroserver_loader.py +68 -0
- hydroserverpy/etl/transformers/__init__.py +0 -0
- hydroserverpy/etl/transformers/base.py +52 -0
- hydroserverpy/etl/transformers/csv_transformer.py +88 -0
- hydroserverpy/etl/transformers/json_transformer.py +62 -0
- hydroserverpy/etl/types.py +7 -0
- hydroserverpy/etl_csv/__init__.py +0 -0
- hydroserverpy/{etl.py → etl_csv/hydroserver_etl_csv.py} +118 -95
- hydroserverpy/quality/__init__.py +1 -0
- hydroserverpy/quality/service.py +405 -0
- hydroserverpy-0.4.0.dist-info/METADATA +18 -0
- hydroserverpy-0.4.0.dist-info/RECORD +51 -0
- {hydroserverpy-0.2.5.dist-info → hydroserverpy-0.4.0.dist-info}/WHEEL +1 -1
- hydroserverpy/components/data_loaders.py +0 -67
- hydroserverpy/components/data_sources.py +0 -98
- hydroserverpy/components/datastreams.py +0 -47
- hydroserverpy/components/observed_properties.py +0 -48
- hydroserverpy/components/processing_levels.py +0 -48
- hydroserverpy/components/result_qualifiers.py +0 -48
- hydroserverpy/components/sensors.py +0 -48
- hydroserverpy/components/things.py +0 -48
- hydroserverpy/components/units.py +0 -48
- hydroserverpy/components/users.py +0 -28
- hydroserverpy/main.py +0 -62
- hydroserverpy/models.py +0 -218
- hydroserverpy/schemas/data_loaders.py +0 -27
- hydroserverpy/schemas/data_sources.py +0 -58
- hydroserverpy/schemas/datastreams.py +0 -56
- hydroserverpy/schemas/observed_properties.py +0 -33
- hydroserverpy/schemas/processing_levels.py +0 -33
- hydroserverpy/schemas/result_qualifiers.py +0 -32
- hydroserverpy/schemas/sensors.py +0 -39
- hydroserverpy/schemas/things.py +0 -107
- hydroserverpy/schemas/units.py +0 -32
- hydroserverpy/schemas/users.py +0 -28
- hydroserverpy/service.py +0 -170
- hydroserverpy/utils.py +0 -37
- hydroserverpy-0.2.5.dist-info/METADATA +0 -15
- hydroserverpy-0.2.5.dist-info/RECORD +0 -35
- /hydroserverpy/{schemas → core}/__init__.py +0 -0
- /hydroserverpy/{exceptions.py → etl_csv/exceptions.py} +0 -0
- {hydroserverpy-0.2.5.dist-info → hydroserverpy-0.4.0.dist-info}/LICENSE +0 -0
- {hydroserverpy-0.2.5.dist-info → hydroserverpy-0.4.0.dist-info}/top_level.txt +0 -0
- {hydroserverpy-0.2.5.dist-info → hydroserverpy-0.4.0.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from hydroserverpy.etl.types import TimeRange
|
|
3
|
+
import requests
|
|
4
|
+
from io import BytesIO
|
|
5
|
+
from typing import Dict
|
|
6
|
+
from .base import Extractor
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class HTTPExtractor(Extractor):
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
url: str,
|
|
13
|
+
url_variables: dict = None,
|
|
14
|
+
params: dict = None,
|
|
15
|
+
headers: dict = None,
|
|
16
|
+
auth: tuple = None,
|
|
17
|
+
):
|
|
18
|
+
self.url = self.format_url(url, url_variables or {})
|
|
19
|
+
self.params = params
|
|
20
|
+
self.headers = headers
|
|
21
|
+
self.auth = auth
|
|
22
|
+
self.start_date = None
|
|
23
|
+
|
|
24
|
+
def prepare_params(self, data_requirements: Dict[str, TimeRange]):
|
|
25
|
+
start_times = [
|
|
26
|
+
req["start_time"] for req in data_requirements.values() if req["start_time"]
|
|
27
|
+
]
|
|
28
|
+
|
|
29
|
+
if start_times:
|
|
30
|
+
oldest_start_time = min(start_times).isoformat()
|
|
31
|
+
start_time_key = self.params.pop("start_time_key", None)
|
|
32
|
+
if start_time_key:
|
|
33
|
+
self.params[start_time_key] = oldest_start_time
|
|
34
|
+
logging.info(
|
|
35
|
+
f"Set start_time to {oldest_start_time} and removed 'start_time_key'"
|
|
36
|
+
)
|
|
37
|
+
else:
|
|
38
|
+
logging.warning("'start_time_key' not found in params.")
|
|
39
|
+
|
|
40
|
+
end_times = [
|
|
41
|
+
req["end_time"] for req in data_requirements.values() if req["end_time"]
|
|
42
|
+
]
|
|
43
|
+
|
|
44
|
+
if end_times:
|
|
45
|
+
newest_end_time = max(end_times).isoformat()
|
|
46
|
+
end_time_key = self.params.pop("end_time_key", None)
|
|
47
|
+
if end_time_key:
|
|
48
|
+
self.params[end_time_key] = newest_end_time
|
|
49
|
+
logging.info(
|
|
50
|
+
f"Set end_time to {newest_end_time} and removed 'end_time_key'"
|
|
51
|
+
)
|
|
52
|
+
else:
|
|
53
|
+
logging.warning("'end_time_key' not found in params.")
|
|
54
|
+
|
|
55
|
+
def extract(self):
|
|
56
|
+
"""
|
|
57
|
+
Downloads the file from the HTTP/HTTPS server and returns a file-like object.
|
|
58
|
+
"""
|
|
59
|
+
response = requests.get(
|
|
60
|
+
url=self.url,
|
|
61
|
+
params=self.params,
|
|
62
|
+
headers=self.headers,
|
|
63
|
+
auth=self.auth,
|
|
64
|
+
stream=True,
|
|
65
|
+
)
|
|
66
|
+
response.raise_for_status()
|
|
67
|
+
logging.info(f"Successfully downloaded file from {response.url}")
|
|
68
|
+
|
|
69
|
+
data = BytesIO()
|
|
70
|
+
for chunk in response.iter_content(chunk_size=8192):
|
|
71
|
+
if chunk:
|
|
72
|
+
data.write(chunk)
|
|
73
|
+
data.seek(0)
|
|
74
|
+
return data
|
|
75
|
+
|
|
76
|
+
@staticmethod
|
|
77
|
+
def format_url(url_template, url_variables):
|
|
78
|
+
try:
|
|
79
|
+
url = url_template.format(**url_variables)
|
|
80
|
+
except KeyError as e:
|
|
81
|
+
missing_key = e.args[0]
|
|
82
|
+
raise KeyError(f"Missing configuration url_variable: {missing_key}")
|
|
83
|
+
|
|
84
|
+
return url
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from typing import Dict
|
|
3
|
+
|
|
4
|
+
from .base import Extractor
|
|
5
|
+
from ..types import TimeRange
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class LocalFileExtractor(Extractor):
|
|
9
|
+
def __init__(self, filepath: str):
|
|
10
|
+
self.filepath = filepath
|
|
11
|
+
|
|
12
|
+
def prepare_params(self, data_requirements: Dict[str, TimeRange]):
|
|
13
|
+
pass
|
|
14
|
+
|
|
15
|
+
def extract(self):
|
|
16
|
+
"""
|
|
17
|
+
Opens the file and returns a file-like object.
|
|
18
|
+
"""
|
|
19
|
+
try:
|
|
20
|
+
file_handle = open(self.filepath, "r")
|
|
21
|
+
logging.info(f"Successfully opened file '{self.filepath}'.")
|
|
22
|
+
return file_handle
|
|
23
|
+
except Exception as e:
|
|
24
|
+
logging.error(f"Error opening file '{self.filepath}': {e}")
|
|
25
|
+
return None
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import pandas as pd
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class HydroServerETL:
|
|
6
|
+
def __init__(self, extractor, transformer, loader, source_target_map):
|
|
7
|
+
self.extractor = extractor
|
|
8
|
+
self.transformer = transformer
|
|
9
|
+
self.loader = loader
|
|
10
|
+
self.source_target_map = source_target_map
|
|
11
|
+
|
|
12
|
+
def run(self):
|
|
13
|
+
"""
|
|
14
|
+
Extracts, transforms, and loads data as defined by the class parameters.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
# Step 1: Get Target System data requirements from the Loader & prepare parameters for the Extractor
|
|
18
|
+
data_requirements = self.loader.get_data_requirements(self.source_target_map)
|
|
19
|
+
self.extractor.prepare_params(data_requirements)
|
|
20
|
+
|
|
21
|
+
# Step 2: Extract
|
|
22
|
+
data = self.extractor.extract()
|
|
23
|
+
if data is None or (isinstance(data, pd.DataFrame) and data.empty):
|
|
24
|
+
logging.warning(f"No data was returned from the extractor. Ending ETL run.")
|
|
25
|
+
return
|
|
26
|
+
else:
|
|
27
|
+
logging.info(f"Successfully extracted data.")
|
|
28
|
+
|
|
29
|
+
# Step 3: Transform
|
|
30
|
+
if self.transformer:
|
|
31
|
+
data = self.transformer.transform(data)
|
|
32
|
+
if data is None or (isinstance(data, pd.DataFrame) and data.empty):
|
|
33
|
+
logging.warning(f"No data returned from the transformer. Ending run.")
|
|
34
|
+
return
|
|
35
|
+
else:
|
|
36
|
+
logging.info(f"Successfully transformed data. {data}")
|
|
37
|
+
|
|
38
|
+
# Step 4: Load
|
|
39
|
+
self.loader.load(data, self.source_target_map)
|
|
40
|
+
logging.info("Successfully loaded data.")
|
|
File without changes
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import Dict
|
|
3
|
+
import pandas as pd
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Loader(ABC):
|
|
7
|
+
@abstractmethod
|
|
8
|
+
def load(self, *args, **kwargs) -> None:
|
|
9
|
+
pass
|
|
10
|
+
|
|
11
|
+
@abstractmethod
|
|
12
|
+
def get_data_requirements(self, df: pd.DataFrame) -> Dict[str, pd.Timestamp]:
|
|
13
|
+
pass
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
from hydroserverpy.core.service import HydroServer
|
|
2
|
+
from typing import Dict, Optional
|
|
3
|
+
from .base import Loader
|
|
4
|
+
import logging
|
|
5
|
+
import pandas as pd
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class HydroServerLoader(HydroServer, Loader):
|
|
9
|
+
"""
|
|
10
|
+
A class that extends the HydroServer client with ETL-specific functionalities.
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
def __init__(
|
|
14
|
+
self,
|
|
15
|
+
host: str,
|
|
16
|
+
username: Optional[str] = None,
|
|
17
|
+
password: Optional[str] = None,
|
|
18
|
+
apikey: Optional[str] = None,
|
|
19
|
+
api_route: str = "api",
|
|
20
|
+
):
|
|
21
|
+
super().__init__(host, username, password, apikey, api_route)
|
|
22
|
+
|
|
23
|
+
def load(self, data: pd.DataFrame, source_target_map) -> None:
|
|
24
|
+
"""
|
|
25
|
+
Load observations from a DataFrame to the HydroServer.
|
|
26
|
+
|
|
27
|
+
:param data: A Pandas DataFrame where each column corresponds to a datastream.
|
|
28
|
+
"""
|
|
29
|
+
data_requirements = self.get_data_requirements(source_target_map)
|
|
30
|
+
for ds_id in data.columns:
|
|
31
|
+
if ds_id == "timestamp":
|
|
32
|
+
continue
|
|
33
|
+
|
|
34
|
+
df = data[["timestamp", ds_id]].copy()
|
|
35
|
+
df.rename(columns={ds_id: "value"}, inplace=True)
|
|
36
|
+
df.dropna(subset=["value"], inplace=True)
|
|
37
|
+
|
|
38
|
+
phenomenon_end_time = data_requirements[ds_id]["start_time"]
|
|
39
|
+
if phenomenon_end_time:
|
|
40
|
+
df = df[df["timestamp"] > phenomenon_end_time]
|
|
41
|
+
if df.empty:
|
|
42
|
+
logging.warning(
|
|
43
|
+
f"No new data to upload for datastream {ds_id}. Skipping."
|
|
44
|
+
)
|
|
45
|
+
continue
|
|
46
|
+
self.datastreams.load_observations(uid=ds_id, observations=df)
|
|
47
|
+
|
|
48
|
+
def get_data_requirements(
|
|
49
|
+
self, source_target_map
|
|
50
|
+
) -> Dict[str, Dict[str, pd.Timestamp]]:
|
|
51
|
+
"""
|
|
52
|
+
Each target system needs to be able to answer the question: 'What data do you need?'
|
|
53
|
+
and return a time range for each target time series. Usually the answer will be
|
|
54
|
+
'anything newer than my most recent observation'.
|
|
55
|
+
"""
|
|
56
|
+
data_requirements = {}
|
|
57
|
+
for ds_id in source_target_map.values():
|
|
58
|
+
datastream = self.datastreams.get(uid=ds_id)
|
|
59
|
+
if not datastream:
|
|
60
|
+
message = "Couldn't fetch target datastream. ETL process aborted."
|
|
61
|
+
logging.error(message)
|
|
62
|
+
raise message
|
|
63
|
+
start_time = pd.Timestamp(
|
|
64
|
+
datastream.phenomenon_end_time or "1970-01-01T00:00:00Z"
|
|
65
|
+
)
|
|
66
|
+
end_time = pd.Timestamp.now()
|
|
67
|
+
data_requirements[ds_id] = {"start_time": start_time, "end_time": end_time}
|
|
68
|
+
return data_requirements
|
|
File without changes
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
import logging
|
|
3
|
+
import pandas as pd
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Transformer(ABC):
|
|
7
|
+
@abstractmethod
|
|
8
|
+
def transform(self, *args, **kwargs) -> None:
|
|
9
|
+
pass
|
|
10
|
+
|
|
11
|
+
@property
|
|
12
|
+
def needs_datastreams(self) -> bool:
|
|
13
|
+
return False
|
|
14
|
+
|
|
15
|
+
@staticmethod
|
|
16
|
+
def standardize_dataframe(
|
|
17
|
+
df,
|
|
18
|
+
datastream_ids,
|
|
19
|
+
timestamp_column: str = "timestamp",
|
|
20
|
+
timestamp_format: str = "ISO8601",
|
|
21
|
+
):
|
|
22
|
+
df.rename(
|
|
23
|
+
columns={timestamp_column: "timestamp", **datastream_ids},
|
|
24
|
+
inplace=True,
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
# Verify timestamp column is present in the DataFrame
|
|
28
|
+
if "timestamp" not in df.columns:
|
|
29
|
+
message = f"Timestamp column '{timestamp_column}' not found in data."
|
|
30
|
+
logging.error(message)
|
|
31
|
+
raise ValueError(message)
|
|
32
|
+
|
|
33
|
+
# Verify that all datastream_ids are present in the DataFrame
|
|
34
|
+
expected_columns = set(datastream_ids.values())
|
|
35
|
+
actual_columns = set(df.columns)
|
|
36
|
+
missing_datastream_ids = expected_columns - actual_columns
|
|
37
|
+
|
|
38
|
+
if missing_datastream_ids:
|
|
39
|
+
raise ValueError(
|
|
40
|
+
"The following datastream IDs are specified in the config file but their related keys could not be "
|
|
41
|
+
f"found in the source system's extracted data: {missing_datastream_ids}"
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
# Keep only 'timestamp' and datastream_id columns
|
|
45
|
+
columns_to_keep = ["timestamp"] + list(expected_columns)
|
|
46
|
+
df = df[columns_to_keep]
|
|
47
|
+
|
|
48
|
+
# Convert timestamp column to datetime if not already
|
|
49
|
+
if not pd.api.types.is_datetime64_any_dtype(df["timestamp"]):
|
|
50
|
+
df["timestamp"] = pd.to_datetime(df["timestamp"], format=timestamp_format)
|
|
51
|
+
|
|
52
|
+
return df
|
|
@@ -0,0 +1,88 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import pandas as pd
|
|
3
|
+
from typing import Dict, Optional, Union
|
|
4
|
+
from .base import Transformer
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class CSVTransformer(Transformer):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
header_row: Optional[int],
|
|
11
|
+
data_start_row: int,
|
|
12
|
+
timestamp_column: Union[str, int],
|
|
13
|
+
datastream_ids: Dict[Union[str, int], str],
|
|
14
|
+
delimiter: Optional[str] = ",",
|
|
15
|
+
timestamp_format: Optional[str] = "ISO8601",
|
|
16
|
+
):
|
|
17
|
+
# Pandas is zero-based while CSV is one-based so convert
|
|
18
|
+
self.header_row = None if header_row is None else header_row - 1
|
|
19
|
+
self.data_start_row = data_start_row - 1
|
|
20
|
+
self.timestamp_column = self.convert_to_zero_based(timestamp_column)
|
|
21
|
+
self.datastream_ids = datastream_ids
|
|
22
|
+
self.timestamp_format = timestamp_format
|
|
23
|
+
self.delimiter = delimiter
|
|
24
|
+
|
|
25
|
+
def transform(self, data_file) -> Union[pd.DataFrame, None]:
|
|
26
|
+
"""
|
|
27
|
+
Transforms a CSV file-like object into a Pandas DataFrame where the column
|
|
28
|
+
names are replaced with their target datastream ids.
|
|
29
|
+
|
|
30
|
+
Parameters:
|
|
31
|
+
data_file: File-like object containing CSV data.
|
|
32
|
+
Returns:
|
|
33
|
+
observations_map (dict): Dict mapping datastream IDs to pandas DataFrames.
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
try:
|
|
37
|
+
df = pd.read_csv(
|
|
38
|
+
data_file,
|
|
39
|
+
delimiter=self.delimiter,
|
|
40
|
+
header=self.header_row,
|
|
41
|
+
parse_dates=[self.timestamp_column],
|
|
42
|
+
date_format=self.timestamp_format,
|
|
43
|
+
skiprows=self.calculate_skiprows(),
|
|
44
|
+
usecols=[self.timestamp_column] + list(self.datastream_ids.keys()),
|
|
45
|
+
)
|
|
46
|
+
except Exception as e:
|
|
47
|
+
logging.error(f"Error reading CSV data: {e}")
|
|
48
|
+
return None
|
|
49
|
+
|
|
50
|
+
if self.header_row is None:
|
|
51
|
+
df.columns = list(range(1, len(df.columns) + 1))
|
|
52
|
+
|
|
53
|
+
return self.standardize_dataframe(
|
|
54
|
+
df, self.datastream_ids, self.timestamp_column, self.timestamp_format
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
def calculate_skiprows(self):
|
|
58
|
+
"""
|
|
59
|
+
Calculates the skiprows parameter for pd.read_csv.
|
|
60
|
+
|
|
61
|
+
Returns:
|
|
62
|
+
skiprows (list or None): List of row indices to skip, or None if no rows need to be skipped.
|
|
63
|
+
Raises:
|
|
64
|
+
ValueError: If header_row is not compatible with data_start_row.
|
|
65
|
+
"""
|
|
66
|
+
if self.data_start_row == 0:
|
|
67
|
+
if self.header_row is not None:
|
|
68
|
+
# Cannot have a header row if data starts at the first row
|
|
69
|
+
raise ValueError(
|
|
70
|
+
"header_row must be None when data_start_row is 1 (first row)"
|
|
71
|
+
)
|
|
72
|
+
return None # No rows to skip
|
|
73
|
+
|
|
74
|
+
skiprows = list(range(self.data_start_row))
|
|
75
|
+
|
|
76
|
+
if self.header_row is not None:
|
|
77
|
+
if self.header_row >= self.data_start_row:
|
|
78
|
+
raise ValueError("header_row must be less than data_start_row")
|
|
79
|
+
if self.header_row in skiprows:
|
|
80
|
+
# Do not skip the header row
|
|
81
|
+
skiprows.remove(self.header_row)
|
|
82
|
+
return skiprows
|
|
83
|
+
|
|
84
|
+
@staticmethod
|
|
85
|
+
def convert_to_zero_based(index: Union[str, int]) -> Union[str, int]:
|
|
86
|
+
if isinstance(index, int):
|
|
87
|
+
return index - 1
|
|
88
|
+
return index
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import pandas as pd
|
|
3
|
+
from typing import Dict, Optional, Any, List
|
|
4
|
+
from .base import Transformer
|
|
5
|
+
import json
|
|
6
|
+
import jmespath
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class JSONTransformer(Transformer):
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
query_string: str,
|
|
13
|
+
datastream_ids: Dict[str, str],
|
|
14
|
+
timestamp_format: Optional[str] = "ISO8601",
|
|
15
|
+
):
|
|
16
|
+
"""
|
|
17
|
+
Initializes the JSONTransformer.
|
|
18
|
+
|
|
19
|
+
Parameters:
|
|
20
|
+
query_string (str): JMESPath to the data array containing time series data.
|
|
21
|
+
Since JMESPath can natively rename column names, the assumption is the timestamp column
|
|
22
|
+
is always named 'timestamp' or converted to 'timestamp' in the JMESPath query.
|
|
23
|
+
datastream_ids (dict): Mapping from JSON field names to datastream IDs.
|
|
24
|
+
timestamp_format (str, optional): The format of the timestamp, if it needs special parsing.
|
|
25
|
+
"""
|
|
26
|
+
self.query_string = query_string
|
|
27
|
+
self.datastream_ids = datastream_ids
|
|
28
|
+
self.timestamp_format = timestamp_format
|
|
29
|
+
|
|
30
|
+
def transform(self, data_file):
|
|
31
|
+
"""
|
|
32
|
+
Transforms a JSON file-like object into the standard Pandas dataframe format.
|
|
33
|
+
Since JMESPath can natively rename column names, the assumption is the timestamp column
|
|
34
|
+
is always named 'timestamp' for JSON data or converted to 'timestamp' in the JMESPath query.
|
|
35
|
+
|
|
36
|
+
Parameters:
|
|
37
|
+
data_file: File-like object containing JSON data.
|
|
38
|
+
|
|
39
|
+
Returns:
|
|
40
|
+
pd.DataFrame: pandas DataFrames in the format pd.Timestamp, datastream_id_1, datastream_id_2, ...
|
|
41
|
+
"""
|
|
42
|
+
json_data = json.load(data_file)
|
|
43
|
+
data_points = self.extract_data_points(json_data)
|
|
44
|
+
if not data_points:
|
|
45
|
+
logging.warning("No data points found in the JSON data.")
|
|
46
|
+
return None
|
|
47
|
+
|
|
48
|
+
df = pd.DataFrame(data_points)
|
|
49
|
+
|
|
50
|
+
return self.standardize_dataframe(
|
|
51
|
+
df,
|
|
52
|
+
self.datastream_ids,
|
|
53
|
+
timestamp_format=self.timestamp_format,
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
def extract_data_points(self, json_data: Any) -> Optional[List[dict]]:
|
|
57
|
+
"""Extracts data points from the JSON data using the data_path."""
|
|
58
|
+
data_points = jmespath.search(self.query_string, json_data)
|
|
59
|
+
|
|
60
|
+
if isinstance(data_points, dict):
|
|
61
|
+
data_points = [data_points]
|
|
62
|
+
return data_points
|
|
File without changes
|