hydraflow 0.2.7__py3-none-any.whl → 0.2.9__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- hydraflow/__init__.py +7 -4
- hydraflow/asyncio.py +9 -3
- hydraflow/context.py +24 -8
- hydraflow/info.py +57 -4
- hydraflow/mlflow.py +98 -42
- hydraflow/progress.py +117 -46
- hydraflow/run_collection.py +31 -122
- {hydraflow-0.2.7.dist-info → hydraflow-0.2.9.dist-info}/METADATA +1 -1
- hydraflow-0.2.9.dist-info/RECORD +12 -0
- hydraflow-0.2.7.dist-info/RECORD +0 -12
- {hydraflow-0.2.7.dist-info → hydraflow-0.2.9.dist-info}/WHEEL +0 -0
- {hydraflow-0.2.7.dist-info → hydraflow-0.2.9.dist-info}/licenses/LICENSE +0 -0
hydraflow/__init__.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1
1
|
from .context import chdir_artifact, log_run, start_run, watch
|
2
|
-
from .info import load_config
|
3
|
-
from .mlflow import
|
4
|
-
from .run_collection import (
|
5
|
-
RunCollection,
|
2
|
+
from .info import get_artifact_dir, get_hydra_output_dir, load_config
|
3
|
+
from .mlflow import (
|
6
4
|
list_runs,
|
7
5
|
search_runs,
|
6
|
+
set_experiment,
|
8
7
|
)
|
8
|
+
from .progress import multi_tasks_progress, parallel_progress
|
9
|
+
from .run_collection import RunCollection
|
9
10
|
|
10
11
|
__all__ = [
|
11
12
|
"RunCollection",
|
@@ -15,6 +16,8 @@ __all__ = [
|
|
15
16
|
"list_runs",
|
16
17
|
"load_config",
|
17
18
|
"log_run",
|
19
|
+
"multi_tasks_progress",
|
20
|
+
"parallel_progress",
|
18
21
|
"search_runs",
|
19
22
|
"set_experiment",
|
20
23
|
"start_run",
|
hydraflow/asyncio.py
CHANGED
@@ -41,7 +41,9 @@ async def execute_command(
|
|
41
41
|
int: The return code of the process.
|
42
42
|
"""
|
43
43
|
try:
|
44
|
-
process = await asyncio.create_subprocess_exec(
|
44
|
+
process = await asyncio.create_subprocess_exec(
|
45
|
+
program, *args, stdout=PIPE, stderr=PIPE
|
46
|
+
)
|
45
47
|
await asyncio.gather(
|
46
48
|
process_stream(process.stdout, stdout),
|
47
49
|
process_stream(process.stderr, stderr),
|
@@ -100,7 +102,9 @@ async def monitor_file_changes(
|
|
100
102
|
"""
|
101
103
|
str_paths = [str(path) for path in paths]
|
102
104
|
try:
|
103
|
-
async for changes in watchfiles.awatch(
|
105
|
+
async for changes in watchfiles.awatch(
|
106
|
+
*str_paths, stop_event=stop_event, **awatch_kwargs
|
107
|
+
):
|
104
108
|
callback(changes)
|
105
109
|
except Exception as e:
|
106
110
|
logger.error(f"Error watching files: {e}")
|
@@ -129,7 +133,9 @@ async def run_and_monitor(
|
|
129
133
|
"""
|
130
134
|
stop_event = asyncio.Event()
|
131
135
|
run_task = asyncio.create_task(
|
132
|
-
execute_command(
|
136
|
+
execute_command(
|
137
|
+
program, *args, stop_event=stop_event, stdout=stdout, stderr=stderr
|
138
|
+
)
|
133
139
|
)
|
134
140
|
if watch and paths:
|
135
141
|
monitor_task = asyncio.create_task(
|
hydraflow/context.py
CHANGED
@@ -14,10 +14,11 @@ from typing import TYPE_CHECKING
|
|
14
14
|
|
15
15
|
import mlflow
|
16
16
|
from hydra.core.hydra_config import HydraConfig
|
17
|
-
from watchdog.events import FileModifiedEvent,
|
17
|
+
from watchdog.events import FileModifiedEvent, PatternMatchingEventHandler
|
18
18
|
from watchdog.observers import Observer
|
19
19
|
|
20
|
-
from hydraflow.
|
20
|
+
from hydraflow.info import get_artifact_dir
|
21
|
+
from hydraflow.mlflow import log_params
|
21
22
|
|
22
23
|
if TYPE_CHECKING:
|
23
24
|
from collections.abc import Callable, Iterator
|
@@ -68,7 +69,7 @@ def log_run(
|
|
68
69
|
mlflow.log_artifact(local_path)
|
69
70
|
|
70
71
|
try:
|
71
|
-
with watch(log_artifact, output_dir):
|
72
|
+
with watch(log_artifact, output_dir, ignore_log=False):
|
72
73
|
yield
|
73
74
|
|
74
75
|
except Exception as e:
|
@@ -140,9 +141,11 @@ def start_run(
|
|
140
141
|
|
141
142
|
@contextmanager
|
142
143
|
def watch(
|
143
|
-
|
144
|
+
callback: Callable[[Path], None],
|
144
145
|
dir: Path | str = "",
|
145
146
|
timeout: int = 60,
|
147
|
+
ignore_patterns: list[str] | None = None,
|
148
|
+
ignore_log: bool = True,
|
146
149
|
) -> Iterator[None]:
|
147
150
|
"""
|
148
151
|
Watch the given directory for changes and call the provided function
|
@@ -154,7 +157,7 @@ def watch(
|
|
154
157
|
period or until the context is exited.
|
155
158
|
|
156
159
|
Args:
|
157
|
-
|
160
|
+
callback (Callable[[Path], None]): The function to call when a change is
|
158
161
|
detected. It should accept a single argument of type `Path`,
|
159
162
|
which is the path of the modified file.
|
160
163
|
dir (Path | str): The directory to watch. If not specified,
|
@@ -174,7 +177,7 @@ def watch(
|
|
174
177
|
if isinstance(dir, Path):
|
175
178
|
dir = dir.as_posix()
|
176
179
|
|
177
|
-
handler = Handler(
|
180
|
+
handler = Handler(callback, ignore_patterns=ignore_patterns, ignore_log=ignore_log)
|
178
181
|
observer = Observer()
|
179
182
|
observer.schedule(handler, dir, recursive=True)
|
180
183
|
observer.start()
|
@@ -198,10 +201,23 @@ def watch(
|
|
198
201
|
observer.join()
|
199
202
|
|
200
203
|
|
201
|
-
class Handler(
|
202
|
-
def __init__(
|
204
|
+
class Handler(PatternMatchingEventHandler):
|
205
|
+
def __init__(
|
206
|
+
self,
|
207
|
+
func: Callable[[Path], None],
|
208
|
+
ignore_patterns: list[str] | None = None,
|
209
|
+
ignore_log: bool = True,
|
210
|
+
) -> None:
|
203
211
|
self.func = func
|
204
212
|
|
213
|
+
if ignore_log:
|
214
|
+
if ignore_patterns:
|
215
|
+
ignore_patterns.append("*.log")
|
216
|
+
else:
|
217
|
+
ignore_patterns = ["*.log"]
|
218
|
+
|
219
|
+
super().__init__(ignore_patterns=ignore_patterns)
|
220
|
+
|
205
221
|
def on_modified(self, event: FileModifiedEvent) -> None:
|
206
222
|
file = Path(str(event.src_path))
|
207
223
|
if file.is_file():
|
hydraflow/info.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
+
from pathlib import Path
|
3
4
|
from typing import TYPE_CHECKING
|
4
5
|
|
6
|
+
import mlflow
|
7
|
+
from hydra.core.hydra_config import HydraConfig
|
8
|
+
from mlflow.tracking import artifact_utils
|
5
9
|
from omegaconf import DictConfig, OmegaConf
|
6
10
|
|
7
|
-
from hydraflow.mlflow import get_artifact_dir
|
8
|
-
|
9
11
|
if TYPE_CHECKING:
|
10
|
-
from pathlib import Path
|
11
|
-
|
12
12
|
from mlflow.entities import Run
|
13
13
|
|
14
14
|
from hydraflow.run_collection import RunCollection
|
@@ -43,6 +43,59 @@ class RunCollectionInfo:
|
|
43
43
|
return [load_config(run) for run in self._runs]
|
44
44
|
|
45
45
|
|
46
|
+
def get_artifact_dir(run: Run | None = None) -> Path:
|
47
|
+
"""
|
48
|
+
Retrieve the artifact directory for the given run.
|
49
|
+
|
50
|
+
This function uses MLflow to get the artifact directory for the given run.
|
51
|
+
|
52
|
+
Args:
|
53
|
+
run (Run | None): The run object. Defaults to None.
|
54
|
+
|
55
|
+
Returns:
|
56
|
+
The local path to the directory where the artifacts are downloaded.
|
57
|
+
"""
|
58
|
+
if run is None:
|
59
|
+
uri = mlflow.get_artifact_uri()
|
60
|
+
else:
|
61
|
+
uri = artifact_utils.get_artifact_uri(run.info.run_id)
|
62
|
+
|
63
|
+
return Path(mlflow.artifacts.download_artifacts(uri))
|
64
|
+
|
65
|
+
|
66
|
+
def get_hydra_output_dir(run: Run | None = None) -> Path:
|
67
|
+
"""
|
68
|
+
Retrieve the Hydra output directory for the given run.
|
69
|
+
|
70
|
+
This function returns the Hydra output directory. If no run is provided,
|
71
|
+
it retrieves the output directory from the current Hydra configuration.
|
72
|
+
If a run is provided, it retrieves the artifact path for the run, loads
|
73
|
+
the Hydra configuration from the downloaded artifacts, and returns the
|
74
|
+
output directory specified in that configuration.
|
75
|
+
|
76
|
+
Args:
|
77
|
+
run (Run | None): The run object. Defaults to None.
|
78
|
+
|
79
|
+
Returns:
|
80
|
+
Path: The path to the Hydra output directory.
|
81
|
+
|
82
|
+
Raises:
|
83
|
+
FileNotFoundError: If the Hydra configuration file is not found
|
84
|
+
in the artifacts.
|
85
|
+
"""
|
86
|
+
if run is None:
|
87
|
+
hc = HydraConfig.get()
|
88
|
+
return Path(hc.runtime.output_dir)
|
89
|
+
|
90
|
+
path = get_artifact_dir(run) / ".hydra/hydra.yaml"
|
91
|
+
|
92
|
+
if path.exists():
|
93
|
+
hc = OmegaConf.load(path)
|
94
|
+
return Path(hc.hydra.runtime.output_dir)
|
95
|
+
|
96
|
+
raise FileNotFoundError
|
97
|
+
|
98
|
+
|
46
99
|
def load_config(run: Run) -> DictConfig:
|
47
100
|
"""
|
48
101
|
Load the configuration for a given run.
|
hydraflow/mlflow.py
CHANGED
@@ -1,6 +1,20 @@
|
|
1
1
|
"""
|
2
|
-
This module provides functionality to log parameters from Hydra
|
3
|
-
|
2
|
+
This module provides functionality to log parameters from Hydra configuration objects
|
3
|
+
and set up experiments using MLflow. It includes methods for managing experiments,
|
4
|
+
searching for runs, and logging parameters and artifacts.
|
5
|
+
|
6
|
+
Key Features:
|
7
|
+
- **Experiment Management**: Set and manage MLflow experiments with customizable names
|
8
|
+
based on Hydra configuration.
|
9
|
+
- **Run Logging**: Log parameters and metrics from Hydra configuration objects to
|
10
|
+
MLflow, ensuring that all relevant information is captured during experiments.
|
11
|
+
- **Run Search**: Search for runs based on various criteria, allowing for flexible
|
12
|
+
retrieval of experiment results.
|
13
|
+
- **Artifact Management**: Retrieve and log artifacts associated with runs, facilitating
|
14
|
+
easy access to outputs generated during experiments.
|
15
|
+
|
16
|
+
This module is designed to integrate seamlessly with Hydra, providing a robust
|
17
|
+
solution for tracking machine learning experiments and their associated metadata.
|
4
18
|
"""
|
5
19
|
|
6
20
|
from __future__ import annotations
|
@@ -10,14 +24,14 @@ from typing import TYPE_CHECKING
|
|
10
24
|
|
11
25
|
import mlflow
|
12
26
|
from hydra.core.hydra_config import HydraConfig
|
13
|
-
from mlflow.
|
14
|
-
from
|
27
|
+
from mlflow.entities import ViewType
|
28
|
+
from mlflow.tracking.fluent import SEARCH_MAX_RESULTS_PANDAS
|
15
29
|
|
16
30
|
from hydraflow.config import iter_params
|
31
|
+
from hydraflow.run_collection import RunCollection
|
17
32
|
|
18
33
|
if TYPE_CHECKING:
|
19
34
|
from mlflow.entities.experiment import Experiment
|
20
|
-
from mlflow.entities.run import Run
|
21
35
|
|
22
36
|
|
23
37
|
def set_experiment(
|
@@ -26,7 +40,7 @@ def set_experiment(
|
|
26
40
|
uri: str | Path | None = None,
|
27
41
|
) -> Experiment:
|
28
42
|
"""
|
29
|
-
|
43
|
+
Sets the experiment name and tracking URI optionally.
|
30
44
|
|
31
45
|
This function sets the experiment name by combining the given prefix,
|
32
46
|
the job name from HydraConfig, and the given suffix. Optionally, it can
|
@@ -66,54 +80,96 @@ def log_params(config: object, *, synchronous: bool | None = None) -> None:
|
|
66
80
|
mlflow.log_param(key, value, synchronous=synchronous)
|
67
81
|
|
68
82
|
|
69
|
-
def
|
83
|
+
def search_runs(
|
84
|
+
experiment_ids: list[str] | None = None,
|
85
|
+
filter_string: str = "",
|
86
|
+
run_view_type: int = ViewType.ACTIVE_ONLY,
|
87
|
+
max_results: int = SEARCH_MAX_RESULTS_PANDAS,
|
88
|
+
order_by: list[str] | None = None,
|
89
|
+
search_all_experiments: bool = False,
|
90
|
+
experiment_names: list[str] | None = None,
|
91
|
+
) -> RunCollection:
|
70
92
|
"""
|
71
|
-
|
93
|
+
Search for Runs that fit the specified criteria.
|
72
94
|
|
73
|
-
This function
|
95
|
+
This function wraps the `mlflow.search_runs` function and returns the
|
96
|
+
results as a `RunCollection` object. It allows for flexible searching of
|
97
|
+
MLflow runs based on various criteria.
|
98
|
+
|
99
|
+
Note:
|
100
|
+
The returned runs are sorted by their start time in ascending order.
|
74
101
|
|
75
102
|
Args:
|
76
|
-
|
103
|
+
experiment_ids (list[str] | None): List of experiment IDs. Search can
|
104
|
+
work with experiment IDs or experiment names, but not both in the
|
105
|
+
same call. Values other than ``None`` or ``[]`` will result in
|
106
|
+
error if ``experiment_names`` is also not ``None`` or ``[]``.
|
107
|
+
``None`` will default to the active experiment if ``experiment_names``
|
108
|
+
is ``None`` or ``[]``.
|
109
|
+
filter_string (str): Filter query string, defaults to searching all
|
110
|
+
runs.
|
111
|
+
run_view_type (int): one of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``,
|
112
|
+
or ``ALL`` runs defined in :py:class:`mlflow.entities.ViewType`.
|
113
|
+
max_results (int): The maximum number of runs to put in the dataframe.
|
114
|
+
Default is 100,000 to avoid causing out-of-memory issues on the user's
|
115
|
+
machine.
|
116
|
+
order_by (list[str] | None): List of columns to order by (e.g.,
|
117
|
+
"metrics.rmse"). The ``order_by`` column can contain an optional
|
118
|
+
``DESC`` or ``ASC`` value. The default is ``ASC``. The default
|
119
|
+
ordering is to sort by ``start_time DESC``, then ``run_id``.
|
120
|
+
``start_time DESC``, then ``run_id``.
|
121
|
+
search_all_experiments (bool): Boolean specifying whether all
|
122
|
+
experiments should be searched. Only honored if ``experiment_ids``
|
123
|
+
is ``[]`` or ``None``.
|
124
|
+
experiment_names (list[str] | None): List of experiment names. Search
|
125
|
+
can work with experiment IDs or experiment names, but not both in
|
126
|
+
the same call. Values other than ``None`` or ``[]`` will result in
|
127
|
+
error if ``experiment_ids`` is also not ``None`` or ``[]``.
|
128
|
+
``experiment_ids`` is also not ``None`` or ``[]``. ``None`` will
|
129
|
+
default to the active experiment if ``experiment_ids`` is ``None``
|
130
|
+
or ``[]``.
|
77
131
|
|
78
132
|
Returns:
|
79
|
-
|
133
|
+
A `RunCollection` object containing the search results.
|
80
134
|
"""
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
135
|
+
runs = mlflow.search_runs(
|
136
|
+
experiment_ids=experiment_ids,
|
137
|
+
filter_string=filter_string,
|
138
|
+
run_view_type=run_view_type,
|
139
|
+
max_results=max_results,
|
140
|
+
order_by=order_by,
|
141
|
+
output_format="list",
|
142
|
+
search_all_experiments=search_all_experiments,
|
143
|
+
experiment_names=experiment_names,
|
144
|
+
)
|
145
|
+
runs = sorted(runs, key=lambda run: run.info.start_time) # type: ignore
|
146
|
+
return RunCollection(runs) # type: ignore
|
147
|
+
|
148
|
+
|
149
|
+
def list_runs(experiment_names: list[str] | None = None) -> RunCollection:
|
90
150
|
"""
|
91
|
-
|
151
|
+
List all runs for the specified experiments.
|
92
152
|
|
93
|
-
This function
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
153
|
+
This function retrieves all runs for the given list of experiment names.
|
154
|
+
If no experiment names are provided (None), it defaults to searching all runs
|
155
|
+
for the currently active experiment. If an empty list is provided, the function
|
156
|
+
will search all runs for all experiments except the "Default" experiment.
|
157
|
+
The function returns the results as a `RunCollection` object.
|
158
|
+
|
159
|
+
Note:
|
160
|
+
The returned runs are sorted by their start time in ascending order.
|
98
161
|
|
99
162
|
Args:
|
100
|
-
|
163
|
+
experiment_names (list[str] | None): List of experiment names to search
|
164
|
+
for runs. If None or an empty list is provided, the function will
|
165
|
+
search the currently active experiment or all experiments except
|
166
|
+
the "Default" experiment.
|
101
167
|
|
102
168
|
Returns:
|
103
|
-
|
104
|
-
|
105
|
-
Raises:
|
106
|
-
FileNotFoundError: If the Hydra configuration file is not found
|
107
|
-
in the artifacts.
|
169
|
+
A `RunCollection` object containing the runs for the specified experiments.
|
108
170
|
"""
|
109
|
-
if
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
path = get_artifact_dir(run) / ".hydra/hydra.yaml"
|
114
|
-
|
115
|
-
if path.exists():
|
116
|
-
hc = OmegaConf.load(path)
|
117
|
-
return Path(hc.hydra.runtime.output_dir)
|
171
|
+
if experiment_names == []:
|
172
|
+
experiments = mlflow.search_experiments()
|
173
|
+
experiment_names = [e.name for e in experiments if e.name != "Default"]
|
118
174
|
|
119
|
-
|
175
|
+
return search_runs(experiment_names=experiment_names)
|
hydraflow/progress.py
CHANGED
@@ -1,17 +1,129 @@
|
|
1
|
+
"""
|
2
|
+
Module for managing progress tracking in parallel processing using Joblib
|
3
|
+
and Rich's Progress bar.
|
4
|
+
|
5
|
+
Provide context managers and functions to facilitate the execution
|
6
|
+
of tasks in parallel while displaying progress updates.
|
7
|
+
|
8
|
+
The following key components are provided:
|
9
|
+
|
10
|
+
- JoblibProgress: A context manager for tracking progress with Rich's Progress
|
11
|
+
bar.
|
12
|
+
- parallel_progress: A function to execute a given function in parallel over
|
13
|
+
an iterable with progress tracking.
|
14
|
+
- multi_tasks_progress: A function to render auto-updating progress bars for
|
15
|
+
multiple tasks concurrently.
|
16
|
+
|
17
|
+
Usage:
|
18
|
+
Import the necessary functions and use them to manage progress in your
|
19
|
+
parallel processing tasks.
|
20
|
+
"""
|
21
|
+
|
1
22
|
from __future__ import annotations
|
2
23
|
|
3
|
-
from
|
24
|
+
from contextlib import contextmanager
|
25
|
+
from typing import TYPE_CHECKING, TypeVar
|
4
26
|
|
5
27
|
import joblib
|
6
28
|
from rich.progress import Progress
|
7
29
|
|
8
30
|
if TYPE_CHECKING:
|
9
|
-
from collections.abc import Iterable
|
31
|
+
from collections.abc import Callable, Iterable, Iterator
|
10
32
|
|
11
33
|
from rich.progress import ProgressColumn
|
12
34
|
|
13
35
|
|
14
|
-
|
36
|
+
# https://github.com/jonghwanhyeon/joblib-progress/blob/main/joblib_progress/__init__.py
|
37
|
+
@contextmanager
|
38
|
+
def JoblibProgress(
|
39
|
+
*columns: ProgressColumn | str,
|
40
|
+
description: str | None = None,
|
41
|
+
total: int | None = None,
|
42
|
+
**kwargs,
|
43
|
+
) -> Iterator[Progress]:
|
44
|
+
"""
|
45
|
+
Context manager for tracking progress using Joblib with Rich's Progress bar.
|
46
|
+
|
47
|
+
Args:
|
48
|
+
*columns (ProgressColumn | str): Columns to display in the progress bar.
|
49
|
+
description (str | None, optional): A description for the progress task.
|
50
|
+
Defaults to None.
|
51
|
+
total (int | None, optional): The total number of tasks. If None, it will
|
52
|
+
be determined automatically.
|
53
|
+
**kwargs: Additional keyword arguments passed to the Progress instance.
|
54
|
+
|
55
|
+
Yields:
|
56
|
+
Progress: A Progress instance for managing the progress bar.
|
57
|
+
|
58
|
+
Example:
|
59
|
+
with JoblibProgress("task", total=100) as progress:
|
60
|
+
# Your parallel processing code here
|
61
|
+
"""
|
62
|
+
if not columns:
|
63
|
+
columns = Progress.get_default_columns()
|
64
|
+
|
65
|
+
progress = Progress(*columns, **kwargs)
|
66
|
+
|
67
|
+
if description is None:
|
68
|
+
description = "Processing..."
|
69
|
+
|
70
|
+
task_id = progress.add_task(description, total=total)
|
71
|
+
print_progress = joblib.parallel.Parallel.print_progress
|
72
|
+
|
73
|
+
def update_progress(self: joblib.parallel.Parallel):
|
74
|
+
progress.update(task_id, completed=self.n_completed_tasks, refresh=True)
|
75
|
+
return print_progress(self)
|
76
|
+
|
77
|
+
try:
|
78
|
+
joblib.parallel.Parallel.print_progress = update_progress
|
79
|
+
progress.start()
|
80
|
+
yield progress
|
81
|
+
|
82
|
+
finally:
|
83
|
+
progress.stop()
|
84
|
+
joblib.parallel.Parallel.print_progress = print_progress
|
85
|
+
|
86
|
+
|
87
|
+
T = TypeVar("T")
|
88
|
+
U = TypeVar("U")
|
89
|
+
|
90
|
+
|
91
|
+
def parallel_progress(
|
92
|
+
func: Callable[[T], U],
|
93
|
+
iterable: Iterable[T],
|
94
|
+
*columns: ProgressColumn | str,
|
95
|
+
n_jobs: int = -1,
|
96
|
+
description: str | None = None,
|
97
|
+
**kwargs,
|
98
|
+
) -> list[U]:
|
99
|
+
"""
|
100
|
+
Execute a function in parallel over an iterable with progress tracking.
|
101
|
+
|
102
|
+
Args:
|
103
|
+
func (Callable[[T], U]): The function to execute on each item in the
|
104
|
+
iterable.
|
105
|
+
iterable (Iterable[T]): An iterable of items to process.
|
106
|
+
*columns (ProgressColumn | str): Additional columns to display in the
|
107
|
+
progress bar.
|
108
|
+
n_jobs (int, optional): The number of jobs to run in parallel.
|
109
|
+
Defaults to -1 (all processors).
|
110
|
+
description (str | None, optional): A description for the progress bar.
|
111
|
+
Defaults to None.
|
112
|
+
**kwargs: Additional keyword arguments passed to the Progress instance.
|
113
|
+
|
114
|
+
Returns:
|
115
|
+
list[U]: A list of results from applying the function to each item in
|
116
|
+
the iterable.
|
117
|
+
"""
|
118
|
+
iterable = list(iterable)
|
119
|
+
total = len(iterable)
|
120
|
+
|
121
|
+
with JoblibProgress(*columns, description=description, total=total, **kwargs):
|
122
|
+
it = (joblib.delayed(func)(x) for x in iterable)
|
123
|
+
return joblib.Parallel(n_jobs=n_jobs)(it) # type: ignore
|
124
|
+
|
125
|
+
|
126
|
+
def multi_tasks_progress(
|
15
127
|
iterables: Iterable[Iterable[int | tuple[int, int]]],
|
16
128
|
*columns: ProgressColumn | str,
|
17
129
|
n_jobs: int = -1,
|
@@ -52,7 +164,8 @@ def multi_task_progress(
|
|
52
164
|
|
53
165
|
task_main = progress.add_task(main_description, total=None) if n > 1 else None
|
54
166
|
tasks = [
|
55
|
-
progress.add_task(description.format(i), start=False, total=None)
|
167
|
+
progress.add_task(description.format(i), start=False, total=None)
|
168
|
+
for i in range(n)
|
56
169
|
]
|
57
170
|
|
58
171
|
total = {}
|
@@ -87,45 +200,3 @@ def multi_task_progress(
|
|
87
200
|
|
88
201
|
else:
|
89
202
|
func(0)
|
90
|
-
|
91
|
-
|
92
|
-
if __name__ == "__main__":
|
93
|
-
import random
|
94
|
-
import time
|
95
|
-
|
96
|
-
from rich.progress import MofNCompleteColumn, Progress, SpinnerColumn, TimeElapsedColumn
|
97
|
-
|
98
|
-
from hydraflow.progress import multi_task_progress
|
99
|
-
|
100
|
-
def task(total):
|
101
|
-
for i in range(total or 90):
|
102
|
-
if total is None:
|
103
|
-
yield i
|
104
|
-
else:
|
105
|
-
yield i, total
|
106
|
-
time.sleep(random.random() / 30)
|
107
|
-
|
108
|
-
def multi_task_progress_test(unknown_total: bool):
|
109
|
-
tasks = [task(random.randint(80, 100)) for _ in range(4)]
|
110
|
-
if unknown_total:
|
111
|
-
tasks = [task(None), *tasks, task(None)]
|
112
|
-
|
113
|
-
columns = [
|
114
|
-
SpinnerColumn(),
|
115
|
-
*Progress.get_default_columns(),
|
116
|
-
MofNCompleteColumn(),
|
117
|
-
TimeElapsedColumn(),
|
118
|
-
]
|
119
|
-
|
120
|
-
kwargs = {}
|
121
|
-
if unknown_total:
|
122
|
-
kwargs["main_description"] = "unknown"
|
123
|
-
|
124
|
-
multi_task_progress(tasks, *columns, n_jobs=4, **kwargs)
|
125
|
-
|
126
|
-
multi_task_progress_test(False)
|
127
|
-
multi_task_progress_test(True)
|
128
|
-
multi_task_progress([task(100)])
|
129
|
-
multi_task_progress([task(None)], description="unknown")
|
130
|
-
multi_task_progress([task(100), task(None)], main_description="transient", transient=True)
|
131
|
-
multi_task_progress([task(100)], description="transient", transient=True)
|
hydraflow/run_collection.py
CHANGED
@@ -1,7 +1,24 @@
|
|
1
1
|
"""
|
2
|
-
This module provides functionality for managing and interacting with MLflow
|
3
|
-
|
4
|
-
|
2
|
+
This module provides functionality for managing and interacting with MLflow runs.
|
3
|
+
It includes the `RunCollection` class, which serves as a container for multiple MLflow
|
4
|
+
run objects, and various methods to filter, retrieve, and manipulate these runs.
|
5
|
+
|
6
|
+
Key Features:
|
7
|
+
- **Run Management**: The `RunCollection` class allows for easy management of multiple
|
8
|
+
MLflow runs, providing methods to access, filter, and sort runs based on various
|
9
|
+
criteria.
|
10
|
+
- **Filtering**: The module supports filtering runs based on specific configurations
|
11
|
+
and parameters, enabling users to easily find runs that match certain conditions.
|
12
|
+
- **Retrieval**: Users can retrieve specific runs, including the first, last, or any
|
13
|
+
run that matches a given configuration.
|
14
|
+
- **Artifact Handling**: The module provides methods to access and manipulate the
|
15
|
+
artifacts associated with each run, including retrieving artifact URIs and directories.
|
16
|
+
|
17
|
+
The `RunCollection` class is designed to work seamlessly with the MLflow tracking
|
18
|
+
API, providing a robust solution for managing machine learning experiment runs and
|
19
|
+
their associated metadata. This module is particularly useful for data scientists and
|
20
|
+
machine learning engineers who need to track and analyze the results of their experiments
|
21
|
+
efficiently.
|
5
22
|
"""
|
6
23
|
|
7
24
|
from __future__ import annotations
|
@@ -10,10 +27,7 @@ from dataclasses import dataclass, field
|
|
10
27
|
from itertools import chain
|
11
28
|
from typing import TYPE_CHECKING, Any, Concatenate, ParamSpec, TypeVar
|
12
29
|
|
13
|
-
import mlflow
|
14
|
-
from mlflow.entities import ViewType
|
15
30
|
from mlflow.entities.run import Run
|
16
|
-
from mlflow.tracking.fluent import SEARCH_MAX_RESULTS_PANDAS
|
17
31
|
|
18
32
|
from hydraflow.config import iter_params
|
19
33
|
from hydraflow.info import RunCollectionInfo
|
@@ -26,101 +40,6 @@ if TYPE_CHECKING:
|
|
26
40
|
from omegaconf import DictConfig
|
27
41
|
|
28
42
|
|
29
|
-
def search_runs(
|
30
|
-
experiment_ids: list[str] | None = None,
|
31
|
-
filter_string: str = "",
|
32
|
-
run_view_type: int = ViewType.ACTIVE_ONLY,
|
33
|
-
max_results: int = SEARCH_MAX_RESULTS_PANDAS,
|
34
|
-
order_by: list[str] | None = None,
|
35
|
-
search_all_experiments: bool = False,
|
36
|
-
experiment_names: list[str] | None = None,
|
37
|
-
) -> RunCollection:
|
38
|
-
"""
|
39
|
-
Search for Runs that fit the specified criteria.
|
40
|
-
|
41
|
-
This function wraps the `mlflow.search_runs` function and returns the
|
42
|
-
results as a `RunCollection` object. It allows for flexible searching of
|
43
|
-
MLflow runs based on various criteria.
|
44
|
-
|
45
|
-
Note:
|
46
|
-
The returned runs are sorted by their start time in ascending order.
|
47
|
-
|
48
|
-
Args:
|
49
|
-
experiment_ids (list[str] | None): List of experiment IDs. Search can
|
50
|
-
work with experiment IDs or experiment names, but not both in the
|
51
|
-
same call. Values other than ``None`` or ``[]`` will result in
|
52
|
-
error if ``experiment_names`` is also not ``None`` or ``[]``.
|
53
|
-
``None`` will default to the active experiment if ``experiment_names``
|
54
|
-
is ``None`` or ``[]``.
|
55
|
-
filter_string (str): Filter query string, defaults to searching all
|
56
|
-
runs.
|
57
|
-
run_view_type (int): one of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``,
|
58
|
-
or ``ALL`` runs defined in :py:class:`mlflow.entities.ViewType`.
|
59
|
-
max_results (int): The maximum number of runs to put in the dataframe.
|
60
|
-
Default is 100,000 to avoid causing out-of-memory issues on the user's
|
61
|
-
machine.
|
62
|
-
order_by (list[str] | None): List of columns to order by (e.g.,
|
63
|
-
"metrics.rmse"). The ``order_by`` column can contain an optional
|
64
|
-
``DESC`` or ``ASC`` value. The default is ``ASC``. The default
|
65
|
-
ordering is to sort by ``start_time DESC``, then ``run_id``.
|
66
|
-
``start_time DESC``, then ``run_id``.
|
67
|
-
search_all_experiments (bool): Boolean specifying whether all
|
68
|
-
experiments should be searched. Only honored if ``experiment_ids``
|
69
|
-
is ``[]`` or ``None``.
|
70
|
-
experiment_names (list[str] | None): List of experiment names. Search
|
71
|
-
can work with experiment IDs or experiment names, but not both in
|
72
|
-
the same call. Values other than ``None`` or ``[]`` will result in
|
73
|
-
error if ``experiment_ids`` is also not ``None`` or ``[]``.
|
74
|
-
``experiment_ids`` is also not ``None`` or ``[]``. ``None`` will
|
75
|
-
default to the active experiment if ``experiment_ids`` is ``None``
|
76
|
-
or ``[]``.
|
77
|
-
|
78
|
-
Returns:
|
79
|
-
A `RunCollection` object containing the search results.
|
80
|
-
"""
|
81
|
-
runs = mlflow.search_runs(
|
82
|
-
experiment_ids=experiment_ids,
|
83
|
-
filter_string=filter_string,
|
84
|
-
run_view_type=run_view_type,
|
85
|
-
max_results=max_results,
|
86
|
-
order_by=order_by,
|
87
|
-
output_format="list",
|
88
|
-
search_all_experiments=search_all_experiments,
|
89
|
-
experiment_names=experiment_names,
|
90
|
-
)
|
91
|
-
runs = sorted(runs, key=lambda run: run.info.start_time) # type: ignore
|
92
|
-
return RunCollection(runs) # type: ignore
|
93
|
-
|
94
|
-
|
95
|
-
def list_runs(experiment_names: list[str] | None = None) -> RunCollection:
|
96
|
-
"""
|
97
|
-
List all runs for the specified experiments.
|
98
|
-
|
99
|
-
This function retrieves all runs for the given list of experiment names.
|
100
|
-
If no experiment names are provided (None), it defaults to searching all runs
|
101
|
-
for the currently active experiment. If an empty list is provided, the function
|
102
|
-
will search all runs for all experiments except the "Default" experiment.
|
103
|
-
The function returns the results as a `RunCollection` object.
|
104
|
-
|
105
|
-
Note:
|
106
|
-
The returned runs are sorted by their start time in ascending order.
|
107
|
-
|
108
|
-
Args:
|
109
|
-
experiment_names (list[str] | None): List of experiment names to search
|
110
|
-
for runs. If None or an empty list is provided, the function will
|
111
|
-
search the currently active experiment or all experiments except
|
112
|
-
the "Default" experiment.
|
113
|
-
|
114
|
-
Returns:
|
115
|
-
A `RunCollection` object containing the runs for the specified experiments.
|
116
|
-
"""
|
117
|
-
if experiment_names == []:
|
118
|
-
experiments = mlflow.search_experiments()
|
119
|
-
experiment_names = [e.name for e in experiments if e.name != "Default"]
|
120
|
-
|
121
|
-
return search_runs(experiment_names=experiment_names)
|
122
|
-
|
123
|
-
|
124
43
|
T = TypeVar("T")
|
125
44
|
P = ParamSpec("P")
|
126
45
|
|
@@ -132,6 +51,11 @@ class RunCollection:
|
|
132
51
|
|
133
52
|
This class provides methods to interact with the runs, such as filtering,
|
134
53
|
retrieving specific runs, and accessing run information.
|
54
|
+
|
55
|
+
Key Features:
|
56
|
+
- Filtering: Easily filter runs based on various criteria.
|
57
|
+
- Retrieval: Access specific runs by index or through methods.
|
58
|
+
- Metadata: Access run metadata and associated information.
|
135
59
|
"""
|
136
60
|
|
137
61
|
_runs: list[Run]
|
@@ -544,7 +468,9 @@ class RunCollection:
|
|
544
468
|
"""
|
545
469
|
return (func(dir, *args, **kwargs) for dir in self.info.artifact_dir)
|
546
470
|
|
547
|
-
def group_by(
|
471
|
+
def group_by(
|
472
|
+
self, *names: str | list[str]
|
473
|
+
) -> dict[tuple[str | None, ...], RunCollection]:
|
548
474
|
"""
|
549
475
|
Group runs by specified parameter names.
|
550
476
|
|
@@ -569,25 +495,6 @@ class RunCollection:
|
|
569
495
|
|
570
496
|
return {key: RunCollection(runs) for key, runs in grouped_runs.items()}
|
571
497
|
|
572
|
-
def group_by_values(self, *names: str | list[str]) -> list[RunCollection]:
|
573
|
-
"""
|
574
|
-
Group runs by specified parameter names.
|
575
|
-
|
576
|
-
This method groups the runs in the collection based on the values of the
|
577
|
-
specified parameters. Each unique combination of parameter values will
|
578
|
-
form a separate RunCollection in the returned list.
|
579
|
-
|
580
|
-
Args:
|
581
|
-
*names (str | list[str]): The names of the parameters to group by.
|
582
|
-
This can be a single parameter name or multiple names provided
|
583
|
-
as separate arguments or as a list.
|
584
|
-
|
585
|
-
Returns:
|
586
|
-
list[RunCollection]: A list of RunCollection objects, where each
|
587
|
-
object contains runs that match the specified parameter values.
|
588
|
-
"""
|
589
|
-
return list(self.group_by(*names).values())
|
590
|
-
|
591
498
|
|
592
499
|
def _param_matches(run: Run, key: str, value: Any) -> bool:
|
593
500
|
"""
|
@@ -747,7 +654,9 @@ def find_last_run(runs: list[Run], config: object | None = None, **kwargs) -> Ru
|
|
747
654
|
return filtered_runs[-1]
|
748
655
|
|
749
656
|
|
750
|
-
def try_find_last_run(
|
657
|
+
def try_find_last_run(
|
658
|
+
runs: list[Run], config: object | None = None, **kwargs
|
659
|
+
) -> Run | None:
|
751
660
|
"""
|
752
661
|
Find the last run based on the provided configuration.
|
753
662
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: hydraflow
|
3
|
-
Version: 0.2.
|
3
|
+
Version: 0.2.9
|
4
4
|
Summary: Hydraflow integrates Hydra and MLflow to manage and track machine learning experiments.
|
5
5
|
Project-URL: Documentation, https://github.com/daizutabi/hydraflow
|
6
6
|
Project-URL: Source, https://github.com/daizutabi/hydraflow
|
@@ -0,0 +1,12 @@
|
|
1
|
+
hydraflow/__init__.py,sha256=B7rWSiGP5WwWjijcb41Bv9uuo5MQ6gbBbVWGAWYtK-k,598
|
2
|
+
hydraflow/asyncio.py,sha256=jdXuEFC6f7L_Dq6beASFZPQSvCnGimVxU-PRFsNc5U0,6241
|
3
|
+
hydraflow/config.py,sha256=6TCKNQZ3sSrIEvl245T2udwFuknejyN1dMcIVmOHdrQ,2102
|
4
|
+
hydraflow/context.py,sha256=G7JMrG70sgBH2qILXl5nkGWNUoRggj518JWUq0ZiJ9E,7776
|
5
|
+
hydraflow/info.py,sha256=Vj2sT66Ric63mmaq7Yu8nDFhsGQYO3MCHrxFpapDufc,3458
|
6
|
+
hydraflow/mlflow.py,sha256=Q8RGijSURTjRkEDxzi_2Tk9KOx3QK__al5aArGQriHA,7249
|
7
|
+
hydraflow/progress.py,sha256=UIIKlweji3L0uRi4hZ_DrtRcnayHPlsMoug7hVEKq8k,6753
|
8
|
+
hydraflow/run_collection.py,sha256=V5lGdGHYgsSpBOYGaVEL1mpKJvdiEshBL0KmmZ8qeZo,29161
|
9
|
+
hydraflow-0.2.9.dist-info/METADATA,sha256=ZjJQz_4MogGkcs16dOwnsp_J0icg9ypgQdXOYxVdxJg,4181
|
10
|
+
hydraflow-0.2.9.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
11
|
+
hydraflow-0.2.9.dist-info/licenses/LICENSE,sha256=IGdDrBPqz1O0v_UwCW-NJlbX9Hy9b3uJ11t28y2srmY,1062
|
12
|
+
hydraflow-0.2.9.dist-info/RECORD,,
|
hydraflow-0.2.7.dist-info/RECORD
DELETED
@@ -1,12 +0,0 @@
|
|
1
|
-
hydraflow/__init__.py,sha256=ObIv7fGbNsqUhZf3sst-9pbgyFsJr6jVsNV10NmMQas,483
|
2
|
-
hydraflow/asyncio.py,sha256=yh851L315QHzRBwq6r-uwO2oZKgz1JawHp-fswfxT1E,6175
|
3
|
-
hydraflow/config.py,sha256=6TCKNQZ3sSrIEvl245T2udwFuknejyN1dMcIVmOHdrQ,2102
|
4
|
-
hydraflow/context.py,sha256=8Qn99yCSkCarDDthQ6hjgW80CBBIg0H7fnLvtw4ZXo8,7248
|
5
|
-
hydraflow/info.py,sha256=LziP71wQ-tDQPMUPFV_6JExBU8r-Ja-O05F07b_RUcc,1812
|
6
|
-
hydraflow/mlflow.py,sha256=USd51C5YFlk4Bjhs4F1PMakxDxjD6Nn2t4GhL6aZ6QQ,3647
|
7
|
-
hydraflow/progress.py,sha256=0GJfKnnY_SAHVWpGvLdgOBsogGs8vVofjLuphuUEy2g,4296
|
8
|
-
hydraflow/run_collection.py,sha256=NO_QEwIwxU0EouKCJ4HAhXd35uJrxqolI7vM5QfsNxw,33152
|
9
|
-
hydraflow-0.2.7.dist-info/METADATA,sha256=_kqK5pFLntvmiFIc1UBWOzDSRMeerXDZ0ZozhlTMkSw,4181
|
10
|
-
hydraflow-0.2.7.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
11
|
-
hydraflow-0.2.7.dist-info/licenses/LICENSE,sha256=IGdDrBPqz1O0v_UwCW-NJlbX9Hy9b3uJ11t28y2srmY,1062
|
12
|
-
hydraflow-0.2.7.dist-info/RECORD,,
|
File without changes
|
File without changes
|