hydraflow 0.1.5__py3-none-any.whl → 0.2.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- hydraflow/__init__.py +0 -10
- hydraflow/config.py +8 -7
- hydraflow/context.py +31 -19
- hydraflow/mlflow.py +23 -0
- hydraflow/runs.py +213 -303
- {hydraflow-0.1.5.dist-info → hydraflow-0.2.0.dist-info}/METADATA +1 -1
- hydraflow-0.2.0.dist-info/RECORD +9 -0
- hydraflow/util.py +0 -24
- hydraflow-0.1.5.dist-info/RECORD +0 -10
- {hydraflow-0.1.5.dist-info → hydraflow-0.2.0.dist-info}/WHEEL +0 -0
- {hydraflow-0.1.5.dist-info → hydraflow-0.2.0.dist-info}/licenses/LICENSE +0 -0
hydraflow/__init__.py
CHANGED
@@ -3,15 +3,10 @@ from .mlflow import set_experiment
|
|
3
3
|
from .runs import (
|
4
4
|
Run,
|
5
5
|
Runs,
|
6
|
-
drop_unique_params,
|
7
6
|
filter_runs,
|
8
|
-
get_artifact_dir,
|
9
|
-
get_artifact_path,
|
10
|
-
get_artifact_uri,
|
11
7
|
get_param_dict,
|
12
8
|
get_param_names,
|
13
9
|
get_run,
|
14
|
-
get_run_id,
|
15
10
|
load_config,
|
16
11
|
)
|
17
12
|
|
@@ -20,15 +15,10 @@ __all__ = [
|
|
20
15
|
"Run",
|
21
16
|
"Runs",
|
22
17
|
"chdir_artifact",
|
23
|
-
"drop_unique_params",
|
24
18
|
"filter_runs",
|
25
|
-
"get_artifact_dir",
|
26
|
-
"get_artifact_path",
|
27
|
-
"get_artifact_uri",
|
28
19
|
"get_param_dict",
|
29
20
|
"get_param_names",
|
30
21
|
"get_run",
|
31
|
-
"get_run_id",
|
32
22
|
"load_config",
|
33
23
|
"log_run",
|
34
24
|
"set_experiment",
|
hydraflow/config.py
CHANGED
@@ -16,18 +16,19 @@ if TYPE_CHECKING:
|
|
16
16
|
|
17
17
|
def iter_params(config: object, prefix: str = "") -> Iterator[tuple[str, Any]]:
|
18
18
|
"""
|
19
|
-
|
19
|
+
Recursively iterate over the parameters in the given configuration object.
|
20
20
|
|
21
|
-
This function
|
22
|
-
|
21
|
+
This function traverses the configuration object and yields key-value pairs
|
22
|
+
representing the parameters. The keys are prefixed with the provided prefix.
|
23
23
|
|
24
24
|
Args:
|
25
|
-
config
|
26
|
-
|
27
|
-
|
25
|
+
config: The configuration object to iterate over. This can be a dictionary,
|
26
|
+
list, DictConfig, or ListConfig.
|
27
|
+
prefix: The prefix to prepend to the parameter keys.
|
28
|
+
Defaults to an empty string.
|
28
29
|
|
29
30
|
Yields:
|
30
|
-
Key-value pairs representing the parameters.
|
31
|
+
Key-value pairs representing the parameters in the configuration object.
|
31
32
|
"""
|
32
33
|
if not isinstance(config, (DictConfig, ListConfig)):
|
33
34
|
config = OmegaConf.create(config) # type: ignore
|
hydraflow/context.py
CHANGED
@@ -5,6 +5,7 @@ run context.
|
|
5
5
|
|
6
6
|
from __future__ import annotations
|
7
7
|
|
8
|
+
import logging
|
8
9
|
import os
|
9
10
|
import time
|
10
11
|
from contextlib import contextmanager
|
@@ -17,15 +18,14 @@ from hydra.core.hydra_config import HydraConfig
|
|
17
18
|
from watchdog.events import FileModifiedEvent, FileSystemEventHandler
|
18
19
|
from watchdog.observers import Observer
|
19
20
|
|
20
|
-
from hydraflow.mlflow import log_params
|
21
|
-
from hydraflow.runs import get_artifact_path
|
22
|
-
from hydraflow.util import uri_to_path
|
21
|
+
from hydraflow.mlflow import get_artifact_dir, log_params
|
23
22
|
|
24
23
|
if TYPE_CHECKING:
|
25
24
|
from collections.abc import Callable, Iterator
|
26
25
|
|
27
26
|
from mlflow.entities.run import Run
|
28
|
-
|
27
|
+
|
28
|
+
log = logging.getLogger(__name__)
|
29
29
|
|
30
30
|
|
31
31
|
@dataclass
|
@@ -66,8 +66,7 @@ def log_run(
|
|
66
66
|
|
67
67
|
hc = HydraConfig.get()
|
68
68
|
output_dir = Path(hc.runtime.output_dir)
|
69
|
-
|
70
|
-
info = Info(output_dir, uri_to_path(uri))
|
69
|
+
info = Info(output_dir, get_artifact_dir())
|
71
70
|
|
72
71
|
# Save '.hydra' config directory first.
|
73
72
|
output_subdir = output_dir / (hc.output_subdir or "")
|
@@ -81,13 +80,21 @@ def log_run(
|
|
81
80
|
with watch(log_artifact, output_dir):
|
82
81
|
yield info
|
83
82
|
|
83
|
+
except Exception as e:
|
84
|
+
log.error(f"Error during log_run: {e}")
|
85
|
+
raise
|
86
|
+
|
84
87
|
finally:
|
85
88
|
# Save output_dir including '.hydra' config directory.
|
86
89
|
mlflow.log_artifacts(output_dir.as_posix())
|
87
90
|
|
88
91
|
|
89
92
|
@contextmanager
|
90
|
-
def watch(
|
93
|
+
def watch(
|
94
|
+
func: Callable[[Path], None],
|
95
|
+
dir: Path | str = "",
|
96
|
+
timeout: int = 60,
|
97
|
+
) -> Iterator[None]:
|
91
98
|
"""
|
92
99
|
Watch the given directory for changes and call the provided function
|
93
100
|
when a change is detected.
|
@@ -98,25 +105,23 @@ def watch(func: Callable[[Path], None], dir: Path | str = "", timeout: int = 60)
|
|
98
105
|
period or until the context is exited.
|
99
106
|
|
100
107
|
Args:
|
101
|
-
func
|
108
|
+
func: The function to call when a change is
|
102
109
|
detected. It should accept a single argument of type `Path`,
|
103
110
|
which is the path of the modified file.
|
104
|
-
dir
|
111
|
+
dir: The directory to watch. If not specified,
|
105
112
|
the current MLflow artifact URI is used. Defaults to "".
|
106
|
-
timeout
|
113
|
+
timeout: The timeout period in seconds for the watcher
|
107
114
|
to run after the context is exited. Defaults to 60.
|
108
115
|
|
109
116
|
Yields:
|
110
|
-
None
|
117
|
+
None
|
111
118
|
|
112
119
|
Example:
|
113
120
|
with watch(log_artifact, "/path/to/dir"):
|
114
121
|
# Perform operations while watching the directory for changes
|
115
122
|
pass
|
116
123
|
"""
|
117
|
-
|
118
|
-
uri = mlflow.get_artifact_uri()
|
119
|
-
dir = uri_to_path(uri)
|
124
|
+
dir = dir or get_artifact_dir()
|
120
125
|
|
121
126
|
handler = Handler(func)
|
122
127
|
observer = Observer()
|
@@ -126,6 +131,10 @@ def watch(func: Callable[[Path], None], dir: Path | str = "", timeout: int = 60)
|
|
126
131
|
try:
|
127
132
|
yield
|
128
133
|
|
134
|
+
except Exception as e:
|
135
|
+
log.error(f"Error during watch: {e}")
|
136
|
+
raise
|
137
|
+
|
129
138
|
finally:
|
130
139
|
elapsed = 0
|
131
140
|
while not observer.event_queue.empty():
|
@@ -150,7 +159,7 @@ class Handler(FileSystemEventHandler):
|
|
150
159
|
|
151
160
|
@contextmanager
|
152
161
|
def chdir_artifact(
|
153
|
-
run: Run
|
162
|
+
run: Run,
|
154
163
|
artifact_path: str | None = None,
|
155
164
|
) -> Iterator[Path]:
|
156
165
|
"""
|
@@ -166,11 +175,14 @@ def chdir_artifact(
|
|
166
175
|
artifact_path: The artifact path.
|
167
176
|
"""
|
168
177
|
curdir = Path.cwd()
|
178
|
+
path = mlflow.artifacts.download_artifacts(
|
179
|
+
run_id=run.info.run_id,
|
180
|
+
artifact_path=artifact_path,
|
181
|
+
)
|
169
182
|
|
170
|
-
|
171
|
-
|
172
|
-
os.chdir(artifact_dir)
|
183
|
+
os.chdir(path)
|
173
184
|
try:
|
174
|
-
yield
|
185
|
+
yield Path(path)
|
186
|
+
|
175
187
|
finally:
|
176
188
|
os.chdir(curdir)
|
hydraflow/mlflow.py
CHANGED
@@ -5,6 +5,8 @@ configuration objects and set up experiments using MLflow.
|
|
5
5
|
|
6
6
|
from __future__ import annotations
|
7
7
|
|
8
|
+
from pathlib import Path
|
9
|
+
|
8
10
|
import mlflow
|
9
11
|
from hydra.core.hydra_config import HydraConfig
|
10
12
|
|
@@ -47,3 +49,24 @@ def log_params(config: object, *, synchronous: bool | None = None) -> None:
|
|
47
49
|
"""
|
48
50
|
for key, value in iter_params(config):
|
49
51
|
mlflow.log_param(key, value, synchronous=synchronous)
|
52
|
+
|
53
|
+
|
54
|
+
def get_artifact_dir(artifact_path: str | None = None) -> Path:
|
55
|
+
"""
|
56
|
+
Get the artifact directory for the given artifact path.
|
57
|
+
|
58
|
+
This function retrieves the artifact URI for the specified artifact path
|
59
|
+
using MLflow, downloads the artifacts to a local directory, and returns
|
60
|
+
the path to that directory.
|
61
|
+
|
62
|
+
Args:
|
63
|
+
artifact_path: The artifact path for which to get the directory.
|
64
|
+
Defaults to None.
|
65
|
+
|
66
|
+
Returns:
|
67
|
+
The local path to the directory where the artifacts are downloaded.
|
68
|
+
"""
|
69
|
+
uri = mlflow.get_artifact_uri(artifact_path)
|
70
|
+
dir = mlflow.artifacts.download_artifacts(artifact_uri=uri)
|
71
|
+
|
72
|
+
return Path(dir)
|
hydraflow/runs.py
CHANGED
@@ -1,30 +1,85 @@
|
|
1
1
|
"""
|
2
2
|
This module provides functionality for managing and interacting with MLflow runs.
|
3
|
-
It includes
|
4
|
-
log artifacts and configurations.
|
3
|
+
It includes the `Runs` class and various methods to filter runs, retrieve run information,
|
4
|
+
log artifacts, and load configurations.
|
5
5
|
"""
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
from dataclasses import dataclass
|
10
10
|
from functools import cache
|
11
|
-
from
|
11
|
+
from itertools import chain
|
12
12
|
from typing import TYPE_CHECKING, Any
|
13
13
|
|
14
14
|
import mlflow
|
15
|
-
|
16
|
-
from mlflow.entities.run import Run
|
17
|
-
from mlflow.tracking import
|
15
|
+
from mlflow.entities import ViewType
|
16
|
+
from mlflow.entities.run import Run
|
17
|
+
from mlflow.tracking.fluent import SEARCH_MAX_RESULTS_PANDAS
|
18
18
|
from omegaconf import DictConfig, OmegaConf
|
19
|
-
from pandas import DataFrame, Series
|
20
19
|
|
21
20
|
from hydraflow.config import iter_params
|
22
|
-
from hydraflow.util import uri_to_path
|
23
21
|
|
24
22
|
if TYPE_CHECKING:
|
25
23
|
from typing import Any
|
26
24
|
|
27
25
|
|
26
|
+
def search_runs(
|
27
|
+
experiment_ids: list[str] | None = None,
|
28
|
+
filter_string: str = "",
|
29
|
+
run_view_type: int = ViewType.ACTIVE_ONLY,
|
30
|
+
max_results: int = SEARCH_MAX_RESULTS_PANDAS,
|
31
|
+
order_by: list[str] | None = None,
|
32
|
+
search_all_experiments: bool = False,
|
33
|
+
experiment_names: list[str] | None = None,
|
34
|
+
) -> Runs:
|
35
|
+
"""
|
36
|
+
Search for Runs that fit the specified criteria.
|
37
|
+
|
38
|
+
This function wraps the `mlflow.search_runs` function and returns the results
|
39
|
+
as a `Runs` object. It allows for flexible searching of MLflow runs based on
|
40
|
+
various criteria.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
experiment_ids: List of experiment IDs. Search can work with experiment IDs or
|
44
|
+
experiment names, but not both in the same call. Values other than
|
45
|
+
``None`` or ``[]`` will result in error if ``experiment_names`` is
|
46
|
+
also not ``None`` or ``[]``. ``None`` will default to the active
|
47
|
+
experiment if ``experiment_names`` is ``None`` or ``[]``.
|
48
|
+
filter_string: Filter query string, defaults to searching all runs.
|
49
|
+
run_view_type: one of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``, or ``ALL`` runs
|
50
|
+
defined in :py:class:`mlflow.entities.ViewType`.
|
51
|
+
max_results: The maximum number of runs to put in the dataframe. Default is 100,000
|
52
|
+
to avoid causing out-of-memory issues on the user's machine.
|
53
|
+
order_by: List of columns to order by (e.g., "metrics.rmse"). The ``order_by`` column
|
54
|
+
can contain an optional ``DESC`` or ``ASC`` value. The default is ``ASC``.
|
55
|
+
The default ordering is to sort by ``start_time DESC``, then ``run_id``.
|
56
|
+
output_format: The output format to be returned. If ``pandas``, a ``pandas.DataFrame``
|
57
|
+
is returned and, if ``list``, a list of :py:class:`mlflow.entities.Run`
|
58
|
+
is returned.
|
59
|
+
search_all_experiments: Boolean specifying whether all experiments should be searched.
|
60
|
+
Only honored if ``experiment_ids`` is ``[]`` or ``None``.
|
61
|
+
experiment_names: List of experiment names. Search can work with experiment IDs or
|
62
|
+
experiment names, but not both in the same call. Values other
|
63
|
+
than ``None`` or ``[]`` will result in error if ``experiment_ids``
|
64
|
+
is also not ``None`` or ``[]``. ``None`` will default to the active
|
65
|
+
experiment if ``experiment_ids`` is ``None`` or ``[]``.
|
66
|
+
|
67
|
+
Returns:
|
68
|
+
A `Runs` object containing the search results.
|
69
|
+
"""
|
70
|
+
runs = mlflow.search_runs(
|
71
|
+
experiment_ids=experiment_ids,
|
72
|
+
filter_string=filter_string,
|
73
|
+
run_view_type=run_view_type,
|
74
|
+
max_results=max_results,
|
75
|
+
order_by=order_by,
|
76
|
+
output_format="list",
|
77
|
+
search_all_experiments=search_all_experiments,
|
78
|
+
experiment_names=experiment_names,
|
79
|
+
)
|
80
|
+
return Runs(runs) # type: ignore
|
81
|
+
|
82
|
+
|
28
83
|
@dataclass
|
29
84
|
class Runs:
|
30
85
|
"""
|
@@ -34,7 +89,7 @@ class Runs:
|
|
34
89
|
retrieving specific runs, and accessing run information.
|
35
90
|
"""
|
36
91
|
|
37
|
-
runs: list[
|
92
|
+
runs: list[Run]
|
38
93
|
|
39
94
|
def __repr__(self) -> str:
|
40
95
|
return f"{self.__class__.__name__}({len(self)})"
|
@@ -53,115 +108,95 @@ class Runs:
|
|
53
108
|
be included in the returned `Runs` object.
|
54
109
|
|
55
110
|
Args:
|
56
|
-
config
|
57
|
-
This object should contain key-value pairs representing
|
58
|
-
the parameters to filter by.
|
111
|
+
config: The configuration object to filter the runs.
|
59
112
|
|
60
113
|
Returns:
|
61
|
-
|
114
|
+
A new `Runs` object containing the filtered runs.
|
62
115
|
"""
|
63
116
|
return Runs(filter_runs(self.runs, config))
|
64
117
|
|
65
|
-
def get(self, config: object) -> Run:
|
118
|
+
def get(self, config: object) -> Run | None:
|
66
119
|
"""
|
67
120
|
Retrieve a specific run based on the provided configuration.
|
68
121
|
|
69
122
|
This method filters the runs in the collection according to the
|
70
123
|
specified configuration object and returns the run that matches
|
71
124
|
the provided parameters. If more than one run matches the criteria,
|
72
|
-
|
125
|
+
a `ValueError` is raised.
|
73
126
|
|
74
127
|
Args:
|
75
|
-
config
|
128
|
+
config: The configuration object to identify the run.
|
76
129
|
|
77
130
|
Returns:
|
78
131
|
Run: The run object that matches the provided configuration.
|
132
|
+
None, if the runs are not in a DataFrame format.
|
79
133
|
|
80
134
|
Raises:
|
81
135
|
ValueError: If the number of filtered runs is not exactly one.
|
82
136
|
"""
|
83
|
-
return
|
137
|
+
return get_run(self.runs, config)
|
84
138
|
|
85
|
-
def
|
139
|
+
def get_earliest_run(self, config: object | None = None, **kwargs) -> Run | None:
|
86
140
|
"""
|
87
|
-
|
141
|
+
Get the earliest run from the list of runs based on the start time.
|
88
142
|
|
89
|
-
This method
|
90
|
-
|
91
|
-
|
143
|
+
This method filters the runs based on the configuration if provided
|
144
|
+
and returns the run with the earliest start time.
|
145
|
+
|
146
|
+
Args:
|
147
|
+
config: The configuration object to filter the runs.
|
148
|
+
If None, no filtering is applied.
|
149
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
92
150
|
|
93
151
|
Returns:
|
94
|
-
|
152
|
+
The run with the earliest start time, or None if no runs match the criteria.
|
153
|
+
"""
|
154
|
+
return get_earliest_run(self.runs, config, **kwargs)
|
95
155
|
|
96
|
-
|
97
|
-
NotImplementedError: If the runs are not in a DataFrame format.
|
156
|
+
def get_latest_run(self, config: object | None = None, **kwargs) -> Run | None:
|
98
157
|
"""
|
99
|
-
|
100
|
-
return Runs(drop_unique_params(self.runs))
|
158
|
+
Get the latest run from the list of runs based on the start time.
|
101
159
|
|
102
|
-
|
160
|
+
Args:
|
161
|
+
config: The configuration object to filter the runs.
|
162
|
+
If None, no filtering is applied.
|
163
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
164
|
+
|
165
|
+
Returns:
|
166
|
+
The run with the latest start time, or None if no runs match the criteria.
|
167
|
+
"""
|
168
|
+
return get_latest_run(self.runs, config, **kwargs)
|
103
169
|
|
104
170
|
def get_param_names(self) -> list[str]:
|
105
171
|
"""
|
106
172
|
Get the parameter names from the runs.
|
107
173
|
|
108
|
-
This method extracts the parameter names from the
|
109
|
-
|
110
|
-
|
174
|
+
This method extracts the unique parameter names from the provided list of runs.
|
175
|
+
It iterates through each run and collects the parameter names into a set to
|
176
|
+
ensure uniqueness.
|
111
177
|
|
112
178
|
Returns:
|
113
|
-
|
114
|
-
|
115
|
-
Raises:
|
116
|
-
NotImplementedError: If the runs are not in a DataFrame format.
|
179
|
+
A list of unique parameter names.
|
117
180
|
"""
|
118
|
-
|
119
|
-
return get_param_names(self.runs)
|
120
|
-
|
121
|
-
raise NotImplementedError
|
181
|
+
return get_param_names(self.runs)
|
122
182
|
|
123
183
|
def get_param_dict(self) -> dict[str, list[str]]:
|
124
184
|
"""
|
125
|
-
Get the parameter dictionary from the runs.
|
185
|
+
Get the parameter dictionary from the list of runs.
|
126
186
|
|
127
187
|
This method extracts the parameter names and their corresponding values
|
128
|
-
from the
|
129
|
-
|
130
|
-
|
188
|
+
from the provided list of runs. It iterates through each run and collects
|
189
|
+
the parameter values into a dictionary where the keys are parameter names
|
190
|
+
and the values are lists of parameter values.
|
131
191
|
|
132
192
|
Returns:
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
Raises:
|
137
|
-
NotImplementedError: If the runs are not in a DataFrame format.
|
193
|
+
A dictionary where the keys are parameter names and the values are lists
|
194
|
+
of parameter values.
|
138
195
|
"""
|
139
|
-
|
140
|
-
return get_param_dict(self.runs)
|
141
|
-
|
142
|
-
raise NotImplementedError
|
143
|
-
|
144
|
-
|
145
|
-
def search_runs(*args, **kwargs) -> Runs:
|
146
|
-
"""
|
147
|
-
Search for runs that match the specified criteria.
|
148
|
-
|
149
|
-
This function wraps the `mlflow.search_runs` function and returns the results
|
150
|
-
as a `Runs` object. It allows for flexible searching of MLflow runs based on
|
151
|
-
various criteria.
|
152
|
-
|
153
|
-
Args:
|
154
|
-
*args: Positional arguments to pass to `mlflow.search_runs`.
|
155
|
-
**kwargs: Keyword arguments to pass to `mlflow.search_runs`.
|
156
|
-
|
157
|
-
Returns:
|
158
|
-
Runs: A `Runs` object containing the search results.
|
159
|
-
"""
|
160
|
-
runs = mlflow.search_runs(*args, **kwargs)
|
161
|
-
return Runs(runs)
|
196
|
+
return get_param_dict(self.runs)
|
162
197
|
|
163
198
|
|
164
|
-
def filter_runs(runs: list[
|
199
|
+
def filter_runs(runs: list[Run], config: object, **kwargs) -> list[Run]:
|
165
200
|
"""
|
166
201
|
Filter the runs based on the provided configuration.
|
167
202
|
|
@@ -169,22 +204,26 @@ def filter_runs(runs: list[Run_] | DataFrame, config: object) -> list[Run_] | Da
|
|
169
204
|
specified configuration object. The configuration object should
|
170
205
|
contain key-value pairs that correspond to the parameters of the
|
171
206
|
runs. Only the runs that match all the specified parameters will
|
172
|
-
be included in the returned
|
207
|
+
be included in the returned list of runs.
|
173
208
|
|
174
209
|
Args:
|
175
210
|
runs: The runs to filter.
|
176
211
|
config: The configuration object to filter the runs.
|
212
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
177
213
|
|
178
214
|
Returns:
|
179
|
-
|
215
|
+
A filtered list of runs.
|
180
216
|
"""
|
181
|
-
|
182
|
-
|
217
|
+
for key, value in chain(iter_params(config), kwargs.items()):
|
218
|
+
runs = [run for run in runs if _is_equal(run, key, value)]
|
183
219
|
|
184
|
-
|
220
|
+
if len(runs) == 0:
|
221
|
+
return []
|
222
|
+
|
223
|
+
return runs
|
185
224
|
|
186
225
|
|
187
|
-
def _is_equal(run:
|
226
|
+
def _is_equal(run: Run, key: str, value: Any) -> bool:
|
188
227
|
param = run.data.params.get(key, value)
|
189
228
|
|
190
229
|
if param is None:
|
@@ -193,275 +232,146 @@ def _is_equal(run: Run_, key: str, value: Any) -> bool:
|
|
193
232
|
return type(value)(param) == value
|
194
233
|
|
195
234
|
|
196
|
-
def
|
197
|
-
for key, value in iter_params(config):
|
198
|
-
runs = [run for run in runs if _is_equal(run, key, value)]
|
199
|
-
|
200
|
-
return runs
|
201
|
-
|
202
|
-
|
203
|
-
def _filter_runs_dataframe(runs: DataFrame, config: object) -> DataFrame:
|
204
|
-
index = np.ones(len(runs), dtype=bool)
|
205
|
-
|
206
|
-
for key, value in iter_params(config):
|
207
|
-
name = f"params.{key}"
|
208
|
-
|
209
|
-
if name in runs:
|
210
|
-
series = runs[name]
|
211
|
-
is_value = -series.isna()
|
212
|
-
param = series.fillna(value).astype(type(value))
|
213
|
-
index &= is_value & (param == value)
|
214
|
-
|
215
|
-
return runs[index]
|
216
|
-
|
217
|
-
|
218
|
-
def get_run(runs: list[Run_] | DataFrame, config: object) -> Run_ | Series:
|
235
|
+
def get_run(runs: list[Run], config: object, **kwargs) -> Run | None:
|
219
236
|
"""
|
220
237
|
Retrieve a specific run based on the provided configuration.
|
221
238
|
|
222
239
|
This method filters the runs in the collection according to the
|
223
240
|
specified configuration object and returns the run that matches
|
224
241
|
the provided parameters. If more than one run matches the criteria,
|
225
|
-
|
242
|
+
a `ValueError` is raised.
|
226
243
|
|
227
244
|
Args:
|
228
245
|
runs: The runs to filter.
|
229
246
|
config: The configuration object to identify the run.
|
247
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
230
248
|
|
231
249
|
Returns:
|
232
|
-
|
250
|
+
The run object that matches the provided configuration, or None
|
251
|
+
if no runs match the criteria.
|
252
|
+
|
253
|
+
Raises:
|
254
|
+
ValueError: If more than one run matches the criteria.
|
233
255
|
"""
|
234
|
-
runs = filter_runs(runs, config)
|
256
|
+
runs = filter_runs(runs, config, **kwargs)
|
257
|
+
|
258
|
+
if len(runs) == 0:
|
259
|
+
return None
|
235
260
|
|
236
261
|
if len(runs) == 1:
|
237
|
-
return runs[0]
|
262
|
+
return runs[0]
|
238
263
|
|
239
|
-
msg = f"number of
|
264
|
+
msg = f"Multiple runs were filtered. Expected number of runs is 1, but found {len(runs)} runs."
|
240
265
|
raise ValueError(msg)
|
241
266
|
|
242
267
|
|
243
|
-
def
|
268
|
+
def get_earliest_run(runs: list[Run], config: object | None = None, **kwargs) -> Run | None:
|
244
269
|
"""
|
245
|
-
|
270
|
+
Get the earliest run from the list of runs based on the start time.
|
246
271
|
|
247
|
-
This method
|
248
|
-
|
249
|
-
that are shared among multiple runs.
|
272
|
+
This method filters the runs based on the configuration if provided
|
273
|
+
and returns the run with the earliest start time.
|
250
274
|
|
251
275
|
Args:
|
252
|
-
runs: The
|
276
|
+
runs: The list of runs.
|
277
|
+
config: The configuration object to filter the runs.
|
278
|
+
If None, no filtering is applied.
|
279
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
253
280
|
|
254
281
|
Returns:
|
255
|
-
|
282
|
+
The run with the earliest start time, or None if no runs match the criteria.
|
256
283
|
"""
|
284
|
+
if config is not None or kwargs:
|
285
|
+
runs = filter_runs(runs, config or {}, **kwargs)
|
257
286
|
|
258
|
-
|
259
|
-
return not column.startswith("params.") or len(runs[column].unique()) > 1
|
287
|
+
return min(runs, key=lambda run: run.info.start_time, default=None)
|
260
288
|
|
261
|
-
columns = [select(column) for column in runs.columns]
|
262
|
-
return runs.iloc[:, columns]
|
263
289
|
|
264
|
-
|
265
|
-
def get_param_names(runs: DataFrame) -> list[str]:
|
290
|
+
def get_latest_run(runs: list[Run], config: object | None = None, **kwargs) -> Run | None:
|
266
291
|
"""
|
267
|
-
Get the
|
292
|
+
Get the latest run from the list of runs based on the start time.
|
268
293
|
|
269
|
-
This method
|
270
|
-
|
271
|
-
that correspond to the parameters.
|
294
|
+
This method filters the runs based on the configuration if provided
|
295
|
+
and returns the run with the latest start time.
|
272
296
|
|
273
297
|
Args:
|
274
|
-
runs: The
|
298
|
+
runs: The list of runs.
|
299
|
+
config: The configuration object to filter the runs.
|
300
|
+
If None, no filtering is applied.
|
301
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
275
302
|
|
276
303
|
Returns:
|
277
|
-
|
304
|
+
The run with the latest start time, or None if no runs match the criteria.
|
278
305
|
"""
|
306
|
+
if config is not None or kwargs:
|
307
|
+
runs = filter_runs(runs, config or {}, **kwargs)
|
279
308
|
|
280
|
-
|
281
|
-
if column.startswith("params."):
|
282
|
-
return column.split(".", maxsplit=1)[-1]
|
283
|
-
|
284
|
-
return ""
|
285
|
-
|
286
|
-
columns = [get_name(column) for column in runs.columns]
|
287
|
-
return [column for column in columns if column]
|
309
|
+
return max(runs, key=lambda run: run.info.start_time, default=None)
|
288
310
|
|
289
311
|
|
290
|
-
def
|
312
|
+
def get_param_names(runs: list[Run]) -> list[str]:
|
291
313
|
"""
|
292
|
-
Get the parameter
|
293
|
-
|
294
|
-
This method extracts the parameter names and their corresponding values
|
295
|
-
from the runs in the collection. If the runs are stored in a DataFrame,
|
296
|
-
it retrieves the unique values for each parameter.
|
297
|
-
|
298
|
-
Args:
|
299
|
-
runs: The DataFrame containing the runs.
|
300
|
-
|
301
|
-
Returns:
|
302
|
-
dict[str, list[str]]: A dictionary of parameter names and
|
303
|
-
their corresponding values.
|
304
|
-
"""
|
305
|
-
params = {}
|
306
|
-
for name in get_param_names(runs):
|
307
|
-
params[name] = list(runs[f"params.{name}"].unique())
|
308
|
-
|
309
|
-
return params
|
310
|
-
|
311
|
-
|
312
|
-
@dataclass
|
313
|
-
class Run:
|
314
|
-
"""
|
315
|
-
A class to represent a specific MLflow run.
|
316
|
-
|
317
|
-
This class provides methods to interact with the run, such as retrieving
|
318
|
-
the run ID, artifact URI, and configuration. It also includes properties
|
319
|
-
to access the artifact directory, artifact path, and Hydra output directory.
|
320
|
-
"""
|
321
|
-
|
322
|
-
run: Run_ | Series | str
|
323
|
-
|
324
|
-
def __repr__(self) -> str:
|
325
|
-
return f"{self.__class__.__name__}({self.run_id!r})"
|
326
|
-
|
327
|
-
@property
|
328
|
-
def run_id(self) -> str:
|
329
|
-
"""
|
330
|
-
Get the run ID.
|
331
|
-
|
332
|
-
Returns:
|
333
|
-
str: The run ID.
|
334
|
-
"""
|
335
|
-
return get_run_id(self.run)
|
336
|
-
|
337
|
-
def artifact_uri(self, artifact_path: str | None = None) -> str:
|
338
|
-
"""
|
339
|
-
Get the artifact URI.
|
340
|
-
|
341
|
-
Args:
|
342
|
-
artifact_path (str | None): The artifact path.
|
343
|
-
|
344
|
-
Returns:
|
345
|
-
str: The artifact URI.
|
346
|
-
"""
|
347
|
-
return get_artifact_uri(self.run, artifact_path)
|
348
|
-
|
349
|
-
@property
|
350
|
-
def artifact_dir(self) -> Path:
|
351
|
-
"""
|
352
|
-
Get the artifact directory.
|
353
|
-
|
354
|
-
Returns:
|
355
|
-
Path: The artifact directory.
|
356
|
-
"""
|
357
|
-
return get_artifact_dir(self.run)
|
358
|
-
|
359
|
-
def artifact_path(self, artifact_path: str | None = None) -> Path:
|
360
|
-
"""
|
361
|
-
Get the artifact path.
|
362
|
-
|
363
|
-
Args:
|
364
|
-
artifact_path: The artifact path.
|
365
|
-
|
366
|
-
Returns:
|
367
|
-
Path: The artifact path.
|
368
|
-
"""
|
369
|
-
return get_artifact_path(self.run, artifact_path)
|
370
|
-
|
371
|
-
@property
|
372
|
-
def config(self) -> DictConfig:
|
373
|
-
"""
|
374
|
-
Get the configuration.
|
375
|
-
|
376
|
-
Returns:
|
377
|
-
DictConfig: The configuration.
|
378
|
-
"""
|
379
|
-
return load_config(self.run)
|
380
|
-
|
381
|
-
def log_hydra_output_dir(self) -> None:
|
382
|
-
"""
|
383
|
-
Log the Hydra output directory.
|
384
|
-
|
385
|
-
Returns:
|
386
|
-
None
|
387
|
-
"""
|
388
|
-
log_hydra_output_dir(self.run)
|
314
|
+
Get the parameter names from the runs.
|
389
315
|
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
Get the run ID.
|
316
|
+
This method extracts the unique parameter names from the provided list of runs.
|
317
|
+
It iterates through each run and collects the parameter names into a set to
|
318
|
+
ensure uniqueness.
|
394
319
|
|
395
320
|
Args:
|
396
|
-
|
321
|
+
runs: The list of runs from which to extract parameter names.
|
397
322
|
|
398
323
|
Returns:
|
399
|
-
|
324
|
+
A list of unique parameter names.
|
400
325
|
"""
|
401
|
-
|
402
|
-
return run
|
403
|
-
|
404
|
-
if isinstance(run, Run_):
|
405
|
-
return run.info.run_id
|
326
|
+
param_names = set()
|
406
327
|
|
407
|
-
|
328
|
+
for run in runs:
|
329
|
+
for param in run.data.params.keys():
|
330
|
+
param_names.add(param)
|
408
331
|
|
332
|
+
return list(param_names)
|
409
333
|
|
410
|
-
def get_artifact_uri(run: Run_ | Series | str, artifact_path: str | None = None) -> str:
|
411
|
-
"""
|
412
|
-
Get the artifact URI.
|
413
|
-
|
414
|
-
Args:
|
415
|
-
run: The run object.
|
416
|
-
artifact_path: The artifact path.
|
417
334
|
|
418
|
-
|
419
|
-
str: The artifact URI.
|
335
|
+
def get_param_dict(runs: list[Run]) -> dict[str, list[str]]:
|
420
336
|
"""
|
421
|
-
|
422
|
-
return artifact_utils.get_artifact_uri(run_id, artifact_path)
|
337
|
+
Get the parameter dictionary from the list of runs.
|
423
338
|
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
339
|
+
This method extracts the parameter names and their corresponding values
|
340
|
+
from the provided list of runs. It iterates through each run and collects
|
341
|
+
the parameter values into a dictionary where the keys are parameter names
|
342
|
+
and the values are lists of parameter values.
|
428
343
|
|
429
344
|
Args:
|
430
|
-
|
345
|
+
runs: The list of runs from which to extract parameter names and values.
|
431
346
|
|
432
347
|
Returns:
|
433
|
-
|
348
|
+
A dictionary where the keys are parameter names and the values are lists
|
349
|
+
of parameter values.
|
434
350
|
"""
|
435
|
-
|
436
|
-
return uri_to_path(uri)
|
351
|
+
params = {}
|
437
352
|
|
353
|
+
for name in get_param_names(runs):
|
354
|
+
it = (run.data.params[name] for run in runs if name in run.data.params)
|
355
|
+
params[name] = sorted(set(it))
|
438
356
|
|
439
|
-
|
440
|
-
"""
|
441
|
-
Get the artifact path.
|
357
|
+
return params
|
442
358
|
|
443
|
-
Args:
|
444
|
-
run: The run object.
|
445
|
-
artifact_path: The artifact path.
|
446
359
|
|
447
|
-
|
448
|
-
Path: The artifact path.
|
360
|
+
def load_config(run: Run) -> DictConfig:
|
449
361
|
"""
|
450
|
-
|
451
|
-
return artifact_dir / artifact_path if artifact_path else artifact_dir
|
362
|
+
Load the configuration for a given run.
|
452
363
|
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
Load the configuration.
|
364
|
+
This function loads the configuration for the provided Run instance
|
365
|
+
by downloading the configuration file from the MLflow artifacts and
|
366
|
+
loading it using OmegaConf.
|
457
367
|
|
458
368
|
Args:
|
459
|
-
run: The
|
369
|
+
run: The Run instance to load the configuration for.
|
460
370
|
|
461
371
|
Returns:
|
462
|
-
|
372
|
+
The loaded configuration.
|
463
373
|
"""
|
464
|
-
run_id =
|
374
|
+
run_id = run.info.run_id
|
465
375
|
return _load_config(run_id)
|
466
376
|
|
467
377
|
|
@@ -478,35 +388,35 @@ def _load_config(run_id: str) -> DictConfig:
|
|
478
388
|
return OmegaConf.load(path) # type: ignore
|
479
389
|
|
480
390
|
|
481
|
-
def get_hydra_output_dir(run: Run_ | Series | str) -> Path:
|
482
|
-
|
483
|
-
|
391
|
+
# def get_hydra_output_dir(run: Run_ | Series | str) -> Path:
|
392
|
+
# """
|
393
|
+
# Get the Hydra output directory.
|
484
394
|
|
485
|
-
|
486
|
-
|
395
|
+
# Args:
|
396
|
+
# run: The run object.
|
487
397
|
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
398
|
+
# Returns:
|
399
|
+
# Path: The Hydra output directory.
|
400
|
+
# """
|
401
|
+
# path = get_artifact_dir(run) / ".hydra/hydra.yaml"
|
492
402
|
|
493
|
-
|
494
|
-
|
495
|
-
|
403
|
+
# if path.exists():
|
404
|
+
# hc = OmegaConf.load(path)
|
405
|
+
# return Path(hc.hydra.runtime.output_dir)
|
496
406
|
|
497
|
-
|
407
|
+
# raise FileNotFoundError
|
498
408
|
|
499
409
|
|
500
|
-
def log_hydra_output_dir(run: Run_ | Series | str) -> None:
|
501
|
-
|
502
|
-
|
410
|
+
# def log_hydra_output_dir(run: Run_ | Series | str) -> None:
|
411
|
+
# """
|
412
|
+
# Log the Hydra output directory.
|
503
413
|
|
504
|
-
|
505
|
-
|
414
|
+
# Args:
|
415
|
+
# run: The run object.
|
506
416
|
|
507
|
-
|
508
|
-
|
509
|
-
|
510
|
-
|
511
|
-
|
512
|
-
|
417
|
+
# Returns:
|
418
|
+
# None
|
419
|
+
# """
|
420
|
+
# output_dir = get_hydra_output_dir(run)
|
421
|
+
# run_id = run if isinstance(run, str) else run.info.run_id
|
422
|
+
# mlflow.log_artifacts(output_dir.as_posix(), run_id=run_id)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: hydraflow
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.2.0
|
4
4
|
Summary: Hydraflow integrates Hydra and MLflow to manage and track machine learning experiments.
|
5
5
|
Project-URL: Documentation, https://github.com/daizutabi/hydraflow
|
6
6
|
Project-URL: Source, https://github.com/daizutabi/hydraflow
|
@@ -0,0 +1,9 @@
|
|
1
|
+
hydraflow/__init__.py,sha256=PzziOG9RnGAVbl9Yz4ScvsL8nfkjsuN0alMKRvZT-_Y,442
|
2
|
+
hydraflow/config.py,sha256=BcyOYvdiqSCsmUMA_EvnWPXuW0fC5cT-Q2ilBk9-5gc,1863
|
3
|
+
hydraflow/context.py,sha256=MqkEhKEZL_N3eb3v5u9D4EqKkiSmiPyXXafhPkALRlg,5129
|
4
|
+
hydraflow/mlflow.py,sha256=_Los9E38eG8sTiN8bGwZmvjCrS0S-wSGiA4fyhQM3Zw,2251
|
5
|
+
hydraflow/runs.py,sha256=NT7IzE-Pf7T2Ey-eWEPZzQQaX4Gt_RKDKSn2pj2yzGc,14304
|
6
|
+
hydraflow-0.2.0.dist-info/METADATA,sha256=dfQ2_-Nk79yVazy5BHasYK681kiG1z-_i4VxWT8fJjg,4224
|
7
|
+
hydraflow-0.2.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
8
|
+
hydraflow-0.2.0.dist-info/licenses/LICENSE,sha256=IGdDrBPqz1O0v_UwCW-NJlbX9Hy9b3uJ11t28y2srmY,1062
|
9
|
+
hydraflow-0.2.0.dist-info/RECORD,,
|
hydraflow/util.py
DELETED
@@ -1,24 +0,0 @@
|
|
1
|
-
import platform
|
2
|
-
from pathlib import Path
|
3
|
-
from urllib.parse import urlparse
|
4
|
-
|
5
|
-
|
6
|
-
def uri_to_path(uri: str) -> Path:
|
7
|
-
"""
|
8
|
-
Convert a URI to a path.
|
9
|
-
|
10
|
-
This function parses the given URI and converts it to a local file system
|
11
|
-
path. On Windows, if the path starts with a forward slash, it is removed
|
12
|
-
to ensure the path is correctly formatted.
|
13
|
-
|
14
|
-
Args:
|
15
|
-
uri (str): The URI to convert.
|
16
|
-
|
17
|
-
Returns:
|
18
|
-
Path: The path corresponding to the URI.
|
19
|
-
"""
|
20
|
-
path = urlparse(uri).path
|
21
|
-
if platform.system() == "Windows" and path.startswith("/"):
|
22
|
-
path = path[1:]
|
23
|
-
|
24
|
-
return Path(path)
|
hydraflow-0.1.5.dist-info/RECORD
DELETED
@@ -1,10 +0,0 @@
|
|
1
|
-
hydraflow/__init__.py,sha256=e1Q0Sskx39jaU2zkGNXjFWNC5xugEz_hDERTN_6Mzy8,666
|
2
|
-
hydraflow/config.py,sha256=WARa5u1F0n3wCOi65v8v8rUO78ME-mtzMeeeE2Yc1I8,1728
|
3
|
-
hydraflow/context.py,sha256=NYjIMepLtaKyvw1obpE8gR1qu1OBpSB_uc6-5So2tg8,5139
|
4
|
-
hydraflow/mlflow.py,sha256=2YWOYpv8eRB_ROD2yFh6ksKDXHvAPDYb86hrUi9zv6E,1558
|
5
|
-
hydraflow/runs.py,sha256=vH-hrlcoTo8HRmgUWam9gtLXAl_wDzX26HEZGWckdMs,14038
|
6
|
-
hydraflow/util.py,sha256=qdUGtBgY7qOF4Yr4PibJHImbLPf-6WYFVuIKu6zbNbY,614
|
7
|
-
hydraflow-0.1.5.dist-info/METADATA,sha256=8mCKAA9KjcJAUiqP-DPdMl4Gcp3MSXxOF34VYKA2P8I,4224
|
8
|
-
hydraflow-0.1.5.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
9
|
-
hydraflow-0.1.5.dist-info/licenses/LICENSE,sha256=IGdDrBPqz1O0v_UwCW-NJlbX9Hy9b3uJ11t28y2srmY,1062
|
10
|
-
hydraflow-0.1.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|