hydraflow 0.1.4__py3-none-any.whl → 0.2.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- hydraflow/__init__.py +0 -10
- hydraflow/config.py +27 -2
- hydraflow/context.py +92 -15
- hydraflow/mlflow.py +52 -0
- hydraflow/runs.py +315 -110
- hydraflow-0.2.0.dist-info/METADATA +111 -0
- hydraflow-0.2.0.dist-info/RECORD +9 -0
- hydraflow/util.py +0 -11
- hydraflow-0.1.4.dist-info/METADATA +0 -45
- hydraflow-0.1.4.dist-info/RECORD +0 -10
- {hydraflow-0.1.4.dist-info → hydraflow-0.2.0.dist-info}/WHEEL +0 -0
- {hydraflow-0.1.4.dist-info → hydraflow-0.2.0.dist-info}/licenses/LICENSE +0 -0
hydraflow/__init__.py
CHANGED
@@ -3,15 +3,10 @@ from .mlflow import set_experiment
|
|
3
3
|
from .runs import (
|
4
4
|
Run,
|
5
5
|
Runs,
|
6
|
-
drop_unique_params,
|
7
6
|
filter_runs,
|
8
|
-
get_artifact_dir,
|
9
|
-
get_artifact_path,
|
10
|
-
get_artifact_uri,
|
11
7
|
get_param_dict,
|
12
8
|
get_param_names,
|
13
9
|
get_run,
|
14
|
-
get_run_id,
|
15
10
|
load_config,
|
16
11
|
)
|
17
12
|
|
@@ -20,15 +15,10 @@ __all__ = [
|
|
20
15
|
"Run",
|
21
16
|
"Runs",
|
22
17
|
"chdir_artifact",
|
23
|
-
"drop_unique_params",
|
24
18
|
"filter_runs",
|
25
|
-
"get_artifact_dir",
|
26
|
-
"get_artifact_path",
|
27
|
-
"get_artifact_uri",
|
28
19
|
"get_param_dict",
|
29
20
|
"get_param_names",
|
30
21
|
"get_run",
|
31
|
-
"get_run_id",
|
32
22
|
"load_config",
|
33
23
|
"log_run",
|
34
24
|
"set_experiment",
|
hydraflow/config.py
CHANGED
@@ -1,3 +1,8 @@
|
|
1
|
+
"""
|
2
|
+
This module provides functionality for working with configuration
|
3
|
+
objects using the OmegaConf library.
|
4
|
+
"""
|
5
|
+
|
1
6
|
from __future__ import annotations
|
2
7
|
|
3
8
|
from typing import TYPE_CHECKING
|
@@ -10,12 +15,32 @@ if TYPE_CHECKING:
|
|
10
15
|
|
11
16
|
|
12
17
|
def iter_params(config: object, prefix: str = "") -> Iterator[tuple[str, Any]]:
|
13
|
-
|
18
|
+
"""
|
19
|
+
Recursively iterate over the parameters in the given configuration object.
|
20
|
+
|
21
|
+
This function traverses the configuration object and yields key-value pairs
|
22
|
+
representing the parameters. The keys are prefixed with the provided prefix.
|
23
|
+
|
24
|
+
Args:
|
25
|
+
config: The configuration object to iterate over. This can be a dictionary,
|
26
|
+
list, DictConfig, or ListConfig.
|
27
|
+
prefix: The prefix to prepend to the parameter keys.
|
28
|
+
Defaults to an empty string.
|
29
|
+
|
30
|
+
Yields:
|
31
|
+
Key-value pairs representing the parameters in the configuration object.
|
32
|
+
"""
|
33
|
+
if not isinstance(config, (DictConfig, ListConfig)):
|
14
34
|
config = OmegaConf.create(config) # type: ignore
|
15
35
|
|
16
36
|
if isinstance(config, DictConfig):
|
17
37
|
for key, value in config.items():
|
18
|
-
if isinstance(value,
|
38
|
+
if isinstance(value, ListConfig) and not any(
|
39
|
+
isinstance(v, (DictConfig, ListConfig)) for v in value
|
40
|
+
):
|
41
|
+
yield f"{prefix}{key}", value
|
42
|
+
|
43
|
+
elif isinstance(value, (DictConfig, ListConfig)):
|
19
44
|
yield from iter_params(value, f"{prefix}{key}.")
|
20
45
|
|
21
46
|
else:
|
hydraflow/context.py
CHANGED
@@ -1,5 +1,11 @@
|
|
1
|
+
"""
|
2
|
+
This module provides context managers to log parameters and manage the MLflow
|
3
|
+
run context.
|
4
|
+
"""
|
5
|
+
|
1
6
|
from __future__ import annotations
|
2
7
|
|
8
|
+
import logging
|
3
9
|
import os
|
4
10
|
import time
|
5
11
|
from contextlib import contextmanager
|
@@ -12,15 +18,14 @@ from hydra.core.hydra_config import HydraConfig
|
|
12
18
|
from watchdog.events import FileModifiedEvent, FileSystemEventHandler
|
13
19
|
from watchdog.observers import Observer
|
14
20
|
|
15
|
-
from hydraflow.mlflow import log_params
|
16
|
-
from hydraflow.runs import get_artifact_path
|
17
|
-
from hydraflow.util import uri_to_path
|
21
|
+
from hydraflow.mlflow import get_artifact_dir, log_params
|
18
22
|
|
19
23
|
if TYPE_CHECKING:
|
20
24
|
from collections.abc import Callable, Iterator
|
21
25
|
|
22
26
|
from mlflow.entities.run import Run
|
23
|
-
|
27
|
+
|
28
|
+
log = logging.getLogger(__name__)
|
24
29
|
|
25
30
|
|
26
31
|
@dataclass
|
@@ -35,12 +40,33 @@ def log_run(
|
|
35
40
|
*,
|
36
41
|
synchronous: bool | None = None,
|
37
42
|
) -> Iterator[Info]:
|
43
|
+
"""
|
44
|
+
Log the parameters from the given configuration object and manage the MLflow
|
45
|
+
run context.
|
46
|
+
|
47
|
+
This context manager logs the parameters from the provided configuration object
|
48
|
+
using MLflow. It also manages the MLflow run context, ensuring that artifacts
|
49
|
+
are logged and the run is properly closed.
|
50
|
+
|
51
|
+
Args:
|
52
|
+
config: The configuration object to log the parameters from.
|
53
|
+
synchronous: Whether to log the parameters synchronously.
|
54
|
+
Defaults to None.
|
55
|
+
|
56
|
+
Yields:
|
57
|
+
Info: An `Info` object containing the output directory and artifact directory
|
58
|
+
paths.
|
59
|
+
|
60
|
+
Example:
|
61
|
+
with log_run(config) as info:
|
62
|
+
# Perform operations within the MLflow run context
|
63
|
+
pass
|
64
|
+
"""
|
38
65
|
log_params(config, synchronous=synchronous)
|
39
66
|
|
40
67
|
hc = HydraConfig.get()
|
41
68
|
output_dir = Path(hc.runtime.output_dir)
|
42
|
-
|
43
|
-
info = Info(output_dir, uri_to_path(uri))
|
69
|
+
info = Info(output_dir, get_artifact_dir())
|
44
70
|
|
45
71
|
# Save '.hydra' config directory first.
|
46
72
|
output_subdir = output_dir / (hc.output_subdir or "")
|
@@ -54,16 +80,48 @@ def log_run(
|
|
54
80
|
with watch(log_artifact, output_dir):
|
55
81
|
yield info
|
56
82
|
|
83
|
+
except Exception as e:
|
84
|
+
log.error(f"Error during log_run: {e}")
|
85
|
+
raise
|
86
|
+
|
57
87
|
finally:
|
58
88
|
# Save output_dir including '.hydra' config directory.
|
59
89
|
mlflow.log_artifacts(output_dir.as_posix())
|
60
90
|
|
61
91
|
|
62
92
|
@contextmanager
|
63
|
-
def watch(
|
64
|
-
|
65
|
-
|
66
|
-
|
93
|
+
def watch(
|
94
|
+
func: Callable[[Path], None],
|
95
|
+
dir: Path | str = "",
|
96
|
+
timeout: int = 60,
|
97
|
+
) -> Iterator[None]:
|
98
|
+
"""
|
99
|
+
Watch the given directory for changes and call the provided function
|
100
|
+
when a change is detected.
|
101
|
+
|
102
|
+
This context manager sets up a file system watcher on the specified directory.
|
103
|
+
When a file modification is detected, the provided function is called with
|
104
|
+
the path of the modified file. The watcher runs for the specified timeout
|
105
|
+
period or until the context is exited.
|
106
|
+
|
107
|
+
Args:
|
108
|
+
func: The function to call when a change is
|
109
|
+
detected. It should accept a single argument of type `Path`,
|
110
|
+
which is the path of the modified file.
|
111
|
+
dir: The directory to watch. If not specified,
|
112
|
+
the current MLflow artifact URI is used. Defaults to "".
|
113
|
+
timeout: The timeout period in seconds for the watcher
|
114
|
+
to run after the context is exited. Defaults to 60.
|
115
|
+
|
116
|
+
Yields:
|
117
|
+
None
|
118
|
+
|
119
|
+
Example:
|
120
|
+
with watch(log_artifact, "/path/to/dir"):
|
121
|
+
# Perform operations while watching the directory for changes
|
122
|
+
pass
|
123
|
+
"""
|
124
|
+
dir = dir or get_artifact_dir()
|
67
125
|
|
68
126
|
handler = Handler(func)
|
69
127
|
observer = Observer()
|
@@ -73,6 +131,10 @@ def watch(func: Callable[[Path], None], dir: Path | str = "", timeout: int = 60)
|
|
73
131
|
try:
|
74
132
|
yield
|
75
133
|
|
134
|
+
except Exception as e:
|
135
|
+
log.error(f"Error during watch: {e}")
|
136
|
+
raise
|
137
|
+
|
76
138
|
finally:
|
77
139
|
elapsed = 0
|
78
140
|
while not observer.event_queue.empty():
|
@@ -97,15 +159,30 @@ class Handler(FileSystemEventHandler):
|
|
97
159
|
|
98
160
|
@contextmanager
|
99
161
|
def chdir_artifact(
|
100
|
-
run: Run
|
162
|
+
run: Run,
|
101
163
|
artifact_path: str | None = None,
|
102
164
|
) -> Iterator[Path]:
|
165
|
+
"""
|
166
|
+
Change the current working directory to the artifact directory of the
|
167
|
+
given run.
|
168
|
+
|
169
|
+
This context manager changes the current working directory to the artifact
|
170
|
+
directory of the given run. It ensures that the directory is changed back
|
171
|
+
to the original directory after the context is exited.
|
172
|
+
|
173
|
+
Args:
|
174
|
+
run: The run to get the artifact directory from.
|
175
|
+
artifact_path: The artifact path.
|
176
|
+
"""
|
103
177
|
curdir = Path.cwd()
|
178
|
+
path = mlflow.artifacts.download_artifacts(
|
179
|
+
run_id=run.info.run_id,
|
180
|
+
artifact_path=artifact_path,
|
181
|
+
)
|
104
182
|
|
105
|
-
|
106
|
-
|
107
|
-
os.chdir(artifact_dir)
|
183
|
+
os.chdir(path)
|
108
184
|
try:
|
109
|
-
yield
|
185
|
+
yield Path(path)
|
186
|
+
|
110
187
|
finally:
|
111
188
|
os.chdir(curdir)
|
hydraflow/mlflow.py
CHANGED
@@ -1,5 +1,12 @@
|
|
1
|
+
"""
|
2
|
+
This module provides functionality to log parameters from Hydra
|
3
|
+
configuration objects and set up experiments using MLflow.
|
4
|
+
"""
|
5
|
+
|
1
6
|
from __future__ import annotations
|
2
7
|
|
8
|
+
from pathlib import Path
|
9
|
+
|
3
10
|
import mlflow
|
4
11
|
from hydra.core.hydra_config import HydraConfig
|
5
12
|
|
@@ -7,6 +14,18 @@ from hydraflow.config import iter_params
|
|
7
14
|
|
8
15
|
|
9
16
|
def set_experiment(prefix: str = "", suffix: str = "", uri: str | None = None) -> None:
|
17
|
+
"""
|
18
|
+
Set the experiment name and tracking URI optionally.
|
19
|
+
|
20
|
+
This function sets the experiment name by combining the given prefix,
|
21
|
+
the job name from HydraConfig, and the given suffix. Optionally, it can
|
22
|
+
also set the tracking URI.
|
23
|
+
|
24
|
+
Args:
|
25
|
+
prefix: The prefix to prepend to the experiment name.
|
26
|
+
suffix: The suffix to append to the experiment name.
|
27
|
+
uri: The tracking URI to use.
|
28
|
+
"""
|
10
29
|
if uri:
|
11
30
|
mlflow.set_tracking_uri(uri)
|
12
31
|
|
@@ -16,5 +35,38 @@ def set_experiment(prefix: str = "", suffix: str = "", uri: str | None = None) -
|
|
16
35
|
|
17
36
|
|
18
37
|
def log_params(config: object, *, synchronous: bool | None = None) -> None:
|
38
|
+
"""
|
39
|
+
Log the parameters from the given configuration object.
|
40
|
+
|
41
|
+
This method logs the parameters from the provided configuration object
|
42
|
+
using MLflow. It iterates over the parameters and logs them using the
|
43
|
+
`mlflow.log_param` method.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
config: The configuration object to log the parameters from.
|
47
|
+
synchronous: Whether to log the parameters synchronously.
|
48
|
+
Defaults to None.
|
49
|
+
"""
|
19
50
|
for key, value in iter_params(config):
|
20
51
|
mlflow.log_param(key, value, synchronous=synchronous)
|
52
|
+
|
53
|
+
|
54
|
+
def get_artifact_dir(artifact_path: str | None = None) -> Path:
|
55
|
+
"""
|
56
|
+
Get the artifact directory for the given artifact path.
|
57
|
+
|
58
|
+
This function retrieves the artifact URI for the specified artifact path
|
59
|
+
using MLflow, downloads the artifacts to a local directory, and returns
|
60
|
+
the path to that directory.
|
61
|
+
|
62
|
+
Args:
|
63
|
+
artifact_path: The artifact path for which to get the directory.
|
64
|
+
Defaults to None.
|
65
|
+
|
66
|
+
Returns:
|
67
|
+
The local path to the directory where the artifacts are downloaded.
|
68
|
+
"""
|
69
|
+
uri = mlflow.get_artifact_uri(artifact_path)
|
70
|
+
dir = mlflow.artifacts.download_artifacts(artifact_uri=uri)
|
71
|
+
|
72
|
+
return Path(dir)
|
hydraflow/runs.py
CHANGED
@@ -1,27 +1,95 @@
|
|
1
|
+
"""
|
2
|
+
This module provides functionality for managing and interacting with MLflow runs.
|
3
|
+
It includes the `Runs` class and various methods to filter runs, retrieve run information,
|
4
|
+
log artifacts, and load configurations.
|
5
|
+
"""
|
6
|
+
|
1
7
|
from __future__ import annotations
|
2
8
|
|
3
9
|
from dataclasses import dataclass
|
4
10
|
from functools import cache
|
5
|
-
from
|
11
|
+
from itertools import chain
|
6
12
|
from typing import TYPE_CHECKING, Any
|
7
13
|
|
8
14
|
import mlflow
|
9
|
-
|
10
|
-
from mlflow.entities.run import Run
|
11
|
-
from mlflow.tracking import
|
15
|
+
from mlflow.entities import ViewType
|
16
|
+
from mlflow.entities.run import Run
|
17
|
+
from mlflow.tracking.fluent import SEARCH_MAX_RESULTS_PANDAS
|
12
18
|
from omegaconf import DictConfig, OmegaConf
|
13
|
-
from pandas import DataFrame, Series
|
14
19
|
|
15
20
|
from hydraflow.config import iter_params
|
16
|
-
from hydraflow.util import uri_to_path
|
17
21
|
|
18
22
|
if TYPE_CHECKING:
|
19
23
|
from typing import Any
|
20
24
|
|
21
25
|
|
26
|
+
def search_runs(
|
27
|
+
experiment_ids: list[str] | None = None,
|
28
|
+
filter_string: str = "",
|
29
|
+
run_view_type: int = ViewType.ACTIVE_ONLY,
|
30
|
+
max_results: int = SEARCH_MAX_RESULTS_PANDAS,
|
31
|
+
order_by: list[str] | None = None,
|
32
|
+
search_all_experiments: bool = False,
|
33
|
+
experiment_names: list[str] | None = None,
|
34
|
+
) -> Runs:
|
35
|
+
"""
|
36
|
+
Search for Runs that fit the specified criteria.
|
37
|
+
|
38
|
+
This function wraps the `mlflow.search_runs` function and returns the results
|
39
|
+
as a `Runs` object. It allows for flexible searching of MLflow runs based on
|
40
|
+
various criteria.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
experiment_ids: List of experiment IDs. Search can work with experiment IDs or
|
44
|
+
experiment names, but not both in the same call. Values other than
|
45
|
+
``None`` or ``[]`` will result in error if ``experiment_names`` is
|
46
|
+
also not ``None`` or ``[]``. ``None`` will default to the active
|
47
|
+
experiment if ``experiment_names`` is ``None`` or ``[]``.
|
48
|
+
filter_string: Filter query string, defaults to searching all runs.
|
49
|
+
run_view_type: one of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``, or ``ALL`` runs
|
50
|
+
defined in :py:class:`mlflow.entities.ViewType`.
|
51
|
+
max_results: The maximum number of runs to put in the dataframe. Default is 100,000
|
52
|
+
to avoid causing out-of-memory issues on the user's machine.
|
53
|
+
order_by: List of columns to order by (e.g., "metrics.rmse"). The ``order_by`` column
|
54
|
+
can contain an optional ``DESC`` or ``ASC`` value. The default is ``ASC``.
|
55
|
+
The default ordering is to sort by ``start_time DESC``, then ``run_id``.
|
56
|
+
output_format: The output format to be returned. If ``pandas``, a ``pandas.DataFrame``
|
57
|
+
is returned and, if ``list``, a list of :py:class:`mlflow.entities.Run`
|
58
|
+
is returned.
|
59
|
+
search_all_experiments: Boolean specifying whether all experiments should be searched.
|
60
|
+
Only honored if ``experiment_ids`` is ``[]`` or ``None``.
|
61
|
+
experiment_names: List of experiment names. Search can work with experiment IDs or
|
62
|
+
experiment names, but not both in the same call. Values other
|
63
|
+
than ``None`` or ``[]`` will result in error if ``experiment_ids``
|
64
|
+
is also not ``None`` or ``[]``. ``None`` will default to the active
|
65
|
+
experiment if ``experiment_ids`` is ``None`` or ``[]``.
|
66
|
+
|
67
|
+
Returns:
|
68
|
+
A `Runs` object containing the search results.
|
69
|
+
"""
|
70
|
+
runs = mlflow.search_runs(
|
71
|
+
experiment_ids=experiment_ids,
|
72
|
+
filter_string=filter_string,
|
73
|
+
run_view_type=run_view_type,
|
74
|
+
max_results=max_results,
|
75
|
+
order_by=order_by,
|
76
|
+
output_format="list",
|
77
|
+
search_all_experiments=search_all_experiments,
|
78
|
+
experiment_names=experiment_names,
|
79
|
+
)
|
80
|
+
return Runs(runs) # type: ignore
|
81
|
+
|
82
|
+
|
22
83
|
@dataclass
|
23
84
|
class Runs:
|
24
|
-
|
85
|
+
"""
|
86
|
+
A class to represent a collection of MLflow runs.
|
87
|
+
|
88
|
+
This class provides methods to interact with the runs, such as filtering,
|
89
|
+
retrieving specific runs, and accessing run information.
|
90
|
+
"""
|
91
|
+
|
92
|
+
runs: list[Run]
|
25
93
|
|
26
94
|
def __repr__(self) -> str:
|
27
95
|
return f"{self.__class__.__name__}({len(self)})"
|
@@ -30,161 +98,280 @@ class Runs:
|
|
30
98
|
return len(self.runs)
|
31
99
|
|
32
100
|
def filter(self, config: object) -> Runs:
|
101
|
+
"""
|
102
|
+
Filter the runs based on the provided configuration.
|
103
|
+
|
104
|
+
This method filters the runs in the collection according to the
|
105
|
+
specified configuration object. The configuration object should
|
106
|
+
contain key-value pairs that correspond to the parameters of the
|
107
|
+
runs. Only the runs that match all the specified parameters will
|
108
|
+
be included in the returned `Runs` object.
|
109
|
+
|
110
|
+
Args:
|
111
|
+
config: The configuration object to filter the runs.
|
112
|
+
|
113
|
+
Returns:
|
114
|
+
A new `Runs` object containing the filtered runs.
|
115
|
+
"""
|
33
116
|
return Runs(filter_runs(self.runs, config))
|
34
117
|
|
35
|
-
def get(self, config: object) -> Run:
|
36
|
-
|
118
|
+
def get(self, config: object) -> Run | None:
|
119
|
+
"""
|
120
|
+
Retrieve a specific run based on the provided configuration.
|
37
121
|
|
38
|
-
|
39
|
-
|
40
|
-
|
122
|
+
This method filters the runs in the collection according to the
|
123
|
+
specified configuration object and returns the run that matches
|
124
|
+
the provided parameters. If more than one run matches the criteria,
|
125
|
+
a `ValueError` is raised.
|
41
126
|
|
42
|
-
|
127
|
+
Args:
|
128
|
+
config: The configuration object to identify the run.
|
43
129
|
|
44
|
-
|
45
|
-
|
46
|
-
|
130
|
+
Returns:
|
131
|
+
Run: The run object that matches the provided configuration.
|
132
|
+
None, if the runs are not in a DataFrame format.
|
47
133
|
|
48
|
-
|
134
|
+
Raises:
|
135
|
+
ValueError: If the number of filtered runs is not exactly one.
|
136
|
+
"""
|
137
|
+
return get_run(self.runs, config)
|
49
138
|
|
50
|
-
def
|
51
|
-
|
52
|
-
|
139
|
+
def get_earliest_run(self, config: object | None = None, **kwargs) -> Run | None:
|
140
|
+
"""
|
141
|
+
Get the earliest run from the list of runs based on the start time.
|
53
142
|
|
54
|
-
|
143
|
+
This method filters the runs based on the configuration if provided
|
144
|
+
and returns the run with the earliest start time.
|
55
145
|
|
146
|
+
Args:
|
147
|
+
config: The configuration object to filter the runs.
|
148
|
+
If None, no filtering is applied.
|
149
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
56
150
|
|
57
|
-
|
58
|
-
|
59
|
-
|
151
|
+
Returns:
|
152
|
+
The run with the earliest start time, or None if no runs match the criteria.
|
153
|
+
"""
|
154
|
+
return get_earliest_run(self.runs, config, **kwargs)
|
60
155
|
|
61
|
-
|
156
|
+
def get_latest_run(self, config: object | None = None, **kwargs) -> Run | None:
|
157
|
+
"""
|
158
|
+
Get the latest run from the list of runs based on the start time.
|
62
159
|
|
160
|
+
Args:
|
161
|
+
config: The configuration object to filter the runs.
|
162
|
+
If None, no filtering is applied.
|
163
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
63
164
|
|
64
|
-
|
65
|
-
|
165
|
+
Returns:
|
166
|
+
The run with the latest start time, or None if no runs match the criteria.
|
167
|
+
"""
|
168
|
+
return get_latest_run(self.runs, config, **kwargs)
|
66
169
|
|
67
|
-
|
68
|
-
|
170
|
+
def get_param_names(self) -> list[str]:
|
171
|
+
"""
|
172
|
+
Get the parameter names from the runs.
|
69
173
|
|
70
|
-
|
174
|
+
This method extracts the unique parameter names from the provided list of runs.
|
175
|
+
It iterates through each run and collects the parameter names into a set to
|
176
|
+
ensure uniqueness.
|
71
177
|
|
178
|
+
Returns:
|
179
|
+
A list of unique parameter names.
|
180
|
+
"""
|
181
|
+
return get_param_names(self.runs)
|
72
182
|
|
73
|
-
def
|
74
|
-
|
183
|
+
def get_param_dict(self) -> dict[str, list[str]]:
|
184
|
+
"""
|
185
|
+
Get the parameter dictionary from the list of runs.
|
186
|
+
|
187
|
+
This method extracts the parameter names and their corresponding values
|
188
|
+
from the provided list of runs. It iterates through each run and collects
|
189
|
+
the parameter values into a dictionary where the keys are parameter names
|
190
|
+
and the values are lists of parameter values.
|
191
|
+
|
192
|
+
Returns:
|
193
|
+
A dictionary where the keys are parameter names and the values are lists
|
194
|
+
of parameter values.
|
195
|
+
"""
|
196
|
+
return get_param_dict(self.runs)
|
197
|
+
|
198
|
+
|
199
|
+
def filter_runs(runs: list[Run], config: object, **kwargs) -> list[Run]:
|
200
|
+
"""
|
201
|
+
Filter the runs based on the provided configuration.
|
202
|
+
|
203
|
+
This method filters the runs in the collection according to the
|
204
|
+
specified configuration object. The configuration object should
|
205
|
+
contain key-value pairs that correspond to the parameters of the
|
206
|
+
runs. Only the runs that match all the specified parameters will
|
207
|
+
be included in the returned list of runs.
|
208
|
+
|
209
|
+
Args:
|
210
|
+
runs: The runs to filter.
|
211
|
+
config: The configuration object to filter the runs.
|
212
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
213
|
+
|
214
|
+
Returns:
|
215
|
+
A filtered list of runs.
|
216
|
+
"""
|
217
|
+
for key, value in chain(iter_params(config), kwargs.items()):
|
75
218
|
runs = [run for run in runs if _is_equal(run, key, value)]
|
76
219
|
|
220
|
+
if len(runs) == 0:
|
221
|
+
return []
|
222
|
+
|
77
223
|
return runs
|
78
224
|
|
79
225
|
|
80
|
-
def
|
81
|
-
|
226
|
+
def _is_equal(run: Run, key: str, value: Any) -> bool:
|
227
|
+
param = run.data.params.get(key, value)
|
82
228
|
|
83
|
-
|
84
|
-
|
229
|
+
if param is None:
|
230
|
+
return False
|
231
|
+
|
232
|
+
return type(value)(param) == value
|
233
|
+
|
234
|
+
|
235
|
+
def get_run(runs: list[Run], config: object, **kwargs) -> Run | None:
|
236
|
+
"""
|
237
|
+
Retrieve a specific run based on the provided configuration.
|
85
238
|
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
index &= is_value & (param == value)
|
239
|
+
This method filters the runs in the collection according to the
|
240
|
+
specified configuration object and returns the run that matches
|
241
|
+
the provided parameters. If more than one run matches the criteria,
|
242
|
+
a `ValueError` is raised.
|
91
243
|
|
92
|
-
|
244
|
+
Args:
|
245
|
+
runs: The runs to filter.
|
246
|
+
config: The configuration object to identify the run.
|
247
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
93
248
|
|
249
|
+
Returns:
|
250
|
+
The run object that matches the provided configuration, or None
|
251
|
+
if no runs match the criteria.
|
94
252
|
|
95
|
-
|
96
|
-
|
253
|
+
Raises:
|
254
|
+
ValueError: If more than one run matches the criteria.
|
255
|
+
"""
|
256
|
+
runs = filter_runs(runs, config, **kwargs)
|
257
|
+
|
258
|
+
if len(runs) == 0:
|
259
|
+
return None
|
97
260
|
|
98
261
|
if len(runs) == 1:
|
99
|
-
return runs[0]
|
262
|
+
return runs[0]
|
100
263
|
|
101
|
-
msg = f"number of
|
264
|
+
msg = f"Multiple runs were filtered. Expected number of runs is 1, but found {len(runs)} runs."
|
102
265
|
raise ValueError(msg)
|
103
266
|
|
104
267
|
|
105
|
-
def
|
106
|
-
|
107
|
-
|
268
|
+
def get_earliest_run(runs: list[Run], config: object | None = None, **kwargs) -> Run | None:
|
269
|
+
"""
|
270
|
+
Get the earliest run from the list of runs based on the start time.
|
108
271
|
|
109
|
-
|
110
|
-
|
272
|
+
This method filters the runs based on the configuration if provided
|
273
|
+
and returns the run with the earliest start time.
|
111
274
|
|
275
|
+
Args:
|
276
|
+
runs: The list of runs.
|
277
|
+
config: The configuration object to filter the runs.
|
278
|
+
If None, no filtering is applied.
|
279
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
112
280
|
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
281
|
+
Returns:
|
282
|
+
The run with the earliest start time, or None if no runs match the criteria.
|
283
|
+
"""
|
284
|
+
if config is not None or kwargs:
|
285
|
+
runs = filter_runs(runs, config or {}, **kwargs)
|
117
286
|
|
118
|
-
|
287
|
+
return min(runs, key=lambda run: run.info.start_time, default=None)
|
119
288
|
|
120
|
-
columns = [get_name(column) for column in runs.columns]
|
121
|
-
return [column for column in columns if column]
|
122
289
|
|
290
|
+
def get_latest_run(runs: list[Run], config: object | None = None, **kwargs) -> Run | None:
|
291
|
+
"""
|
292
|
+
Get the latest run from the list of runs based on the start time.
|
123
293
|
|
124
|
-
|
125
|
-
|
126
|
-
for name in get_param_names(runs):
|
127
|
-
params[name] = list(runs[f"params.{name}"].unique())
|
294
|
+
This method filters the runs based on the configuration if provided
|
295
|
+
and returns the run with the latest start time.
|
128
296
|
|
129
|
-
|
297
|
+
Args:
|
298
|
+
runs: The list of runs.
|
299
|
+
config: The configuration object to filter the runs.
|
300
|
+
If None, no filtering is applied.
|
301
|
+
**kwargs: Additional key-value pairs to filter the runs.
|
130
302
|
|
303
|
+
Returns:
|
304
|
+
The run with the latest start time, or None if no runs match the criteria.
|
305
|
+
"""
|
306
|
+
if config is not None or kwargs:
|
307
|
+
runs = filter_runs(runs, config or {}, **kwargs)
|
131
308
|
|
132
|
-
|
133
|
-
class Run:
|
134
|
-
run: Run_ | Series | str
|
309
|
+
return max(runs, key=lambda run: run.info.start_time, default=None)
|
135
310
|
|
136
|
-
def __repr__(self) -> str:
|
137
|
-
return f"{self.__class__.__name__}({self.run_id!r})"
|
138
311
|
|
139
|
-
|
140
|
-
|
141
|
-
|
312
|
+
def get_param_names(runs: list[Run]) -> list[str]:
|
313
|
+
"""
|
314
|
+
Get the parameter names from the runs.
|
142
315
|
|
143
|
-
|
144
|
-
|
316
|
+
This method extracts the unique parameter names from the provided list of runs.
|
317
|
+
It iterates through each run and collects the parameter names into a set to
|
318
|
+
ensure uniqueness.
|
145
319
|
|
146
|
-
|
147
|
-
|
148
|
-
return get_artifact_dir(self.run)
|
320
|
+
Args:
|
321
|
+
runs: The list of runs from which to extract parameter names.
|
149
322
|
|
150
|
-
|
151
|
-
|
323
|
+
Returns:
|
324
|
+
A list of unique parameter names.
|
325
|
+
"""
|
326
|
+
param_names = set()
|
152
327
|
|
153
|
-
|
154
|
-
|
155
|
-
|
328
|
+
for run in runs:
|
329
|
+
for param in run.data.params.keys():
|
330
|
+
param_names.add(param)
|
156
331
|
|
157
|
-
|
158
|
-
log_hydra_output_dir(self.run)
|
332
|
+
return list(param_names)
|
159
333
|
|
160
334
|
|
161
|
-
def
|
162
|
-
|
163
|
-
|
335
|
+
def get_param_dict(runs: list[Run]) -> dict[str, list[str]]:
|
336
|
+
"""
|
337
|
+
Get the parameter dictionary from the list of runs.
|
164
338
|
|
165
|
-
|
166
|
-
|
339
|
+
This method extracts the parameter names and their corresponding values
|
340
|
+
from the provided list of runs. It iterates through each run and collects
|
341
|
+
the parameter values into a dictionary where the keys are parameter names
|
342
|
+
and the values are lists of parameter values.
|
167
343
|
|
168
|
-
|
344
|
+
Args:
|
345
|
+
runs: The list of runs from which to extract parameter names and values.
|
169
346
|
|
347
|
+
Returns:
|
348
|
+
A dictionary where the keys are parameter names and the values are lists
|
349
|
+
of parameter values.
|
350
|
+
"""
|
351
|
+
params = {}
|
170
352
|
|
171
|
-
|
172
|
-
|
173
|
-
|
353
|
+
for name in get_param_names(runs):
|
354
|
+
it = (run.data.params[name] for run in runs if name in run.data.params)
|
355
|
+
params[name] = sorted(set(it))
|
174
356
|
|
357
|
+
return params
|
175
358
|
|
176
|
-
def get_artifact_dir(run: Run_ | Series | str) -> Path:
|
177
|
-
uri = get_artifact_uri(run)
|
178
|
-
return uri_to_path(uri)
|
179
359
|
|
360
|
+
def load_config(run: Run) -> DictConfig:
|
361
|
+
"""
|
362
|
+
Load the configuration for a given run.
|
180
363
|
|
181
|
-
|
182
|
-
|
183
|
-
|
364
|
+
This function loads the configuration for the provided Run instance
|
365
|
+
by downloading the configuration file from the MLflow artifacts and
|
366
|
+
loading it using OmegaConf.
|
184
367
|
|
368
|
+
Args:
|
369
|
+
run: The Run instance to load the configuration for.
|
185
370
|
|
186
|
-
|
187
|
-
|
371
|
+
Returns:
|
372
|
+
The loaded configuration.
|
373
|
+
"""
|
374
|
+
run_id = run.info.run_id
|
188
375
|
return _load_config(run_id)
|
189
376
|
|
190
377
|
|
@@ -201,17 +388,35 @@ def _load_config(run_id: str) -> DictConfig:
|
|
201
388
|
return OmegaConf.load(path) # type: ignore
|
202
389
|
|
203
390
|
|
204
|
-
def get_hydra_output_dir(run: Run_ | Series | str) -> Path:
|
205
|
-
|
391
|
+
# def get_hydra_output_dir(run: Run_ | Series | str) -> Path:
|
392
|
+
# """
|
393
|
+
# Get the Hydra output directory.
|
394
|
+
|
395
|
+
# Args:
|
396
|
+
# run: The run object.
|
397
|
+
|
398
|
+
# Returns:
|
399
|
+
# Path: The Hydra output directory.
|
400
|
+
# """
|
401
|
+
# path = get_artifact_dir(run) / ".hydra/hydra.yaml"
|
402
|
+
|
403
|
+
# if path.exists():
|
404
|
+
# hc = OmegaConf.load(path)
|
405
|
+
# return Path(hc.hydra.runtime.output_dir)
|
406
|
+
|
407
|
+
# raise FileNotFoundError
|
206
408
|
|
207
|
-
if path.exists():
|
208
|
-
hc = OmegaConf.load(path)
|
209
|
-
return Path(hc.hydra.runtime.output_dir)
|
210
409
|
|
211
|
-
|
410
|
+
# def log_hydra_output_dir(run: Run_ | Series | str) -> None:
|
411
|
+
# """
|
412
|
+
# Log the Hydra output directory.
|
212
413
|
|
414
|
+
# Args:
|
415
|
+
# run: The run object.
|
213
416
|
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
417
|
+
# Returns:
|
418
|
+
# None
|
419
|
+
# """
|
420
|
+
# output_dir = get_hydra_output_dir(run)
|
421
|
+
# run_id = run if isinstance(run, str) else run.info.run_id
|
422
|
+
# mlflow.log_artifacts(output_dir.as_posix(), run_id=run_id)
|
@@ -0,0 +1,111 @@
|
|
1
|
+
Metadata-Version: 2.3
|
2
|
+
Name: hydraflow
|
3
|
+
Version: 0.2.0
|
4
|
+
Summary: Hydraflow integrates Hydra and MLflow to manage and track machine learning experiments.
|
5
|
+
Project-URL: Documentation, https://github.com/daizutabi/hydraflow
|
6
|
+
Project-URL: Source, https://github.com/daizutabi/hydraflow
|
7
|
+
Project-URL: Issues, https://github.com/daizutabi/hydraflow/issues
|
8
|
+
Author-email: daizutabi <daizutabi@gmail.com>
|
9
|
+
License-Expression: MIT
|
10
|
+
License-File: LICENSE
|
11
|
+
Classifier: Development Status :: 4 - Beta
|
12
|
+
Classifier: Programming Language :: Python
|
13
|
+
Classifier: Programming Language :: Python :: 3.10
|
14
|
+
Classifier: Programming Language :: Python :: 3.11
|
15
|
+
Classifier: Programming Language :: Python :: 3.12
|
16
|
+
Classifier: Topic :: Documentation
|
17
|
+
Classifier: Topic :: Software Development :: Documentation
|
18
|
+
Requires-Python: >=3.10
|
19
|
+
Requires-Dist: hydra-core>1.3
|
20
|
+
Requires-Dist: mlflow>2.15
|
21
|
+
Requires-Dist: setuptools
|
22
|
+
Requires-Dist: watchdog
|
23
|
+
Provides-Extra: dev
|
24
|
+
Requires-Dist: pytest-clarity; extra == 'dev'
|
25
|
+
Requires-Dist: pytest-cov; extra == 'dev'
|
26
|
+
Requires-Dist: pytest-randomly; extra == 'dev'
|
27
|
+
Requires-Dist: pytest-xdist; extra == 'dev'
|
28
|
+
Description-Content-Type: text/markdown
|
29
|
+
|
30
|
+
# Hydraflow
|
31
|
+
|
32
|
+
[![PyPI Version][pypi-v-image]][pypi-v-link]
|
33
|
+
[![Python Version][python-v-image]][python-v-link]
|
34
|
+
[![Build Status][GHAction-image]][GHAction-link]
|
35
|
+
[![Coverage Status][codecov-image]][codecov-link]
|
36
|
+
|
37
|
+
<!-- Badges -->
|
38
|
+
[pypi-v-image]: https://img.shields.io/pypi/v/hydraflow.svg
|
39
|
+
[pypi-v-link]: https://pypi.org/project/hydraflow/
|
40
|
+
[python-v-image]: https://img.shields.io/pypi/pyversions/hydraflow.svg
|
41
|
+
[python-v-link]: https://pypi.org/project/hydraflow
|
42
|
+
[GHAction-image]: https://github.com/daizutabi/hydraflow/actions/workflows/ci.yml/badge.svg?branch=main&event=push
|
43
|
+
[GHAction-link]: https://github.com/daizutabi/hydraflow/actions?query=event%3Apush+branch%3Amain
|
44
|
+
[codecov-image]: https://codecov.io/github/daizutabi/hydraflow/coverage.svg?branch=main
|
45
|
+
[codecov-link]: https://codecov.io/github/daizutabi/hydraflow?branch=main
|
46
|
+
|
47
|
+
## Overview
|
48
|
+
|
49
|
+
Hydraflow is a powerful library designed to seamlessly integrate [Hydra](https://hydra.cc/) and [MLflow](https://mlflow.org/), making it easier to manage and track machine learning experiments. By combining the flexibility of Hydra's configuration management with the robust experiment tracking capabilities of MLflow, Hydraflow provides a comprehensive solution for managing complex machine learning workflows.
|
50
|
+
|
51
|
+
## Key Features
|
52
|
+
|
53
|
+
- **Configuration Management**: Utilize Hydra's advanced configuration management to handle complex parameter sweeps and experiment setups.
|
54
|
+
- **Experiment Tracking**: Leverage MLflow's tracking capabilities to log parameters, metrics, and artifacts for each run.
|
55
|
+
- **Artifact Management**: Automatically log and manage artifacts, such as model checkpoints and configuration files, with MLflow.
|
56
|
+
- **Seamless Integration**: Easily integrate Hydra and MLflow in your machine learning projects with minimal setup.
|
57
|
+
|
58
|
+
## Installation
|
59
|
+
|
60
|
+
You can install Hydraflow via pip:
|
61
|
+
|
62
|
+
```bash
|
63
|
+
pip install hydraflow
|
64
|
+
```
|
65
|
+
|
66
|
+
## Getting Started
|
67
|
+
|
68
|
+
Here is a simple example to get you started with Hydraflow:
|
69
|
+
|
70
|
+
```python
|
71
|
+
import hydra
|
72
|
+
import hydraflow
|
73
|
+
import mlflow
|
74
|
+
from dataclasses import dataclass
|
75
|
+
from hydra.core.config_store import ConfigStore
|
76
|
+
from pathlib import Path
|
77
|
+
|
78
|
+
@dataclass
|
79
|
+
class MySQLConfig:
|
80
|
+
host: str = "localhost"
|
81
|
+
port: int = 3306
|
82
|
+
|
83
|
+
cs = ConfigStore.instance()
|
84
|
+
cs.store(name="config", node=MySQLConfig)
|
85
|
+
|
86
|
+
@hydra.main(version_base=None, config_name="config")
|
87
|
+
def my_app(cfg: MySQLConfig) -> None:
|
88
|
+
# Set experiment by Hydra job name.
|
89
|
+
hydraflow.set_experiment()
|
90
|
+
|
91
|
+
# Automatically log params using Hydra config.
|
92
|
+
with mlflow.start_run(), hydraflow.log_run(cfg) as info:
|
93
|
+
# Your app code below.
|
94
|
+
|
95
|
+
# `info.output_dir` is the Hydra output directory.
|
96
|
+
# `info.artifact_dir` is the MLflow artifact directory.
|
97
|
+
|
98
|
+
with hydraflow.watch(callback):
|
99
|
+
# Watch files in the MLflow artifact directory.
|
100
|
+
# You can update metrics or log other artifacts
|
101
|
+
# according to the watched files in your callback
|
102
|
+
# function.
|
103
|
+
pass
|
104
|
+
|
105
|
+
# Your callback function here.
|
106
|
+
def callback(file: Path) -> None:
|
107
|
+
pass
|
108
|
+
|
109
|
+
if __name__ == "__main__":
|
110
|
+
my_app()
|
111
|
+
```
|
@@ -0,0 +1,9 @@
|
|
1
|
+
hydraflow/__init__.py,sha256=PzziOG9RnGAVbl9Yz4ScvsL8nfkjsuN0alMKRvZT-_Y,442
|
2
|
+
hydraflow/config.py,sha256=BcyOYvdiqSCsmUMA_EvnWPXuW0fC5cT-Q2ilBk9-5gc,1863
|
3
|
+
hydraflow/context.py,sha256=MqkEhKEZL_N3eb3v5u9D4EqKkiSmiPyXXafhPkALRlg,5129
|
4
|
+
hydraflow/mlflow.py,sha256=_Los9E38eG8sTiN8bGwZmvjCrS0S-wSGiA4fyhQM3Zw,2251
|
5
|
+
hydraflow/runs.py,sha256=NT7IzE-Pf7T2Ey-eWEPZzQQaX4Gt_RKDKSn2pj2yzGc,14304
|
6
|
+
hydraflow-0.2.0.dist-info/METADATA,sha256=dfQ2_-Nk79yVazy5BHasYK681kiG1z-_i4VxWT8fJjg,4224
|
7
|
+
hydraflow-0.2.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
8
|
+
hydraflow-0.2.0.dist-info/licenses/LICENSE,sha256=IGdDrBPqz1O0v_UwCW-NJlbX9Hy9b3uJ11t28y2srmY,1062
|
9
|
+
hydraflow-0.2.0.dist-info/RECORD,,
|
hydraflow/util.py
DELETED
@@ -1,45 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.3
|
2
|
-
Name: hydraflow
|
3
|
-
Version: 0.1.4
|
4
|
-
Summary: Hydra with MLflow
|
5
|
-
Project-URL: Documentation, https://github.com/daizutabi/hydraflow
|
6
|
-
Project-URL: Source, https://github.com/daizutabi/hydraflow
|
7
|
-
Project-URL: Issues, https://github.com/daizutabi/hydraflow/issues
|
8
|
-
Author-email: daizutabi <daizutabi@gmail.com>
|
9
|
-
License-Expression: MIT
|
10
|
-
License-File: LICENSE
|
11
|
-
Classifier: Development Status :: 4 - Beta
|
12
|
-
Classifier: Programming Language :: Python
|
13
|
-
Classifier: Programming Language :: Python :: 3.10
|
14
|
-
Classifier: Programming Language :: Python :: 3.11
|
15
|
-
Classifier: Programming Language :: Python :: 3.12
|
16
|
-
Classifier: Topic :: Documentation
|
17
|
-
Classifier: Topic :: Software Development :: Documentation
|
18
|
-
Requires-Python: >=3.10
|
19
|
-
Requires-Dist: hydra-core>1.3
|
20
|
-
Requires-Dist: mlflow>2.15
|
21
|
-
Requires-Dist: setuptools
|
22
|
-
Requires-Dist: watchdog
|
23
|
-
Provides-Extra: dev
|
24
|
-
Requires-Dist: pytest-clarity; extra == 'dev'
|
25
|
-
Requires-Dist: pytest-cov; extra == 'dev'
|
26
|
-
Requires-Dist: pytest-randomly; extra == 'dev'
|
27
|
-
Requires-Dist: pytest-xdist; extra == 'dev'
|
28
|
-
Description-Content-Type: text/markdown
|
29
|
-
|
30
|
-
# hydraflow
|
31
|
-
|
32
|
-
[![PyPI Version][pypi-v-image]][pypi-v-link]
|
33
|
-
[![Python Version][python-v-image]][python-v-link]
|
34
|
-
[![Build Status][GHAction-image]][GHAction-link]
|
35
|
-
[![Coverage Status][codecov-image]][codecov-link]
|
36
|
-
|
37
|
-
<!-- Badges -->
|
38
|
-
[pypi-v-image]: https://img.shields.io/pypi/v/hydraflow.svg
|
39
|
-
[pypi-v-link]: https://pypi.org/project/hydraflow/
|
40
|
-
[python-v-image]: https://img.shields.io/pypi/pyversions/hydraflow.svg
|
41
|
-
[python-v-link]: https://pypi.org/project/hydraflow
|
42
|
-
[GHAction-image]: https://github.com/daizutabi/hydraflow/actions/workflows/ci.yml/badge.svg?branch=main&event=push
|
43
|
-
[GHAction-link]: https://github.com/daizutabi/hydraflow/actions?query=event%3Apush+branch%3Amain
|
44
|
-
[codecov-image]: https://codecov.io/github/daizutabi/hydraflow/coverage.svg?branch=main
|
45
|
-
[codecov-link]: https://codecov.io/github/daizutabi/hydraflow?branch=main
|
hydraflow-0.1.4.dist-info/RECORD
DELETED
@@ -1,10 +0,0 @@
|
|
1
|
-
hydraflow/__init__.py,sha256=e1Q0Sskx39jaU2zkGNXjFWNC5xugEz_hDERTN_6Mzy8,666
|
2
|
-
hydraflow/config.py,sha256=b3Plh_lmq94loZNw9QP2asd6thCLyTzzYSutH0cONXA,964
|
3
|
-
hydraflow/context.py,sha256=3vejDbRYQBuBwlhpBpOv5aoyZ-yS8UUzpbCFK1V1uvw,2720
|
4
|
-
hydraflow/mlflow.py,sha256=unBP3Y7ujTM3E_Hq_eYvRVFZoGfTA7B0h4FkOZtPPqc,566
|
5
|
-
hydraflow/runs.py,sha256=127YykWzmiNUUuJSGPOCZasXmd6tcE15HU32j8x71ck,5864
|
6
|
-
hydraflow/util.py,sha256=_BdOMq5tKPm8HOehb2s2ZIBpJYyVpvO_yaAIxbSj51I,253
|
7
|
-
hydraflow-0.1.4.dist-info/METADATA,sha256=Xw-xcDKdzkHa7bKDZUI6MXpOKekcyFbMyBy1yANjNQs,1903
|
8
|
-
hydraflow-0.1.4.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
9
|
-
hydraflow-0.1.4.dist-info/licenses/LICENSE,sha256=IGdDrBPqz1O0v_UwCW-NJlbX9Hy9b3uJ11t28y2srmY,1062
|
10
|
-
hydraflow-0.1.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|