huggingface-hub 0.23.3__py3-none-any.whl → 0.24.0rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of huggingface-hub might be problematic. Click here for more details.
- huggingface_hub/__init__.py +47 -15
- huggingface_hub/_commit_api.py +38 -8
- huggingface_hub/_inference_endpoints.py +11 -4
- huggingface_hub/_local_folder.py +22 -13
- huggingface_hub/_snapshot_download.py +12 -7
- huggingface_hub/_webhooks_server.py +3 -1
- huggingface_hub/commands/huggingface_cli.py +4 -3
- huggingface_hub/commands/repo_files.py +128 -0
- huggingface_hub/constants.py +12 -0
- huggingface_hub/file_download.py +127 -91
- huggingface_hub/hf_api.py +979 -341
- huggingface_hub/hf_file_system.py +30 -3
- huggingface_hub/hub_mixin.py +103 -41
- huggingface_hub/inference/_client.py +373 -42
- huggingface_hub/inference/_common.py +0 -2
- huggingface_hub/inference/_generated/_async_client.py +390 -48
- huggingface_hub/inference/_generated/types/__init__.py +4 -1
- huggingface_hub/inference/_generated/types/chat_completion.py +41 -21
- huggingface_hub/inference/_generated/types/feature_extraction.py +23 -5
- huggingface_hub/inference/_generated/types/text_generation.py +29 -0
- huggingface_hub/lfs.py +11 -6
- huggingface_hub/repocard_data.py +41 -29
- huggingface_hub/repository.py +6 -6
- huggingface_hub/serialization/__init__.py +8 -3
- huggingface_hub/serialization/_base.py +13 -16
- huggingface_hub/serialization/_tensorflow.py +4 -3
- huggingface_hub/serialization/_torch.py +399 -22
- huggingface_hub/utils/__init__.py +1 -2
- huggingface_hub/utils/_errors.py +1 -1
- huggingface_hub/utils/_fixes.py +14 -3
- huggingface_hub/utils/_paths.py +17 -6
- huggingface_hub/utils/_subprocess.py +0 -1
- huggingface_hub/utils/_telemetry.py +9 -1
- huggingface_hub/utils/_typing.py +26 -1
- huggingface_hub/utils/endpoint_helpers.py +2 -186
- huggingface_hub/utils/sha.py +36 -1
- huggingface_hub/utils/tqdm.py +0 -1
- {huggingface_hub-0.23.3.dist-info → huggingface_hub-0.24.0rc0.dist-info}/METADATA +12 -9
- {huggingface_hub-0.23.3.dist-info → huggingface_hub-0.24.0rc0.dist-info}/RECORD +43 -43
- huggingface_hub/serialization/_numpy.py +0 -68
- {huggingface_hub-0.23.3.dist-info → huggingface_hub-0.24.0rc0.dist-info}/LICENSE +0 -0
- {huggingface_hub-0.23.3.dist-info → huggingface_hub-0.24.0rc0.dist-info}/WHEEL +0 -0
- {huggingface_hub-0.23.3.dist-info → huggingface_hub-0.24.0rc0.dist-info}/entry_points.txt +0 -0
- {huggingface_hub-0.23.3.dist-info → huggingface_hub-0.24.0rc0.dist-info}/top_level.txt +0 -0
|
@@ -14,20 +14,256 @@
|
|
|
14
14
|
"""Contains pytorch-specific helpers."""
|
|
15
15
|
|
|
16
16
|
import importlib
|
|
17
|
+
import json
|
|
18
|
+
import os
|
|
19
|
+
import re
|
|
20
|
+
from collections import defaultdict
|
|
17
21
|
from functools import lru_cache
|
|
18
|
-
from
|
|
22
|
+
from pathlib import Path
|
|
23
|
+
from typing import TYPE_CHECKING, Dict, List, Optional, Set, Tuple, Union
|
|
19
24
|
|
|
20
|
-
from
|
|
25
|
+
from .. import constants, logging
|
|
26
|
+
from ._base import MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory
|
|
21
27
|
|
|
22
28
|
|
|
29
|
+
logger = logging.get_logger(__file__)
|
|
30
|
+
|
|
23
31
|
if TYPE_CHECKING:
|
|
24
32
|
import torch
|
|
25
33
|
|
|
26
34
|
|
|
35
|
+
def save_torch_model(
|
|
36
|
+
model: "torch.nn.Module",
|
|
37
|
+
save_directory: Union[str, Path],
|
|
38
|
+
*,
|
|
39
|
+
filename_pattern: Optional[str] = None,
|
|
40
|
+
force_contiguous: bool = True,
|
|
41
|
+
max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
|
|
42
|
+
metadata: Optional[Dict[str, str]] = None,
|
|
43
|
+
safe_serialization: bool = True,
|
|
44
|
+
):
|
|
45
|
+
"""
|
|
46
|
+
Saves a given torch model to disk, handling sharding and shared tensors issues.
|
|
47
|
+
|
|
48
|
+
See also [`save_torch_state_dict`] to save a state dict with more flexibility.
|
|
49
|
+
|
|
50
|
+
For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors).
|
|
51
|
+
|
|
52
|
+
The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are
|
|
53
|
+
saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard,
|
|
54
|
+
an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses
|
|
55
|
+
[`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as
|
|
56
|
+
safetensors (the default). Otherwise, the shards are saved as pickle.
|
|
57
|
+
|
|
58
|
+
Before saving the model, the `save_directory` is cleaned from any previous shard files.
|
|
59
|
+
|
|
60
|
+
<Tip warning={true}>
|
|
61
|
+
|
|
62
|
+
If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
|
|
63
|
+
size greater than `max_shard_size`.
|
|
64
|
+
|
|
65
|
+
</Tip>
|
|
66
|
+
|
|
67
|
+
Args:
|
|
68
|
+
model (`torch.nn.Module`):
|
|
69
|
+
The model to save on disk.
|
|
70
|
+
save_directory (`str` or `Path`):
|
|
71
|
+
The directory in which the model will be saved.
|
|
72
|
+
filename_pattern (`str`, *optional*):
|
|
73
|
+
The pattern to generate the files names in which the model will be saved. Pattern must be a string that
|
|
74
|
+
can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
|
|
75
|
+
Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization`
|
|
76
|
+
parameter.
|
|
77
|
+
force_contiguous (`boolean`, *optional*):
|
|
78
|
+
Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the
|
|
79
|
+
model, but it could potentially change performance if the layout of the tensor was chosen specifically for
|
|
80
|
+
that reason. Defaults to `True`.
|
|
81
|
+
max_shard_size (`int` or `str`, *optional*):
|
|
82
|
+
The maximum size of each shard, in bytes. Defaults to 5GB.
|
|
83
|
+
metadata (`Dict[str, str]`, *optional*):
|
|
84
|
+
Extra information to save along with the model. Some metadata will be added for each dropped tensors.
|
|
85
|
+
This information will not be enough to recover the entire shared structure but might help understanding
|
|
86
|
+
things.
|
|
87
|
+
safe_serialization (`bool`, *optional*):
|
|
88
|
+
Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle.
|
|
89
|
+
Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed
|
|
90
|
+
in a future version.
|
|
91
|
+
|
|
92
|
+
Example:
|
|
93
|
+
|
|
94
|
+
```py
|
|
95
|
+
>>> from huggingface_hub import save_torch_model
|
|
96
|
+
>>> model = ... # A PyTorch model
|
|
97
|
+
|
|
98
|
+
# Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors.
|
|
99
|
+
>>> save_torch_model(model, "path/to/folder")
|
|
100
|
+
|
|
101
|
+
# Load model back
|
|
102
|
+
>>> from huggingface_hub import load_torch_model # TODO
|
|
103
|
+
>>> load_torch_model(model, "path/to/folder")
|
|
104
|
+
>>>
|
|
105
|
+
```
|
|
106
|
+
"""
|
|
107
|
+
save_torch_state_dict(
|
|
108
|
+
state_dict=model.state_dict(),
|
|
109
|
+
filename_pattern=filename_pattern,
|
|
110
|
+
force_contiguous=force_contiguous,
|
|
111
|
+
max_shard_size=max_shard_size,
|
|
112
|
+
metadata=metadata,
|
|
113
|
+
safe_serialization=safe_serialization,
|
|
114
|
+
save_directory=save_directory,
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def save_torch_state_dict(
|
|
119
|
+
state_dict: Dict[str, "torch.Tensor"],
|
|
120
|
+
save_directory: Union[str, Path],
|
|
121
|
+
*,
|
|
122
|
+
filename_pattern: Optional[str] = None,
|
|
123
|
+
force_contiguous: bool = True,
|
|
124
|
+
max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
|
|
125
|
+
metadata: Optional[Dict[str, str]] = None,
|
|
126
|
+
safe_serialization: bool = True,
|
|
127
|
+
) -> None:
|
|
128
|
+
"""
|
|
129
|
+
Save a model state dictionary to the disk, handling sharding and shared tensors issues.
|
|
130
|
+
|
|
131
|
+
See also [`save_torch_model`] to directly save a PyTorch model.
|
|
132
|
+
|
|
133
|
+
For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors).
|
|
134
|
+
|
|
135
|
+
The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are
|
|
136
|
+
saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard,
|
|
137
|
+
an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses
|
|
138
|
+
[`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as
|
|
139
|
+
safetensors (the default). Otherwise, the shards are saved as pickle.
|
|
140
|
+
|
|
141
|
+
Before saving the model, the `save_directory` is cleaned from any previous shard files.
|
|
142
|
+
|
|
143
|
+
<Tip warning={true}>
|
|
144
|
+
|
|
145
|
+
If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
|
|
146
|
+
size greater than `max_shard_size`.
|
|
147
|
+
|
|
148
|
+
</Tip>
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
state_dict (`Dict[str, torch.Tensor]`):
|
|
152
|
+
The state dictionary to save.
|
|
153
|
+
save_directory (`str` or `Path`):
|
|
154
|
+
The directory in which the model will be saved.
|
|
155
|
+
filename_pattern (`str`, *optional*):
|
|
156
|
+
The pattern to generate the files names in which the model will be saved. Pattern must be a string that
|
|
157
|
+
can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
|
|
158
|
+
Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization`
|
|
159
|
+
parameter.
|
|
160
|
+
force_contiguous (`boolean`, *optional*):
|
|
161
|
+
Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the
|
|
162
|
+
model, but it could potentially change performance if the layout of the tensor was chosen specifically for
|
|
163
|
+
that reason. Defaults to `True`.
|
|
164
|
+
max_shard_size (`int` or `str`, *optional*):
|
|
165
|
+
The maximum size of each shard, in bytes. Defaults to 5GB.
|
|
166
|
+
metadata (`Dict[str, str]`, *optional*):
|
|
167
|
+
Extra information to save along with the model. Some metadata will be added for each dropped tensors.
|
|
168
|
+
This information will not be enough to recover the entire shared structure but might help understanding
|
|
169
|
+
things.
|
|
170
|
+
safe_serialization (`bool`, *optional*):
|
|
171
|
+
Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle.
|
|
172
|
+
Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed
|
|
173
|
+
in a future version.
|
|
174
|
+
|
|
175
|
+
Example:
|
|
176
|
+
|
|
177
|
+
```py
|
|
178
|
+
>>> from huggingface_hub import save_torch_state_dict
|
|
179
|
+
>>> model = ... # A PyTorch model
|
|
180
|
+
|
|
181
|
+
# Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors.
|
|
182
|
+
>>> state_dict = model_to_save.state_dict()
|
|
183
|
+
>>> save_torch_state_dict(state_dict, "path/to/folder")
|
|
184
|
+
```
|
|
185
|
+
"""
|
|
186
|
+
save_directory = str(save_directory)
|
|
187
|
+
|
|
188
|
+
if filename_pattern is None:
|
|
189
|
+
filename_pattern = (
|
|
190
|
+
constants.SAFETENSORS_WEIGHTS_FILE_PATTERN
|
|
191
|
+
if safe_serialization
|
|
192
|
+
else constants.PYTORCH_WEIGHTS_FILE_PATTERN
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
# Imports correct library
|
|
196
|
+
if safe_serialization:
|
|
197
|
+
try:
|
|
198
|
+
from safetensors.torch import save_file as save_file_fn
|
|
199
|
+
except ImportError as e:
|
|
200
|
+
raise ImportError(
|
|
201
|
+
"Please install `safetensors` to use safe serialization. "
|
|
202
|
+
"You can install it with `pip install safetensors`."
|
|
203
|
+
) from e
|
|
204
|
+
|
|
205
|
+
else:
|
|
206
|
+
from torch import save as save_file_fn # type: ignore[assignment]
|
|
207
|
+
|
|
208
|
+
logger.warning(
|
|
209
|
+
"You are using unsafe serialization. Due to security reasons, it is recommended not to load "
|
|
210
|
+
"pickled models from untrusted sources. If you intend to share your model, we strongly recommend "
|
|
211
|
+
"using safe serialization by installing `safetensors` with `pip install safetensors`."
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
# Clean state dict for safetensors
|
|
215
|
+
if metadata is None:
|
|
216
|
+
metadata = {}
|
|
217
|
+
if safe_serialization:
|
|
218
|
+
state_dict = _clean_state_dict_for_safetensors(state_dict, metadata, force_contiguous=force_contiguous)
|
|
219
|
+
|
|
220
|
+
# Split dict
|
|
221
|
+
state_dict_split = split_torch_state_dict_into_shards(
|
|
222
|
+
state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
# Clean the folder from previous save
|
|
226
|
+
existing_files_regex = re.compile(filename_pattern.format(suffix=r"(-\d{5}-of-\d{5})?") + r"(\.index\.json)?")
|
|
227
|
+
for filename in os.listdir(save_directory):
|
|
228
|
+
if existing_files_regex.match(filename):
|
|
229
|
+
try:
|
|
230
|
+
logger.debug(f"Removing existing file '{filename}' from folder.")
|
|
231
|
+
os.remove(os.path.join(save_directory, filename))
|
|
232
|
+
except Exception as e:
|
|
233
|
+
logger.warning(f"Error when trying to remove existing '{filename}' from folder: {e}. Continuing...")
|
|
234
|
+
|
|
235
|
+
# Save each shard
|
|
236
|
+
per_file_metadata = {"format": "pt"}
|
|
237
|
+
if not state_dict_split.is_sharded:
|
|
238
|
+
per_file_metadata.update(metadata)
|
|
239
|
+
safe_file_kwargs = {"metadata": per_file_metadata} if safe_serialization else {}
|
|
240
|
+
for filename, tensors in state_dict_split.filename_to_tensors.items():
|
|
241
|
+
shard = {tensor: state_dict[tensor] for tensor in tensors}
|
|
242
|
+
save_file_fn(shard, os.path.join(save_directory, filename), **safe_file_kwargs)
|
|
243
|
+
logger.debug(f"Shard saved to {filename}")
|
|
244
|
+
|
|
245
|
+
# Save the index (if any)
|
|
246
|
+
if state_dict_split.is_sharded:
|
|
247
|
+
index_path = filename_pattern.format(suffix="") + ".index.json"
|
|
248
|
+
index = {
|
|
249
|
+
"metadata": {**state_dict_split.metadata, **metadata},
|
|
250
|
+
"weight_map": state_dict_split.tensor_to_filename,
|
|
251
|
+
}
|
|
252
|
+
with open(os.path.join(save_directory, index_path), "w") as f:
|
|
253
|
+
json.dump(index, f, indent=2)
|
|
254
|
+
logger.info(
|
|
255
|
+
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}). "
|
|
256
|
+
f"Model weighs have been saved in {len(state_dict_split.filename_to_tensors)} checkpoint shards. "
|
|
257
|
+
f"You can find where each parameters has been saved in the index located at {index_path}."
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
logger.info(f"Model weights successfully saved to {save_directory}!")
|
|
261
|
+
|
|
262
|
+
|
|
27
263
|
def split_torch_state_dict_into_shards(
|
|
28
264
|
state_dict: Dict[str, "torch.Tensor"],
|
|
29
265
|
*,
|
|
30
|
-
filename_pattern: str =
|
|
266
|
+
filename_pattern: str = constants.SAFETENSORS_WEIGHTS_FILE_PATTERN,
|
|
31
267
|
max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
|
|
32
268
|
) -> StateDictSplit:
|
|
33
269
|
"""
|
|
@@ -38,6 +274,14 @@ def split_torch_state_dict_into_shards(
|
|
|
38
274
|
have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not
|
|
39
275
|
[6+2+2GB], [6+2GB], [6GB].
|
|
40
276
|
|
|
277
|
+
|
|
278
|
+
<Tip>
|
|
279
|
+
|
|
280
|
+
To save a model state dictionary to the disk, see [`save_torch_state_dict`]. This helper uses
|
|
281
|
+
`split_torch_state_dict_into_shards` under the hood.
|
|
282
|
+
|
|
283
|
+
</Tip>
|
|
284
|
+
|
|
41
285
|
<Tip warning={true}>
|
|
42
286
|
|
|
43
287
|
If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
|
|
@@ -87,12 +331,12 @@ def split_torch_state_dict_into_shards(
|
|
|
87
331
|
state_dict,
|
|
88
332
|
max_shard_size=max_shard_size,
|
|
89
333
|
filename_pattern=filename_pattern,
|
|
90
|
-
|
|
91
|
-
get_storage_id=
|
|
334
|
+
get_storage_size=get_torch_storage_size,
|
|
335
|
+
get_storage_id=get_torch_storage_id,
|
|
92
336
|
)
|
|
93
337
|
|
|
94
338
|
|
|
95
|
-
def
|
|
339
|
+
def get_torch_storage_id(tensor: "torch.Tensor") -> Tuple["torch.device", int, int]:
|
|
96
340
|
"""
|
|
97
341
|
Return unique identifier to a tensor storage.
|
|
98
342
|
|
|
@@ -114,11 +358,23 @@ def get_storage_id(tensor: "torch.Tensor") -> Tuple["torch.device", int, int]:
|
|
|
114
358
|
else:
|
|
115
359
|
unique_id = storage_ptr(tensor)
|
|
116
360
|
|
|
117
|
-
return tensor.device, unique_id,
|
|
361
|
+
return tensor.device, unique_id, get_torch_storage_size(tensor)
|
|
118
362
|
|
|
119
363
|
|
|
120
|
-
def
|
|
121
|
-
|
|
364
|
+
def get_torch_storage_size(tensor: "torch.Tensor") -> int:
|
|
365
|
+
"""
|
|
366
|
+
Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L31C1-L41C59
|
|
367
|
+
"""
|
|
368
|
+
try:
|
|
369
|
+
return tensor.untyped_storage().nbytes()
|
|
370
|
+
except AttributeError:
|
|
371
|
+
# Fallback for torch==1.10
|
|
372
|
+
try:
|
|
373
|
+
return tensor.storage().size() * _get_dtype_size(tensor.dtype)
|
|
374
|
+
except NotImplementedError:
|
|
375
|
+
# Fallback for meta storage
|
|
376
|
+
# On torch >=2.0 this is the tensor size
|
|
377
|
+
return tensor.nelement() * _get_dtype_size(tensor.dtype)
|
|
122
378
|
|
|
123
379
|
|
|
124
380
|
@lru_cache()
|
|
@@ -144,7 +400,7 @@ def is_torch_tpu_available(check_device=True):
|
|
|
144
400
|
|
|
145
401
|
def storage_ptr(tensor: "torch.Tensor") -> int:
|
|
146
402
|
"""
|
|
147
|
-
Taken from https://github.com/huggingface/safetensors/blob/
|
|
403
|
+
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L11.
|
|
148
404
|
"""
|
|
149
405
|
try:
|
|
150
406
|
return tensor.untyped_storage().data_ptr()
|
|
@@ -157,20 +413,141 @@ def storage_ptr(tensor: "torch.Tensor") -> int:
|
|
|
157
413
|
return 0
|
|
158
414
|
|
|
159
415
|
|
|
160
|
-
def
|
|
416
|
+
def _clean_state_dict_for_safetensors(
|
|
417
|
+
state_dict: Dict[str, "torch.Tensor"], metadata: Dict[str, str], force_contiguous: bool = True
|
|
418
|
+
):
|
|
419
|
+
"""Remove shared tensors from state_dict and update metadata accordingly (for reloading).
|
|
420
|
+
|
|
421
|
+
Warning: `state_dict` and `metadata` are mutated in-place!
|
|
422
|
+
|
|
423
|
+
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L155.
|
|
161
424
|
"""
|
|
162
|
-
|
|
425
|
+
to_removes = _remove_duplicate_names(state_dict)
|
|
426
|
+
for kept_name, to_remove_group in to_removes.items():
|
|
427
|
+
for to_remove in to_remove_group:
|
|
428
|
+
if metadata is None:
|
|
429
|
+
metadata = {}
|
|
430
|
+
|
|
431
|
+
if to_remove not in metadata:
|
|
432
|
+
# Do not override user data
|
|
433
|
+
metadata[to_remove] = kept_name
|
|
434
|
+
del state_dict[to_remove]
|
|
435
|
+
if force_contiguous:
|
|
436
|
+
state_dict = {k: v.contiguous() for k, v in state_dict.items()}
|
|
437
|
+
return state_dict
|
|
438
|
+
|
|
439
|
+
|
|
440
|
+
def _end_ptr(tensor: "torch.Tensor") -> int:
|
|
163
441
|
"""
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
442
|
+
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L23.
|
|
443
|
+
"""
|
|
444
|
+
if tensor.nelement():
|
|
445
|
+
stop = tensor.view(-1)[-1].data_ptr() + _get_dtype_size(tensor.dtype)
|
|
446
|
+
else:
|
|
447
|
+
stop = tensor.data_ptr()
|
|
448
|
+
return stop
|
|
449
|
+
|
|
450
|
+
|
|
451
|
+
def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]:
|
|
452
|
+
"""
|
|
453
|
+
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L44
|
|
454
|
+
"""
|
|
455
|
+
filtered_tensors = []
|
|
456
|
+
for shared in tensors:
|
|
457
|
+
if len(shared) < 2:
|
|
458
|
+
filtered_tensors.append(shared)
|
|
459
|
+
continue
|
|
460
|
+
|
|
461
|
+
areas = []
|
|
462
|
+
for name in shared:
|
|
463
|
+
tensor = state_dict[name]
|
|
464
|
+
areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
|
|
465
|
+
areas.sort()
|
|
466
|
+
|
|
467
|
+
_, last_stop, last_name = areas[0]
|
|
468
|
+
filtered_tensors.append({last_name})
|
|
469
|
+
for start, stop, name in areas[1:]:
|
|
470
|
+
if start >= last_stop:
|
|
471
|
+
filtered_tensors.append({name})
|
|
472
|
+
else:
|
|
473
|
+
filtered_tensors[-1].add(name)
|
|
474
|
+
last_stop = stop
|
|
475
|
+
|
|
476
|
+
return filtered_tensors
|
|
477
|
+
|
|
478
|
+
|
|
479
|
+
def _find_shared_tensors(state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]:
|
|
480
|
+
"""
|
|
481
|
+
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L69.
|
|
482
|
+
"""
|
|
483
|
+
import torch
|
|
484
|
+
|
|
485
|
+
tensors_dict = defaultdict(set)
|
|
486
|
+
for k, v in state_dict.items():
|
|
487
|
+
if v.device != torch.device("meta") and storage_ptr(v) != 0 and get_torch_storage_size(v) != 0:
|
|
488
|
+
# Need to add device as key because of multiple GPU.
|
|
489
|
+
tensors_dict[(v.device, storage_ptr(v), get_torch_storage_size(v))].add(k)
|
|
490
|
+
tensors = list(sorted(tensors_dict.values()))
|
|
491
|
+
tensors = _filter_shared_not_shared(tensors, state_dict)
|
|
492
|
+
return tensors
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
def _is_complete(tensor: "torch.Tensor") -> bool:
|
|
496
|
+
"""
|
|
497
|
+
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80
|
|
498
|
+
"""
|
|
499
|
+
return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _get_dtype_size(
|
|
500
|
+
tensor.dtype
|
|
501
|
+
) == get_torch_storage_size(tensor)
|
|
502
|
+
|
|
503
|
+
|
|
504
|
+
def _remove_duplicate_names(
|
|
505
|
+
state_dict: Dict[str, "torch.Tensor"],
|
|
506
|
+
*,
|
|
507
|
+
preferred_names: Optional[List[str]] = None,
|
|
508
|
+
discard_names: Optional[List[str]] = None,
|
|
509
|
+
) -> Dict[str, List[str]]:
|
|
510
|
+
"""
|
|
511
|
+
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80
|
|
512
|
+
"""
|
|
513
|
+
if preferred_names is None:
|
|
514
|
+
preferred_names = []
|
|
515
|
+
unique_preferred_names = set(preferred_names)
|
|
516
|
+
if discard_names is None:
|
|
517
|
+
discard_names = []
|
|
518
|
+
unique_discard_names = set(discard_names)
|
|
519
|
+
|
|
520
|
+
shareds = _find_shared_tensors(state_dict)
|
|
521
|
+
to_remove = defaultdict(list)
|
|
522
|
+
for shared in shareds:
|
|
523
|
+
complete_names = set([name for name in shared if _is_complete(state_dict[name])])
|
|
524
|
+
if not complete_names:
|
|
525
|
+
raise RuntimeError(
|
|
526
|
+
"Error while trying to find names to remove to save state dict, but found no suitable name to keep"
|
|
527
|
+
f" for saving amongst: {shared}. None is covering the entire storage. Refusing to save/load the model"
|
|
528
|
+
" since you could be storing much more memory than needed. Please refer to"
|
|
529
|
+
" https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an"
|
|
530
|
+
" issue."
|
|
531
|
+
)
|
|
532
|
+
|
|
533
|
+
keep_name = sorted(list(complete_names))[0]
|
|
534
|
+
|
|
535
|
+
# Mechanism to preferentially select keys to keep
|
|
536
|
+
# coming from the on-disk file to allow
|
|
537
|
+
# loading models saved with a different choice
|
|
538
|
+
# of keep_name
|
|
539
|
+
preferred = complete_names.difference(unique_discard_names)
|
|
540
|
+
if preferred:
|
|
541
|
+
keep_name = sorted(list(preferred))[0]
|
|
542
|
+
|
|
543
|
+
if unique_preferred_names:
|
|
544
|
+
preferred = unique_preferred_names.intersection(complete_names)
|
|
545
|
+
if preferred:
|
|
546
|
+
keep_name = sorted(list(preferred))[0]
|
|
547
|
+
for name in sorted(shared):
|
|
548
|
+
if name != keep_name:
|
|
549
|
+
to_remove[keep_name].append(name)
|
|
550
|
+
return to_remove
|
|
174
551
|
|
|
175
552
|
|
|
176
553
|
@lru_cache()
|
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
1
|
# coding=utf-8
|
|
3
2
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
4
3
|
#
|
|
@@ -113,7 +112,7 @@ from ._safetensors import (
|
|
|
113
112
|
from ._subprocess import capture_output, run_interactive_subprocess, run_subprocess
|
|
114
113
|
from ._telemetry import send_telemetry
|
|
115
114
|
from ._token import get_token
|
|
116
|
-
from ._typing import is_jsonable
|
|
115
|
+
from ._typing import is_jsonable, is_simple_optional_type, unwrap_simple_optional_type
|
|
117
116
|
from ._validators import (
|
|
118
117
|
smoothly_deprecate_use_auth_token,
|
|
119
118
|
validate_hf_hub_args,
|
huggingface_hub/utils/_errors.py
CHANGED
|
@@ -361,7 +361,7 @@ def hf_raise_for_status(response: Response, endpoint_name: Optional[str] = None)
|
|
|
361
361
|
message = (
|
|
362
362
|
f"\n\n{response.status_code} Forbidden: {error_message}."
|
|
363
363
|
+ f"\nCannot access content at: {response.url}."
|
|
364
|
-
+ "\nIf you are trying to create or update content,"
|
|
364
|
+
+ "\nIf you are trying to create or update content, "
|
|
365
365
|
+ "make sure you have a token with the `write` role."
|
|
366
366
|
)
|
|
367
367
|
raise HfHubHTTPError(message, response=response) from e
|
huggingface_hub/utils/_fixes.py
CHANGED
|
@@ -18,8 +18,13 @@ from pathlib import Path
|
|
|
18
18
|
from typing import Callable, Generator, Optional, Union
|
|
19
19
|
|
|
20
20
|
import yaml
|
|
21
|
-
from filelock import BaseFileLock, FileLock
|
|
21
|
+
from filelock import BaseFileLock, FileLock, Timeout
|
|
22
22
|
|
|
23
|
+
from .. import constants
|
|
24
|
+
from . import logging
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
logger = logging.get_logger(__name__)
|
|
23
28
|
|
|
24
29
|
# Wrap `yaml.dump` to set `allow_unicode=True` by default.
|
|
25
30
|
#
|
|
@@ -80,8 +85,14 @@ def _set_write_permission_and_retry(func, path, excinfo):
|
|
|
80
85
|
@contextlib.contextmanager
|
|
81
86
|
def WeakFileLock(lock_file: Union[str, Path]) -> Generator[BaseFileLock, None, None]:
|
|
82
87
|
"""A filelock that won't raise an exception if release fails."""
|
|
83
|
-
lock = FileLock(lock_file)
|
|
84
|
-
|
|
88
|
+
lock = FileLock(lock_file, timeout=constants.FILELOCK_LOG_EVERY_SECONDS)
|
|
89
|
+
while True:
|
|
90
|
+
try:
|
|
91
|
+
lock.acquire()
|
|
92
|
+
except Timeout:
|
|
93
|
+
logger.info("still waiting to acquire lock on %s", lock_file)
|
|
94
|
+
else:
|
|
95
|
+
break
|
|
85
96
|
|
|
86
97
|
yield lock
|
|
87
98
|
|
huggingface_hub/utils/_paths.py
CHANGED
|
@@ -21,19 +21,19 @@ from typing import Callable, Generator, Iterable, List, Optional, TypeVar, Union
|
|
|
21
21
|
|
|
22
22
|
T = TypeVar("T")
|
|
23
23
|
|
|
24
|
-
# Always ignore `.git` and `.huggingface` folders in commits
|
|
24
|
+
# Always ignore `.git` and `.cache/huggingface` folders in commits
|
|
25
25
|
DEFAULT_IGNORE_PATTERNS = [
|
|
26
26
|
".git",
|
|
27
27
|
".git/*",
|
|
28
28
|
"*/.git",
|
|
29
29
|
"**/.git/**",
|
|
30
|
-
".huggingface",
|
|
31
|
-
".huggingface/*",
|
|
32
|
-
"*/.huggingface",
|
|
33
|
-
"**/.huggingface/**",
|
|
30
|
+
".cache/huggingface",
|
|
31
|
+
".cache/huggingface/*",
|
|
32
|
+
"*/.cache/huggingface",
|
|
33
|
+
"**/.cache/huggingface/**",
|
|
34
34
|
]
|
|
35
35
|
# Forbidden to commit these folders
|
|
36
|
-
FORBIDDEN_FOLDERS = [".git", ".
|
|
36
|
+
FORBIDDEN_FOLDERS = [".git", ".cache"]
|
|
37
37
|
|
|
38
38
|
|
|
39
39
|
def filter_repo_objects(
|
|
@@ -105,6 +105,11 @@ def filter_repo_objects(
|
|
|
105
105
|
if isinstance(ignore_patterns, str):
|
|
106
106
|
ignore_patterns = [ignore_patterns]
|
|
107
107
|
|
|
108
|
+
if allow_patterns is not None:
|
|
109
|
+
allow_patterns = [_add_wildcard_to_directories(p) for p in allow_patterns]
|
|
110
|
+
if ignore_patterns is not None:
|
|
111
|
+
ignore_patterns = [_add_wildcard_to_directories(p) for p in ignore_patterns]
|
|
112
|
+
|
|
108
113
|
if key is None:
|
|
109
114
|
|
|
110
115
|
def _identity(item: T) -> str:
|
|
@@ -128,3 +133,9 @@ def filter_repo_objects(
|
|
|
128
133
|
continue
|
|
129
134
|
|
|
130
135
|
yield item
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def _add_wildcard_to_directories(pattern: str) -> str:
|
|
139
|
+
if pattern[-1] == "/":
|
|
140
|
+
return pattern + "*"
|
|
141
|
+
return pattern
|
|
@@ -100,7 +100,15 @@ def _send_telemetry_in_thread(
|
|
|
100
100
|
library_version: Optional[str] = None,
|
|
101
101
|
user_agent: Union[Dict, str, None] = None,
|
|
102
102
|
) -> None:
|
|
103
|
-
"""Contains the actual data sending data to the Hub.
|
|
103
|
+
"""Contains the actual data sending data to the Hub.
|
|
104
|
+
|
|
105
|
+
This function is called directly in gradio's analytics because
|
|
106
|
+
it is not possible to send telemetry from a daemon thread.
|
|
107
|
+
|
|
108
|
+
See here: https://github.com/gradio-app/gradio/pull/8180
|
|
109
|
+
|
|
110
|
+
Please do not rename or remove this function.
|
|
111
|
+
"""
|
|
104
112
|
path = "/".join(quote(part) for part in topic.split("/") if len(part) > 0)
|
|
105
113
|
try:
|
|
106
114
|
r = get_session().head(
|
huggingface_hub/utils/_typing.py
CHANGED
|
@@ -14,7 +14,15 @@
|
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
"""Handle typing imports based on system compatibility."""
|
|
16
16
|
|
|
17
|
-
|
|
17
|
+
import sys
|
|
18
|
+
from typing import Any, Callable, List, Literal, Type, TypeVar, Union, get_args, get_origin
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
UNION_TYPES: List[Any] = [Union]
|
|
22
|
+
if sys.version_info >= (3, 10):
|
|
23
|
+
from types import UnionType
|
|
24
|
+
|
|
25
|
+
UNION_TYPES += [UnionType]
|
|
18
26
|
|
|
19
27
|
|
|
20
28
|
HTTP_METHOD_T = Literal["GET", "OPTIONS", "HEAD", "POST", "PUT", "PATCH", "DELETE"]
|
|
@@ -48,3 +56,20 @@ def is_jsonable(obj: Any) -> bool:
|
|
|
48
56
|
return False
|
|
49
57
|
except RecursionError:
|
|
50
58
|
return False
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def is_simple_optional_type(type_: Type) -> bool:
|
|
62
|
+
"""Check if a type is optional, i.e. Optional[Type] or Union[Type, None] or Type | None, where Type is a non-composite type."""
|
|
63
|
+
if get_origin(type_) in UNION_TYPES:
|
|
64
|
+
union_args = get_args(type_)
|
|
65
|
+
if len(union_args) == 2 and type(None) in union_args:
|
|
66
|
+
return True
|
|
67
|
+
return False
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def unwrap_simple_optional_type(optional_type: Type) -> Type:
|
|
71
|
+
"""Unwraps a simple optional type, i.e. returns Type from Optional[Type]."""
|
|
72
|
+
for arg in get_args(optional_type):
|
|
73
|
+
if arg is not type(None):
|
|
74
|
+
return arg
|
|
75
|
+
raise ValueError(f"'{optional_type}' is not an optional type")
|