huggingface-hub 0.21.4__py3-none-any.whl → 0.22.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of huggingface-hub might be problematic. Click here for more details.
- huggingface_hub/__init__.py +217 -1
- huggingface_hub/_commit_api.py +14 -15
- huggingface_hub/_inference_endpoints.py +12 -11
- huggingface_hub/_login.py +1 -0
- huggingface_hub/_multi_commits.py +1 -0
- huggingface_hub/_snapshot_download.py +9 -1
- huggingface_hub/_tensorboard_logger.py +1 -0
- huggingface_hub/_webhooks_payload.py +1 -0
- huggingface_hub/_webhooks_server.py +1 -0
- huggingface_hub/commands/_cli_utils.py +1 -0
- huggingface_hub/commands/delete_cache.py +1 -0
- huggingface_hub/commands/download.py +1 -0
- huggingface_hub/commands/env.py +1 -0
- huggingface_hub/commands/scan_cache.py +1 -0
- huggingface_hub/commands/upload.py +1 -0
- huggingface_hub/community.py +1 -0
- huggingface_hub/constants.py +3 -1
- huggingface_hub/errors.py +38 -0
- huggingface_hub/file_download.py +102 -95
- huggingface_hub/hf_api.py +47 -35
- huggingface_hub/hf_file_system.py +77 -3
- huggingface_hub/hub_mixin.py +215 -54
- huggingface_hub/inference/_client.py +554 -239
- huggingface_hub/inference/_common.py +195 -41
- huggingface_hub/inference/_generated/_async_client.py +558 -239
- huggingface_hub/inference/_generated/types/__init__.py +115 -0
- huggingface_hub/inference/_generated/types/audio_classification.py +43 -0
- huggingface_hub/inference/_generated/types/audio_to_audio.py +31 -0
- huggingface_hub/inference/_generated/types/automatic_speech_recognition.py +116 -0
- huggingface_hub/inference/_generated/types/base.py +149 -0
- huggingface_hub/inference/_generated/types/chat_completion.py +106 -0
- huggingface_hub/inference/_generated/types/depth_estimation.py +29 -0
- huggingface_hub/inference/_generated/types/document_question_answering.py +85 -0
- huggingface_hub/inference/_generated/types/feature_extraction.py +19 -0
- huggingface_hub/inference/_generated/types/fill_mask.py +50 -0
- huggingface_hub/inference/_generated/types/image_classification.py +43 -0
- huggingface_hub/inference/_generated/types/image_segmentation.py +52 -0
- huggingface_hub/inference/_generated/types/image_to_image.py +55 -0
- huggingface_hub/inference/_generated/types/image_to_text.py +105 -0
- huggingface_hub/inference/_generated/types/object_detection.py +55 -0
- huggingface_hub/inference/_generated/types/question_answering.py +77 -0
- huggingface_hub/inference/_generated/types/sentence_similarity.py +28 -0
- huggingface_hub/inference/_generated/types/summarization.py +46 -0
- huggingface_hub/inference/_generated/types/table_question_answering.py +45 -0
- huggingface_hub/inference/_generated/types/text2text_generation.py +45 -0
- huggingface_hub/inference/_generated/types/text_classification.py +43 -0
- huggingface_hub/inference/_generated/types/text_generation.py +161 -0
- huggingface_hub/inference/_generated/types/text_to_audio.py +105 -0
- huggingface_hub/inference/_generated/types/text_to_image.py +57 -0
- huggingface_hub/inference/_generated/types/token_classification.py +53 -0
- huggingface_hub/inference/_generated/types/translation.py +46 -0
- huggingface_hub/inference/_generated/types/video_classification.py +47 -0
- huggingface_hub/inference/_generated/types/visual_question_answering.py +53 -0
- huggingface_hub/inference/_generated/types/zero_shot_classification.py +56 -0
- huggingface_hub/inference/_generated/types/zero_shot_image_classification.py +51 -0
- huggingface_hub/inference/_generated/types/zero_shot_object_detection.py +55 -0
- huggingface_hub/inference/_templating.py +105 -0
- huggingface_hub/inference/_types.py +4 -152
- huggingface_hub/keras_mixin.py +39 -17
- huggingface_hub/lfs.py +20 -8
- huggingface_hub/repocard.py +11 -3
- huggingface_hub/repocard_data.py +12 -2
- huggingface_hub/serialization/__init__.py +1 -0
- huggingface_hub/serialization/_base.py +1 -0
- huggingface_hub/serialization/_numpy.py +1 -0
- huggingface_hub/serialization/_tensorflow.py +1 -0
- huggingface_hub/serialization/_torch.py +1 -0
- huggingface_hub/utils/__init__.py +4 -1
- huggingface_hub/utils/_cache_manager.py +7 -0
- huggingface_hub/utils/_chunk_utils.py +1 -0
- huggingface_hub/utils/_datetime.py +1 -0
- huggingface_hub/utils/_errors.py +10 -1
- huggingface_hub/utils/_experimental.py +1 -0
- huggingface_hub/utils/_fixes.py +19 -3
- huggingface_hub/utils/_git_credential.py +1 -0
- huggingface_hub/utils/_headers.py +10 -3
- huggingface_hub/utils/_hf_folder.py +1 -0
- huggingface_hub/utils/_http.py +1 -0
- huggingface_hub/utils/_pagination.py +1 -0
- huggingface_hub/utils/_paths.py +1 -0
- huggingface_hub/utils/_runtime.py +22 -0
- huggingface_hub/utils/_subprocess.py +1 -0
- huggingface_hub/utils/_token.py +1 -0
- huggingface_hub/utils/_typing.py +29 -1
- huggingface_hub/utils/_validators.py +1 -0
- huggingface_hub/utils/endpoint_helpers.py +1 -0
- huggingface_hub/utils/logging.py +1 -1
- huggingface_hub/utils/sha.py +1 -0
- huggingface_hub/utils/tqdm.py +1 -0
- {huggingface_hub-0.21.4.dist-info → huggingface_hub-0.22.0.dist-info}/METADATA +14 -15
- huggingface_hub-0.22.0.dist-info/RECORD +113 -0
- {huggingface_hub-0.21.4.dist-info → huggingface_hub-0.22.0.dist-info}/WHEEL +1 -1
- huggingface_hub/inference/_text_generation.py +0 -551
- huggingface_hub-0.21.4.dist-info/RECORD +0 -81
- {huggingface_hub-0.21.4.dist-info → huggingface_hub-0.22.0.dist-info}/LICENSE +0 -0
- {huggingface_hub-0.21.4.dist-info → huggingface_hub-0.22.0.dist-info}/entry_points.txt +0 -0
- {huggingface_hub-0.21.4.dist-info → huggingface_hub-0.22.0.dist-info}/top_level.txt +0 -0
|
@@ -1,551 +0,0 @@
|
|
|
1
|
-
# coding=utf-8
|
|
2
|
-
# Copyright 2023-present, the HuggingFace Inc. team.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
#
|
|
16
|
-
# Original implementation taken from the `text-generation` Python client (see https://pypi.org/project/text-generation/
|
|
17
|
-
# and https://github.com/huggingface/text-generation-inference/tree/main/clients/python)
|
|
18
|
-
#
|
|
19
|
-
# Changes compared to original implementation:
|
|
20
|
-
# - use pydantic.dataclasses instead of BaseModel
|
|
21
|
-
# - default to Python's dataclasses if Pydantic is not installed (same implementation but no validation)
|
|
22
|
-
# - added default values for all parameters (not needed in BaseModel but dataclasses yes)
|
|
23
|
-
# - integrated in `huggingface_hub.InferenceClient``
|
|
24
|
-
# - added `stream: bool` and `details: bool` in the `text_generation` method instead of having different methods for each use case
|
|
25
|
-
import warnings
|
|
26
|
-
from dataclasses import field
|
|
27
|
-
from enum import Enum
|
|
28
|
-
from typing import List, NoReturn, Optional
|
|
29
|
-
|
|
30
|
-
from requests import HTTPError
|
|
31
|
-
|
|
32
|
-
from ..utils import is_pydantic_available
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
if is_pydantic_available():
|
|
36
|
-
from pydantic import validator as pydantic_validator
|
|
37
|
-
from pydantic.dataclasses import dataclass
|
|
38
|
-
|
|
39
|
-
def validator(*args, **kwargs):
|
|
40
|
-
# Pydantic v1's `@validator` is deprecated in favor of `@field_validator`. In order to support both pydantic v1
|
|
41
|
-
# and v2 without changing the logic, we catch the warning message in pydantic v2 and ignore it. If we want to
|
|
42
|
-
# support pydantic v3 in the future, we will drop support for pydantic v1 and use `pydantic.field_validator`
|
|
43
|
-
# correctly.
|
|
44
|
-
#
|
|
45
|
-
# Related:
|
|
46
|
-
# - https://docs.pydantic.dev/latest/migration/#changes-to-validators
|
|
47
|
-
# - https://github.com/huggingface/huggingface_hub/pull/1837
|
|
48
|
-
with warnings.catch_warnings():
|
|
49
|
-
warnings.filterwarnings("ignore", message="Pydantic V1 style `@validator` validators are deprecated.")
|
|
50
|
-
return pydantic_validator(*args, **kwargs)
|
|
51
|
-
else:
|
|
52
|
-
# No validation if Pydantic is not installed
|
|
53
|
-
from dataclasses import dataclass # type: ignore
|
|
54
|
-
|
|
55
|
-
def validator(x): # type: ignore
|
|
56
|
-
return lambda y: y
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
@dataclass
|
|
60
|
-
class TextGenerationParameters:
|
|
61
|
-
"""
|
|
62
|
-
Parameters for text generation.
|
|
63
|
-
|
|
64
|
-
Args:
|
|
65
|
-
do_sample (`bool`, *optional*):
|
|
66
|
-
Activate logits sampling. Defaults to False.
|
|
67
|
-
max_new_tokens (`int`, *optional*):
|
|
68
|
-
Maximum number of generated tokens. Defaults to 20.
|
|
69
|
-
repetition_penalty (`Optional[float]`, *optional*):
|
|
70
|
-
The parameter for repetition penalty. A value of 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf)
|
|
71
|
-
for more details. Defaults to None.
|
|
72
|
-
return_full_text (`bool`, *optional*):
|
|
73
|
-
Whether to prepend the prompt to the generated text. Defaults to False.
|
|
74
|
-
stop (`List[str]`, *optional*):
|
|
75
|
-
Stop generating tokens if a member of `stop_sequences` is generated. Defaults to an empty list.
|
|
76
|
-
seed (`Optional[int]`, *optional*):
|
|
77
|
-
Random sampling seed. Defaults to None.
|
|
78
|
-
temperature (`Optional[float]`, *optional*):
|
|
79
|
-
The value used to modulate the logits distribution. Defaults to None.
|
|
80
|
-
top_k (`Optional[int]`, *optional*):
|
|
81
|
-
The number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None.
|
|
82
|
-
top_p (`Optional[float]`, *optional*):
|
|
83
|
-
If set to a value less than 1, only the smallest set of most probable tokens with probabilities that add up
|
|
84
|
-
to `top_p` or higher are kept for generation. Defaults to None.
|
|
85
|
-
truncate (`Optional[int]`, *optional*):
|
|
86
|
-
Truncate input tokens to the given size. Defaults to None.
|
|
87
|
-
typical_p (`Optional[float]`, *optional*):
|
|
88
|
-
Typical Decoding mass. See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666)
|
|
89
|
-
for more information. Defaults to None.
|
|
90
|
-
best_of (`Optional[int]`, *optional*):
|
|
91
|
-
Generate `best_of` sequences and return the one with the highest token logprobs. Defaults to None.
|
|
92
|
-
watermark (`bool`, *optional*):
|
|
93
|
-
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226). Defaults to False.
|
|
94
|
-
details (`bool`, *optional*):
|
|
95
|
-
Get generation details. Defaults to False.
|
|
96
|
-
decoder_input_details (`bool`, *optional*):
|
|
97
|
-
Get decoder input token logprobs and ids. Defaults to False.
|
|
98
|
-
"""
|
|
99
|
-
|
|
100
|
-
# Activate logits sampling
|
|
101
|
-
do_sample: bool = False
|
|
102
|
-
# Maximum number of generated tokens
|
|
103
|
-
max_new_tokens: int = 20
|
|
104
|
-
# The parameter for repetition penalty. 1.0 means no penalty.
|
|
105
|
-
# See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
|
|
106
|
-
repetition_penalty: Optional[float] = None
|
|
107
|
-
# Whether to prepend the prompt to the generated text
|
|
108
|
-
return_full_text: bool = False
|
|
109
|
-
# Stop generating tokens if a member of `stop_sequences` is generated
|
|
110
|
-
stop: List[str] = field(default_factory=lambda: [])
|
|
111
|
-
# Random sampling seed
|
|
112
|
-
seed: Optional[int] = None
|
|
113
|
-
# The value used to module the logits distribution.
|
|
114
|
-
temperature: Optional[float] = None
|
|
115
|
-
# The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
|
116
|
-
top_k: Optional[int] = None
|
|
117
|
-
# If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
|
|
118
|
-
# higher are kept for generation.
|
|
119
|
-
top_p: Optional[float] = None
|
|
120
|
-
# truncate inputs tokens to the given size
|
|
121
|
-
truncate: Optional[int] = None
|
|
122
|
-
# Typical Decoding mass
|
|
123
|
-
# See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
|
|
124
|
-
typical_p: Optional[float] = None
|
|
125
|
-
# Generate best_of sequences and return the one if the highest token logprobs
|
|
126
|
-
best_of: Optional[int] = None
|
|
127
|
-
# Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
|
|
128
|
-
watermark: bool = False
|
|
129
|
-
# Get generation details
|
|
130
|
-
details: bool = False
|
|
131
|
-
# Get decoder input token logprobs and ids
|
|
132
|
-
decoder_input_details: bool = False
|
|
133
|
-
|
|
134
|
-
@validator("best_of")
|
|
135
|
-
def valid_best_of(cls, field_value, values):
|
|
136
|
-
if field_value is not None:
|
|
137
|
-
if field_value <= 0:
|
|
138
|
-
raise ValueError("`best_of` must be strictly positive")
|
|
139
|
-
if field_value > 1 and values["seed"] is not None:
|
|
140
|
-
raise ValueError("`seed` must not be set when `best_of` is > 1")
|
|
141
|
-
sampling = (
|
|
142
|
-
values["do_sample"]
|
|
143
|
-
| (values["temperature"] is not None)
|
|
144
|
-
| (values["top_k"] is not None)
|
|
145
|
-
| (values["top_p"] is not None)
|
|
146
|
-
| (values["typical_p"] is not None)
|
|
147
|
-
)
|
|
148
|
-
if field_value > 1 and not sampling:
|
|
149
|
-
raise ValueError("you must use sampling when `best_of` is > 1")
|
|
150
|
-
|
|
151
|
-
return field_value
|
|
152
|
-
|
|
153
|
-
@validator("repetition_penalty")
|
|
154
|
-
def valid_repetition_penalty(cls, v):
|
|
155
|
-
if v is not None and v <= 0:
|
|
156
|
-
raise ValueError("`repetition_penalty` must be strictly positive")
|
|
157
|
-
return v
|
|
158
|
-
|
|
159
|
-
@validator("seed")
|
|
160
|
-
def valid_seed(cls, v):
|
|
161
|
-
if v is not None and v < 0:
|
|
162
|
-
raise ValueError("`seed` must be positive")
|
|
163
|
-
return v
|
|
164
|
-
|
|
165
|
-
@validator("temperature")
|
|
166
|
-
def valid_temp(cls, v):
|
|
167
|
-
if v is not None and v <= 0:
|
|
168
|
-
raise ValueError("`temperature` must be strictly positive")
|
|
169
|
-
return v
|
|
170
|
-
|
|
171
|
-
@validator("top_k")
|
|
172
|
-
def valid_top_k(cls, v):
|
|
173
|
-
if v is not None and v <= 0:
|
|
174
|
-
raise ValueError("`top_k` must be strictly positive")
|
|
175
|
-
return v
|
|
176
|
-
|
|
177
|
-
@validator("top_p")
|
|
178
|
-
def valid_top_p(cls, v):
|
|
179
|
-
if v is not None and (v <= 0 or v >= 1.0):
|
|
180
|
-
raise ValueError("`top_p` must be > 0.0 and < 1.0")
|
|
181
|
-
return v
|
|
182
|
-
|
|
183
|
-
@validator("truncate")
|
|
184
|
-
def valid_truncate(cls, v):
|
|
185
|
-
if v is not None and v <= 0:
|
|
186
|
-
raise ValueError("`truncate` must be strictly positive")
|
|
187
|
-
return v
|
|
188
|
-
|
|
189
|
-
@validator("typical_p")
|
|
190
|
-
def valid_typical_p(cls, v):
|
|
191
|
-
if v is not None and (v <= 0 or v >= 1.0):
|
|
192
|
-
raise ValueError("`typical_p` must be > 0.0 and < 1.0")
|
|
193
|
-
return v
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
@dataclass
|
|
197
|
-
class TextGenerationRequest:
|
|
198
|
-
"""
|
|
199
|
-
Request object for text generation (only for internal use).
|
|
200
|
-
|
|
201
|
-
Args:
|
|
202
|
-
inputs (`str`):
|
|
203
|
-
The prompt for text generation.
|
|
204
|
-
parameters (`Optional[TextGenerationParameters]`, *optional*):
|
|
205
|
-
Generation parameters.
|
|
206
|
-
stream (`bool`, *optional*):
|
|
207
|
-
Whether to stream output tokens. Defaults to False.
|
|
208
|
-
"""
|
|
209
|
-
|
|
210
|
-
# Prompt
|
|
211
|
-
inputs: str
|
|
212
|
-
# Generation parameters
|
|
213
|
-
parameters: Optional[TextGenerationParameters] = None
|
|
214
|
-
# Whether to stream output tokens
|
|
215
|
-
stream: bool = False
|
|
216
|
-
|
|
217
|
-
@validator("inputs")
|
|
218
|
-
def valid_input(cls, v):
|
|
219
|
-
if not v:
|
|
220
|
-
raise ValueError("`inputs` cannot be empty")
|
|
221
|
-
return v
|
|
222
|
-
|
|
223
|
-
@validator("stream")
|
|
224
|
-
def valid_best_of_stream(cls, field_value, values):
|
|
225
|
-
parameters = values["parameters"]
|
|
226
|
-
if parameters is not None and parameters.best_of is not None and parameters.best_of > 1 and field_value:
|
|
227
|
-
raise ValueError("`best_of` != 1 is not supported when `stream` == True")
|
|
228
|
-
return field_value
|
|
229
|
-
|
|
230
|
-
def __post_init__(self):
|
|
231
|
-
if not is_pydantic_available():
|
|
232
|
-
# If pydantic is not installed, we need to instantiate the nested dataclasses manually
|
|
233
|
-
if self.parameters is not None and isinstance(self.parameters, dict):
|
|
234
|
-
self.parameters = TextGenerationParameters(**self.parameters)
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
# Decoder input tokens
|
|
238
|
-
@dataclass
|
|
239
|
-
class InputToken:
|
|
240
|
-
"""
|
|
241
|
-
Represents an input token.
|
|
242
|
-
|
|
243
|
-
Args:
|
|
244
|
-
id (`int`):
|
|
245
|
-
Token ID from the model tokenizer.
|
|
246
|
-
text (`str`):
|
|
247
|
-
Token text.
|
|
248
|
-
logprob (`float` or `None`):
|
|
249
|
-
Log probability of the token. Optional since the logprob of the first token cannot be computed.
|
|
250
|
-
"""
|
|
251
|
-
|
|
252
|
-
# Token ID from the model tokenizer
|
|
253
|
-
id: int
|
|
254
|
-
# Token text
|
|
255
|
-
text: str
|
|
256
|
-
# Logprob
|
|
257
|
-
# Optional since the logprob of the first token cannot be computed
|
|
258
|
-
logprob: Optional[float] = None
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
# Generated tokens
|
|
262
|
-
@dataclass
|
|
263
|
-
class Token:
|
|
264
|
-
"""
|
|
265
|
-
Represents a token.
|
|
266
|
-
|
|
267
|
-
Args:
|
|
268
|
-
id (`int`):
|
|
269
|
-
Token ID from the model tokenizer.
|
|
270
|
-
text (`str`):
|
|
271
|
-
Token text.
|
|
272
|
-
logprob (`float`):
|
|
273
|
-
Log probability of the token.
|
|
274
|
-
special (`bool`):
|
|
275
|
-
Indicates whether the token is a special token. It can be used to ignore
|
|
276
|
-
tokens when concatenating.
|
|
277
|
-
"""
|
|
278
|
-
|
|
279
|
-
# Token ID from the model tokenizer
|
|
280
|
-
id: int
|
|
281
|
-
# Token text
|
|
282
|
-
text: str
|
|
283
|
-
# Logprob
|
|
284
|
-
logprob: float
|
|
285
|
-
# Is the token a special token
|
|
286
|
-
# Can be used to ignore tokens when concatenating
|
|
287
|
-
special: bool
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
# Generation finish reason
|
|
291
|
-
class FinishReason(str, Enum):
|
|
292
|
-
# number of generated tokens == `max_new_tokens`
|
|
293
|
-
Length = "length"
|
|
294
|
-
# the model generated its end of sequence token
|
|
295
|
-
EndOfSequenceToken = "eos_token"
|
|
296
|
-
# the model generated a text included in `stop_sequences`
|
|
297
|
-
StopSequence = "stop_sequence"
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
# Additional sequences when using the `best_of` parameter
|
|
301
|
-
@dataclass
|
|
302
|
-
class BestOfSequence:
|
|
303
|
-
"""
|
|
304
|
-
Represents a best-of sequence generated during text generation.
|
|
305
|
-
|
|
306
|
-
Args:
|
|
307
|
-
generated_text (`str`):
|
|
308
|
-
The generated text.
|
|
309
|
-
finish_reason (`FinishReason`):
|
|
310
|
-
The reason for the generation to finish, represented by a `FinishReason` value.
|
|
311
|
-
generated_tokens (`int`):
|
|
312
|
-
The number of generated tokens in the sequence.
|
|
313
|
-
seed (`Optional[int]`):
|
|
314
|
-
The sampling seed if sampling was activated.
|
|
315
|
-
prefill (`List[InputToken]`):
|
|
316
|
-
The decoder input tokens. Empty if `decoder_input_details` is False. Defaults to an empty list.
|
|
317
|
-
tokens (`List[Token]`):
|
|
318
|
-
The generated tokens. Defaults to an empty list.
|
|
319
|
-
"""
|
|
320
|
-
|
|
321
|
-
# Generated text
|
|
322
|
-
generated_text: str
|
|
323
|
-
# Generation finish reason
|
|
324
|
-
finish_reason: FinishReason
|
|
325
|
-
# Number of generated tokens
|
|
326
|
-
generated_tokens: int
|
|
327
|
-
# Sampling seed if sampling was activated
|
|
328
|
-
seed: Optional[int] = None
|
|
329
|
-
# Decoder input tokens, empty if decoder_input_details is False
|
|
330
|
-
prefill: List[InputToken] = field(default_factory=lambda: [])
|
|
331
|
-
# Generated tokens
|
|
332
|
-
tokens: List[Token] = field(default_factory=lambda: [])
|
|
333
|
-
|
|
334
|
-
def __post_init__(self):
|
|
335
|
-
if not is_pydantic_available():
|
|
336
|
-
# If pydantic is not installed, we need to instantiate the nested dataclasses manually
|
|
337
|
-
self.prefill = [
|
|
338
|
-
InputToken(**input_token) if isinstance(input_token, dict) else input_token
|
|
339
|
-
for input_token in self.prefill
|
|
340
|
-
]
|
|
341
|
-
self.tokens = [Token(**token) if isinstance(token, dict) else token for token in self.tokens]
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
# `generate` details
|
|
345
|
-
@dataclass
|
|
346
|
-
class Details:
|
|
347
|
-
"""
|
|
348
|
-
Represents details of a text generation.
|
|
349
|
-
|
|
350
|
-
Args:
|
|
351
|
-
finish_reason (`FinishReason`):
|
|
352
|
-
The reason for the generation to finish, represented by a `FinishReason` value.
|
|
353
|
-
generated_tokens (`int`):
|
|
354
|
-
The number of generated tokens.
|
|
355
|
-
seed (`Optional[int]`):
|
|
356
|
-
The sampling seed if sampling was activated.
|
|
357
|
-
prefill (`List[InputToken]`, *optional*):
|
|
358
|
-
The decoder input tokens. Empty if `decoder_input_details` is False. Defaults to an empty list.
|
|
359
|
-
tokens (`List[Token]`):
|
|
360
|
-
The generated tokens. Defaults to an empty list.
|
|
361
|
-
best_of_sequences (`Optional[List[BestOfSequence]]`):
|
|
362
|
-
Additional sequences when using the `best_of` parameter.
|
|
363
|
-
"""
|
|
364
|
-
|
|
365
|
-
# Generation finish reason
|
|
366
|
-
finish_reason: FinishReason
|
|
367
|
-
# Number of generated tokens
|
|
368
|
-
generated_tokens: int
|
|
369
|
-
# Sampling seed if sampling was activated
|
|
370
|
-
seed: Optional[int] = None
|
|
371
|
-
# Decoder input tokens, empty if decoder_input_details is False
|
|
372
|
-
prefill: List[InputToken] = field(default_factory=lambda: [])
|
|
373
|
-
# Generated tokens
|
|
374
|
-
tokens: List[Token] = field(default_factory=lambda: [])
|
|
375
|
-
# Additional sequences when using the `best_of` parameter
|
|
376
|
-
best_of_sequences: Optional[List[BestOfSequence]] = None
|
|
377
|
-
|
|
378
|
-
def __post_init__(self):
|
|
379
|
-
if not is_pydantic_available():
|
|
380
|
-
# If pydantic is not installed, we need to instantiate the nested dataclasses manually
|
|
381
|
-
self.prefill = [
|
|
382
|
-
InputToken(**input_token) if isinstance(input_token, dict) else input_token
|
|
383
|
-
for input_token in self.prefill
|
|
384
|
-
]
|
|
385
|
-
self.tokens = [Token(**token) if isinstance(token, dict) else token for token in self.tokens]
|
|
386
|
-
if self.best_of_sequences is not None:
|
|
387
|
-
self.best_of_sequences = [
|
|
388
|
-
BestOfSequence(**best_of_sequence) if isinstance(best_of_sequence, dict) else best_of_sequence
|
|
389
|
-
for best_of_sequence in self.best_of_sequences
|
|
390
|
-
]
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
# `generate` return value
|
|
394
|
-
@dataclass
|
|
395
|
-
class TextGenerationResponse:
|
|
396
|
-
"""
|
|
397
|
-
Represents a response for text generation.
|
|
398
|
-
|
|
399
|
-
Only returned when `details=True`, otherwise a string is returned.
|
|
400
|
-
|
|
401
|
-
Args:
|
|
402
|
-
generated_text (`str`):
|
|
403
|
-
The generated text.
|
|
404
|
-
details (`Optional[Details]`):
|
|
405
|
-
Generation details. Returned only if `details=True` is sent to the server.
|
|
406
|
-
"""
|
|
407
|
-
|
|
408
|
-
# Generated text
|
|
409
|
-
generated_text: str
|
|
410
|
-
# Generation details
|
|
411
|
-
details: Optional[Details] = None
|
|
412
|
-
|
|
413
|
-
def __post_init__(self):
|
|
414
|
-
if not is_pydantic_available():
|
|
415
|
-
# If pydantic is not installed, we need to instantiate the nested dataclasses manually
|
|
416
|
-
if self.details is not None and isinstance(self.details, dict):
|
|
417
|
-
self.details = Details(**self.details)
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
# `generate_stream` details
|
|
421
|
-
@dataclass
|
|
422
|
-
class StreamDetails:
|
|
423
|
-
"""
|
|
424
|
-
Represents details of a text generation stream.
|
|
425
|
-
|
|
426
|
-
Args:
|
|
427
|
-
finish_reason (`FinishReason`):
|
|
428
|
-
The reason for the generation to finish, represented by a `FinishReason` value.
|
|
429
|
-
generated_tokens (`int`):
|
|
430
|
-
The number of generated tokens.
|
|
431
|
-
seed (`Optional[int]`):
|
|
432
|
-
The sampling seed if sampling was activated.
|
|
433
|
-
"""
|
|
434
|
-
|
|
435
|
-
# Generation finish reason
|
|
436
|
-
finish_reason: FinishReason
|
|
437
|
-
# Number of generated tokens
|
|
438
|
-
generated_tokens: int
|
|
439
|
-
# Sampling seed if sampling was activated
|
|
440
|
-
seed: Optional[int] = None
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
# `generate_stream` return value
|
|
444
|
-
@dataclass
|
|
445
|
-
class TextGenerationStreamResponse:
|
|
446
|
-
"""
|
|
447
|
-
Represents a response for streaming text generation.
|
|
448
|
-
|
|
449
|
-
Only returned when `details=True` and `stream=True`.
|
|
450
|
-
|
|
451
|
-
Args:
|
|
452
|
-
token (`Token`):
|
|
453
|
-
The generated token.
|
|
454
|
-
index (`Optional[int]`, *optional*):
|
|
455
|
-
The token index within the stream. Optional to support older clients that omit it.
|
|
456
|
-
generated_text (`Optional[str]`, *optional*):
|
|
457
|
-
The complete generated text. Only available when the generation is finished.
|
|
458
|
-
details (`Optional[StreamDetails]`, *optional*):
|
|
459
|
-
Generation details. Only available when the generation is finished.
|
|
460
|
-
"""
|
|
461
|
-
|
|
462
|
-
# Generated token
|
|
463
|
-
token: Token
|
|
464
|
-
# The token index within the stream
|
|
465
|
-
# Optional to support older clients that omit it.
|
|
466
|
-
index: Optional[int] = None
|
|
467
|
-
# Complete generated text
|
|
468
|
-
# Only available when the generation is finished
|
|
469
|
-
generated_text: Optional[str] = None
|
|
470
|
-
# Generation details
|
|
471
|
-
# Only available when the generation is finished
|
|
472
|
-
details: Optional[StreamDetails] = None
|
|
473
|
-
|
|
474
|
-
def __post_init__(self):
|
|
475
|
-
if not is_pydantic_available():
|
|
476
|
-
# If pydantic is not installed, we need to instantiate the nested dataclasses manually
|
|
477
|
-
if isinstance(self.token, dict):
|
|
478
|
-
self.token = Token(**self.token)
|
|
479
|
-
if self.details is not None and isinstance(self.details, dict):
|
|
480
|
-
self.details = StreamDetails(**self.details)
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
# TEXT GENERATION ERRORS
|
|
484
|
-
# ----------------------
|
|
485
|
-
# Text-generation errors are parsed separately to handle as much as possible the errors returned by the text generation
|
|
486
|
-
# inference project (https://github.com/huggingface/text-generation-inference).
|
|
487
|
-
# ----------------------
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
class TextGenerationError(HTTPError):
|
|
491
|
-
"""Generic error raised if text-generation went wrong."""
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
# Text Generation Inference Errors
|
|
495
|
-
class ValidationError(TextGenerationError):
|
|
496
|
-
"""Server-side validation error."""
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
class GenerationError(TextGenerationError):
|
|
500
|
-
pass
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
class OverloadedError(TextGenerationError):
|
|
504
|
-
pass
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
class IncompleteGenerationError(TextGenerationError):
|
|
508
|
-
pass
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
class UnknownError(TextGenerationError):
|
|
512
|
-
pass
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
def raise_text_generation_error(http_error: HTTPError) -> NoReturn:
|
|
516
|
-
"""
|
|
517
|
-
Try to parse text-generation-inference error message and raise HTTPError in any case.
|
|
518
|
-
|
|
519
|
-
Args:
|
|
520
|
-
error (`HTTPError`):
|
|
521
|
-
The HTTPError that have been raised.
|
|
522
|
-
"""
|
|
523
|
-
# Try to parse a Text Generation Inference error
|
|
524
|
-
|
|
525
|
-
try:
|
|
526
|
-
# Hacky way to retrieve payload in case of aiohttp error
|
|
527
|
-
payload = getattr(http_error, "response_error_payload", None) or http_error.response.json()
|
|
528
|
-
error = payload.get("error")
|
|
529
|
-
error_type = payload.get("error_type")
|
|
530
|
-
except Exception: # no payload
|
|
531
|
-
raise http_error
|
|
532
|
-
|
|
533
|
-
# If error_type => more information than `hf_raise_for_status`
|
|
534
|
-
if error_type is not None:
|
|
535
|
-
exception = _parse_text_generation_error(error, error_type)
|
|
536
|
-
raise exception from http_error
|
|
537
|
-
|
|
538
|
-
# Otherwise, fallback to default error
|
|
539
|
-
raise http_error
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
def _parse_text_generation_error(error: Optional[str], error_type: Optional[str]) -> TextGenerationError:
|
|
543
|
-
if error_type == "generation":
|
|
544
|
-
return GenerationError(error) # type: ignore
|
|
545
|
-
if error_type == "incomplete_generation":
|
|
546
|
-
return IncompleteGenerationError(error) # type: ignore
|
|
547
|
-
if error_type == "overloaded":
|
|
548
|
-
return OverloadedError(error) # type: ignore
|
|
549
|
-
if error_type == "validation":
|
|
550
|
-
return ValidationError(error) # type: ignore
|
|
551
|
-
return UnknownError(error) # type: ignore
|
|
@@ -1,81 +0,0 @@
|
|
|
1
|
-
huggingface_hub/__init__.py,sha256=nu0b7XY9x7XElBvxPdCmxewlejCC_OeLt7uR1_priWE,21502
|
|
2
|
-
huggingface_hub/_commit_api.py,sha256=ShZvHuBuARsZqzDVSzH07_E1M4LYk7dekGng9CYO0B0,29194
|
|
3
|
-
huggingface_hub/_commit_scheduler.py,sha256=FgfjYv3E0oK3iBxDdy45Y7t78FWkmjnBR4dRd5aZviU,13653
|
|
4
|
-
huggingface_hub/_inference_endpoints.py,sha256=HLsc3vr1EIBxB5zLtJvJh02ahew-0tXuEEWlpvzOjY4,15426
|
|
5
|
-
huggingface_hub/_login.py,sha256=t5R3PXZN6loc27SJF9f8_d5Q4whhcd3ftHwDEhN-cPI,15363
|
|
6
|
-
huggingface_hub/_multi_commits.py,sha256=xEiS4N8ZmIrrDxVGS93mA33VoVrbhlAp5T8M_XQTMiA,12518
|
|
7
|
-
huggingface_hub/_snapshot_download.py,sha256=-0Kpp1gG1m2Slkbyj4GhvdOZeqzDTChqMQ1TGFHNjnA,15377
|
|
8
|
-
huggingface_hub/_space_api.py,sha256=Mae_lqTRyTWyszI5mlObJ2fn9slPxkFPcFTEVADoNQM,5255
|
|
9
|
-
huggingface_hub/_tensorboard_logger.py,sha256=3W8eUS3jhZ3WyVG9Hi6rVwZC-jcCyRunBns5vIniGfA,7165
|
|
10
|
-
huggingface_hub/_webhooks_payload.py,sha256=raqcWHIw98bsFvam5kkqiSEbDA8W0TU055ZlpmbUrWs,2831
|
|
11
|
-
huggingface_hub/_webhooks_server.py,sha256=u3Kua_O4okXPgnH60GDIhJTDEEyIiVX6Go4CUNX4ifE,15196
|
|
12
|
-
huggingface_hub/community.py,sha256=SHc_LOZYSzCuk5aA73InLObrrnW-0MJuv2e63FXwg50,12202
|
|
13
|
-
huggingface_hub/constants.py,sha256=fYBWYCLnyFOOldgN6a8E8PLmDVuGNdnKhfm5Qu8SLfE,7717
|
|
14
|
-
huggingface_hub/fastai_utils.py,sha256=5I7zAfgHJU_mZnxnf9wgWTHrCRu_EAV8VTangDVfE_o,16676
|
|
15
|
-
huggingface_hub/file_download.py,sha256=1_7W6f0CmQYlRbmIrFNsIcHsnqHJ4UIhE-XS9cmm9WY,77558
|
|
16
|
-
huggingface_hub/hf_api.py,sha256=ebPm0KHK4V2OJLZW6t_tMSacegDhA6dQTXqbRpmwG8M,367012
|
|
17
|
-
huggingface_hub/hf_file_system.py,sha256=8-gNR_BsZccS2yfgub4D0GuIk75G4Tu40AJXmdnsOLg,34180
|
|
18
|
-
huggingface_hub/hub_mixin.py,sha256=1latp7B3le4uLUrrZByc3ym1t1AbeejMzedM1Ssphkw,23521
|
|
19
|
-
huggingface_hub/inference_api.py,sha256=UXOKu_Ez2I3hDsjguqCcCrj03WFDndehpngYiIAucdg,8331
|
|
20
|
-
huggingface_hub/keras_mixin.py,sha256=fxVjwm742fwsLwbuNVt7Slo3KAjEX7sCcTudKnolPZM,18741
|
|
21
|
-
huggingface_hub/lfs.py,sha256=_YA93hK_R2j8TUnMnGk2CanYty-hTPBZX0MJDHbzUqc,19333
|
|
22
|
-
huggingface_hub/repocard.py,sha256=rHmWR1YJzzwJk_MS1arcqLLcpkrOrD6RrNGb87tfCHU,34291
|
|
23
|
-
huggingface_hub/repocard_data.py,sha256=wPTeJX2w5dGoFFZEp2Y1tYtogrwtH2p85_A3Gq511QA,31583
|
|
24
|
-
huggingface_hub/repository.py,sha256=8oNhKNvJRye3dr67cTn8faKkBSiWFgvj7bIBlOpI-8U,54489
|
|
25
|
-
huggingface_hub/commands/__init__.py,sha256=AkbM2a-iGh0Vq_xAWhK3mu3uZ44km8-X5uWjKcvcrUQ,928
|
|
26
|
-
huggingface_hub/commands/_cli_utils.py,sha256=VA_3cHzIlsEQmKPnfNTgJNI36UtcrxRmfB44RdbP1LA,1970
|
|
27
|
-
huggingface_hub/commands/delete_cache.py,sha256=9Nn2ihdORPpkULkhAzju6aYar2rsa4laSE38rt8645I,16130
|
|
28
|
-
huggingface_hub/commands/download.py,sha256=YnwGiL0--tq65pfLWKI5G5N3HGOovhIb7t2AI0vU1yM,9166
|
|
29
|
-
huggingface_hub/commands/env.py,sha256=LJjOxo-m0DrvQdyhWGjnLGtWt91ec63BMI4FQ-5bWXQ,1225
|
|
30
|
-
huggingface_hub/commands/huggingface_cli.py,sha256=o862C98OcZoyqCzY7mNpia1h0KaLJUgSb0y10ot8sxA,1924
|
|
31
|
-
huggingface_hub/commands/lfs.py,sha256=6E769AoRxUDiIOapn1_QvTbNtdUnUiouu2F4Gopp4do,7318
|
|
32
|
-
huggingface_hub/commands/scan_cache.py,sha256=nMEJxBScezxs00EWyAvJtWCjhwxCL1YlBE6qNfiT3RY,5182
|
|
33
|
-
huggingface_hub/commands/upload.py,sha256=vrac37T3sYwzaf6gpVR5qWzwh4fOhqakRvDUrLEx4Kg,13621
|
|
34
|
-
huggingface_hub/commands/user.py,sha256=QApZJOCQEHADhjunM3hlQ72uqHsearCiCE4SdpzGdcc,6893
|
|
35
|
-
huggingface_hub/inference/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
36
|
-
huggingface_hub/inference/_client.py,sha256=bR8BqBKuCavMCjdadn0rsa-pvxHp1hWK3-RjBpmv3hU,88740
|
|
37
|
-
huggingface_hub/inference/_common.py,sha256=7FejyCmwnVDaDCkgvgIjpDNJVs-2cBbFsPBIJDXCJSQ,11374
|
|
38
|
-
huggingface_hub/inference/_text_generation.py,sha256=LErz7X6YQwrJBuEVWSI_VXlQkVfmjl73enjd0YDwkhg,20616
|
|
39
|
-
huggingface_hub/inference/_types.py,sha256=qmMF3Z_Rft5FkHZ0Ij5aLkvpHP8WqfXC3SGs1dFHCwY,6068
|
|
40
|
-
huggingface_hub/inference/_generated/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
41
|
-
huggingface_hub/inference/_generated/_async_client.py,sha256=wCh0352cLysg5TR9Rbwzui8CWvqr8mwjd7lRB_ngbqI,91618
|
|
42
|
-
huggingface_hub/serialization/__init__.py,sha256=xGIpRYLosQ5MZl1Ht3_SJNCM37rKSkWLaFZrSWApyaw,909
|
|
43
|
-
huggingface_hub/serialization/_base.py,sha256=6_lA2BzLDjZoBLvfzUBNws2G77FUz8VSClN7DxC9c8U,7132
|
|
44
|
-
huggingface_hub/serialization/_numpy.py,sha256=aWbqBD56mDPgiLGWFdJDZcGwRm6Tt1i55nq941vzq1o,2670
|
|
45
|
-
huggingface_hub/serialization/_tensorflow.py,sha256=TRYyqo0IZwPEGClu2UTRpXRAyYTj3uPqrPvnhLuWdAk,3558
|
|
46
|
-
huggingface_hub/serialization/_torch.py,sha256=UtqRNhyhiRsgrsGbIXYzG_1nQVjEfd8L9JIDgg-0PJM,7686
|
|
47
|
-
huggingface_hub/templates/datasetcard_template.md,sha256=W-EMqR6wndbrnZorkVv56URWPG49l7MATGeI015kTvs,5503
|
|
48
|
-
huggingface_hub/templates/modelcard_template.md,sha256=4AqArS3cqdtbit5Bo-DhjcnDFR-pza5hErLLTPM4Yuc,6870
|
|
49
|
-
huggingface_hub/utils/__init__.py,sha256=OrAjppTGd2eaaVJ0jix4vnjSJx9IGznkL_r2K5GZcvE,3323
|
|
50
|
-
huggingface_hub/utils/_cache_assets.py,sha256=kai77HPQMfYpROouMBQCr_gdBCaeTm996Sqj0dExbNg,5728
|
|
51
|
-
huggingface_hub/utils/_cache_manager.py,sha256=zRBo37DaHS6IDWyQ_53oCL4-U6p--inAGsC8DLtAQ_I,29103
|
|
52
|
-
huggingface_hub/utils/_chunk_utils.py,sha256=6VRyjiGr2bPupPl1azSUTxKuJ51wdgELipwJ2YRfH5U,2129
|
|
53
|
-
huggingface_hub/utils/_datetime.py,sha256=vrR5-HN19j8bg2wxWfWzIU_7fRF_zzLyxhqGZWmTYH0,2553
|
|
54
|
-
huggingface_hub/utils/_deprecation.py,sha256=HZhRGGUX_QMKBBBwHHlffLtmCSK01TOpeXHefZbPfwI,4872
|
|
55
|
-
huggingface_hub/utils/_errors.py,sha256=nGtrPcPSMgtgy4klg52wjozAqwxLX8Wx6i7Wg1PhAb4,14733
|
|
56
|
-
huggingface_hub/utils/_experimental.py,sha256=rBx4gV2NU1dT_OfeRzsCmCWyIF4Wxcf0PdkmIASoT6o,2394
|
|
57
|
-
huggingface_hub/utils/_fixes.py,sha256=wFvfTYj62Il2OwkQB_Qp0xONG6SARQ5oEkT3_FhB4rc,2437
|
|
58
|
-
huggingface_hub/utils/_git_credential.py,sha256=NMfMmuqdub_QX3T2d32Jhpf3RBnf2eh4VnDhHoqyZRA,4595
|
|
59
|
-
huggingface_hub/utils/_headers.py,sha256=wz0kPrpu9PHpeCIJAq8MBiHuR2HbNWGukd0QgWS6lWo,9344
|
|
60
|
-
huggingface_hub/utils/_hf_folder.py,sha256=5fxKNZ8y12szgmLhxZWJsjK_zx-wopMtVoFPCuwI1VI,3612
|
|
61
|
-
huggingface_hub/utils/_http.py,sha256=qJ9wlsv-SU9L4Epr8FLHznY3COIcOrUUmGMjJXfrQvI,12889
|
|
62
|
-
huggingface_hub/utils/_pagination.py,sha256=VfpmMLyNCRo24fw0o_yWysMK69d9M6sSg2-nWtuypO4,1840
|
|
63
|
-
huggingface_hub/utils/_paths.py,sha256=nUaxXN-R2EcWfHE8ivFWfHqEKMIvXEdUeCGDC_QHMqc,4397
|
|
64
|
-
huggingface_hub/utils/_runtime.py,sha256=SkZmZuFLcpeMv1sTn6_YwnmWz592riCJGPS_-bgGMOs,10430
|
|
65
|
-
huggingface_hub/utils/_safetensors.py,sha256=EE9v9HflWBUqIegn0dCGHgNu9G9Db3v2aszvG4ldPF8,4876
|
|
66
|
-
huggingface_hub/utils/_subprocess.py,sha256=LW9b8TWh9rsm3pW9_5b-mVV_AtYNyLXgC6e09SthkWI,4616
|
|
67
|
-
huggingface_hub/utils/_telemetry.py,sha256=jHAdgWNcL9nVvMT3ec3i78O-cwL09GnlifuokzpQjMI,4641
|
|
68
|
-
huggingface_hub/utils/_token.py,sha256=e3GGABkd6zPYLE4-RdUxnH6vyen4vsvNxEl2PgStiTA,5475
|
|
69
|
-
huggingface_hub/utils/_typing.py,sha256=zTA0nTJAILGveXbJKyeh6u9uIagrFgPoRqr-uCEGDQI,921
|
|
70
|
-
huggingface_hub/utils/_validators.py,sha256=3ZmHubjslDRwFYe1oKyaUw6DZrc3DsuV2gABPrx7PTw,9358
|
|
71
|
-
huggingface_hub/utils/endpoint_helpers.py,sha256=Q9YpLXVkMVaGEZb4PAMioghxFcepEUictZ1LBe9Uxyk,9535
|
|
72
|
-
huggingface_hub/utils/insecure_hashlib.py,sha256=OjxlvtSQHpbLp9PWSrXBDJ0wHjxCBU-SQJgucEEXDbU,1058
|
|
73
|
-
huggingface_hub/utils/logging.py,sha256=mARNwc5gY6apMQ9IM5zymn-RsYnFbYW3b0HDMYXmBS0,4729
|
|
74
|
-
huggingface_hub/utils/sha.py,sha256=IVi7CfBthfu-ExLduY_CQltTy-tVGTbrvURCTOWKcLA,901
|
|
75
|
-
huggingface_hub/utils/tqdm.py,sha256=zBWgoxxwHooOceABVREVqSNpJGcMpaByKFVDU8VbuUQ,6334
|
|
76
|
-
huggingface_hub-0.21.4.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
77
|
-
huggingface_hub-0.21.4.dist-info/METADATA,sha256=D8616jH4iiuDT94lfbzrnmcGfQUAaCEWoDNzu2-De0I,13176
|
|
78
|
-
huggingface_hub-0.21.4.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
79
|
-
huggingface_hub-0.21.4.dist-info/entry_points.txt,sha256=Y3Z2L02rBG7va_iE6RPXolIgwOdwUFONyRN3kXMxZ0g,131
|
|
80
|
-
huggingface_hub-0.21.4.dist-info/top_level.txt,sha256=8KzlQJAY4miUvjAssOAJodqKOw3harNzuiwGQ9qLSSk,16
|
|
81
|
-
huggingface_hub-0.21.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|